首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucose-induced insulin secretion requires a rise in beta-cell cytosolic Ca2+ ([Ca2+]c) that triggers exocytosis and a mechanistically unexplained amplification of the action of [Ca2+]c. Insulin granules are kept acidic by luminal pumping of protons with simultaneous Cl- uptake to maintain electroneutrality. Experiments using patched, dialyzed beta-cells prompted the suggestion that acute granule acidification by glucose underlies amplification of insulin secretion. However, others found glucose to increase granular pH in intact islets. In this study, we measured islet granular pH with Lysosensor DND-160, a fluorescent dye that permits ratiometric determination of pH < 6 in acidic compartments. Stimulation of mouse islets with glucose reversibly decreased granular pH by mechanisms that are dependent on metabolism and Cl- ions but independent of changes in [Ca2+]c and protein kinase A or C activity. Granular pH was increased by concanamycin (blocker of the vesicular type H+-ATPase) > methylamine (weak base) > Cl- omission. Concanamycin and methylamine did not alter glucose-induced [Ca2+]c increase in islets but strongly inhibited the two phases of insulin secretion. Omission of Cl- did not affect the first phase but decreased the second phase of both [Ca2+]c and insulin responses. Neither experimental condition affected the [Ca2+]c rise induced by 30 mM KCl, but the insulin responses were inhibited by concanamycin > methylamine and not affected by Cl- omission. The amplification of insulin secretion by glucose was not suppressed. We conclude that an acidic granular pH is important for insulin secretion but that the acute further acidification produced by glucose is not essential for the augmentation of secretion via the amplifying pathway.  相似文献   

2.
3.
The role of unconventional myosins in neuroendocrine cells is not fully understood, with involvement suggested in the movement of both secretory vesicles and mitochondria. Here, we demonstrate colocalization of myosin Va (MyoVa) with insulin in pancreatic beta-cells and show that MyoVa copurifies with insulin in density gradients and with the vesicle marker phogrin-enhanced green fluorescent protein upon fluorescence-activated sorting of vesicles. By contrast, MyoVa immunoreactivity was poorly colocalized with mitochondrial or other markers. Demonstrating an important role for MyoVa in the recruitment of secretory vesicles to the cell surface, a reduction of MyoVa protein levels achieved by RNA interference caused a significant decrease in glucose- or depolarization-stimulated insulin secretion. Similarly, expression of the dominant-negative-acting globular tail domain of MyoVa decreased by approximately 50% the number of vesicles docked at the plasma membrane and by 87% the number of depolarization-stimulated exocytotic events detected by total internal reflection fluorescence microscopy. We conclude that MyoVa-driven movements of vesicles along the cortical actin network are essential for the terminal stages of regulated exocytosis in beta-cells.  相似文献   

4.
Electrothermal atomic absorption spectroscopy was employed for measuring barium in beta-cell-rich pancreatic islets microdissected from ob/ob-mice. Both the uptake and efflux of barium displayed two distinct phases. There was a 4-fold accumulation of barium into intracellular stores when its extracellular concentration was 0.26 mM. Unlike divalent cations with more extensive intracellular accumulation, the washout of Ba2+ was not inhibited by D-glucose. Ba2+ served as a substitute for Ca2+ both in maintaining the glucose metabolism after removal of extracellular Ca2+ and making it possible for glucose to stimulate insulin release. Furthermore, Ba2+ elicited insulin release in the absence of glucose and other secretagogues. The latter effect was reversible and was markedly potentiated under conditions known to increase the beta-cell content of cyclic AMP. It is likely that the observed actions of Ba2+ are mediated by Ca2+, since Ca2+ -dependent regulatory proteins, such as calmodulin, apparently cannot bind Ba2+ specifically.  相似文献   

5.
Two serotype 1 strains ofLegionella pneumophila, Phildelphia 2 and Bellingham, were tested for their ability to metabolize five common substrates by measuring14CO2 released and14C-carbon incorporated into macromolecules. No major differences were noted between the two strains or preparations grown in the yolk sac of chick embryos or agar-broth diphasic medium, following 2 or 14 pasaages on agar. Glutamate was the most actively metabolized substrate, followed by glutamine. Acetate, glucose, and succinate were utilized at much more moderate rates. Changes in cell density and substrate concentration altered the channeling of glutamate and glucose into CO2 and macromolecules. Specific CO2 felease from glutamate was greatest at low cell density and high substrate concentration, while carbon incorporation was increased at high substrate concentration. A reciprocal relationship was noted with glucose: the proportion of carbon incorporation was enhanced at low substrate concentration, but CO2 release paralleled increases in substrate concentration. The pH optimum for glutamate carbon incorporation and CO2 release was 5.5 and 6.1, respectively, but 25% of both activities were retained at pH 3.1. CO2 release from glucose was maximal at pH 7.5 with negligible activity at pH 3.1. Pathways of glucose metabolism were explored by employing glucose, glucose-1-phosphate, and glucose-6-phosphate labeled in various carbon positions. The glycolytic pathway appeared to play a lesser role than the pentose phosphate and/or Entner-Doudoroff pathways. Glucose-1-phosphate was metabolized at a much higher rate than glucose or glucose-6-phosphate. We conclude that glutamate is utilized primarily as an energy source while glucose may serve as an important metabolite for the nutrition ofL. pneumophila.  相似文献   

6.
Endocrine cells produce large amounts of one or more peptides. The post-translational control of selective production of a single protein is often unknown. We used 3 unrelated approaches to diminish PKCepsilon in rat islets to evaluate its role in preferential glucose-mediated insulin production. Transfection with siRNA (siR-PKCepsilon) or expression of inactive PKCepsilon (PKCepsilon-KD) resulted in a significant reduction in insulin response to glucose (16.7 mmol/l). Glucose stimulation resulted in concentration of PKCepsilon in the perinuclear region, an area known to be rich in ER-Golgi systems, associated with insulin-containing structures. ss'COP1 (RACK2) is the anchoring protein for PKCepsilon. Glucose-stimulated proinsulin production was diminished by 50% in islets expressing PKCepsilon-KD, and 60% in islets expressing RACK2 binding protein (epsilonV1-2); total protein biosynthesis was not affected. In islets expressing epsilonV1-2, a chase period following glucose stimulus resulted in a reduced proinsulin conversion to mature insulin. We propose that PKCepsilon plays a specific role in mediating the glucose-signal into insulin production: binding to ss'COP1 localizes the activated enzyme to the RER where it modulates the shuttling of proinsulin to the TGN. Subsequently the enzyme may be involved in anterograde trafficking of the prohormone or in its processing within the TGN.  相似文献   

7.
Muller D  Jones PM  Persaud SJ 《FEBS letters》2006,580(30):6977-6980
Insulin and glucose inhibited apoptosis in the MIN6 insulin-secreting cell line. The protective effect of 25 mM glucose was prevented by an anti-insulin antibody and this antibody-induced increase in apoptosis was reversed by the presence of excess insulin. Glucose stimulated MIN6 cell proliferation and this was inhibited by blockade of insulin secretion, by an anti-insulin antibody and by phosphatidylinositol-3 kinase (PI-3K) inhibition. Furthermore, MIN6 cell proliferation was stimulated by depolarising concentrations of KCl and by insulin itself. These data indicate that insulin secreted by β-cells in response to elevated glucose exerts autocrine effects to protect against apoptosis and stimulate proliferation, and suggest that the insulin signalling cascade, through the PI-3K pathway, may be an effective means of maintaining β-cell mass in diabetes.  相似文献   

8.
Liver X receptors (LXRs) are members of the nuclear receptor superfamily, which have been implicated in lipid homeostasis and more recently in glucose metabolism. Here, we show that glucose does not change LXRα protein level, but affects its localization in pancreatic β-cells. LXRα is found in the nucleus at 8 mM glucose and in the cytoplasm at 4.2 mM. Addition of glucose translocates LXRα from the cytoplasm into the nucleus. Moreover, after the activation of LXR by its synthetic non-steroidal agonist (T0901317), insulin secretion and glucose uptake are increased at 8 mM and decreased at 4.2 mM glucose in a dose-dependent manner. Furthermore, at low glucose condition, okadaic acid reversed LXRα effect on insulin secretion, suggesting the involvement of glucose signaling through a phosphorylation-dependent mechanism.  相似文献   

9.
Several years ago, we demonstrated that glucose induced tyrosine phosphorylation of a 125-kDa protein (p125) in pancreatic beta-cells (Konrad, R. J., Dean, R. M., Young, R. A., Bilings, P. C., and Wolf, B. A. (1996) J. Biol. Chem. 271, 24179-24186). Glucose induced p125 tyrosine phosphorylation in beta-TC3 insulinoma cells, beta-HC9 cells, and in freshly isolated rat islets, whereas increased tyrosine phosphorylation was not observed with other fuel secretagogues. Initial efforts to identify p125 were unsuccessful, so a new approach was taken. The protein was purified from betaTC6,F7 cells via an immunodepletion method. After electrophoresis and colloidal Coomassie Blue staining, the area of the gel corresponding to p125 was excised and subjected to tryptic digestion. Afterward, mass spectrometry was performed and the presence of Crk-associated substrate (Cas) was detected. Commercially available antibodies against Cas were obtained and tested directly in beta-cells, confirming glucose-induced tyrosine phosphorylation of Cas. Further experiments demonstrated that in beta-cells the glucose-induced increase in Cas tyrosine phosphorylation occurs immediately and is not accompanied by increased focal adhesion kinase tyrosine phosphorylation. Finally, it is also demonstrated via Western blotting that Cas is present in normal isolated rat islets. Together, these results show that the identity of the previously described p125 beta-cell protein is Cas and that Cas undergoes rapid glucose-induced tyrosine phosphorylation in beta-cells.  相似文献   

10.
In pancreatic beta-cells, the syntaxin 6 (Syn6) soluble N-ethylmaleimide-sensitive factor attachment protein receptor is distributed in the trans-Golgi network (TGN) (with spillover into immature secretory granules) and endosomes. A possible Syn6 requirement has been suggested in secretory granule biogenesis, but the role of Syn6 in live regulated secretory cells remains unexplored. We have created an ecdysone-inducible gene expression system in the INS-1 beta-cell line and find that induced expression of a membrane-anchorless, cytosolic Syn6 (called Syn6t), but not full-length Syn6, causes a prominent defect in endosomal delivery to lysosomes, and the TGN, in these cells. The defect occurs downstream of the endosomal branchpoint involved in transferrin recycling, and upstream of the steady-state distribution of mannose 6-phosphate receptors. By contrast, neither acquisition of stimulus competence nor the ultimate size of beta-granules is affected. Biosynthetic effects of dominant-interfering Syn6 seem limited to slowed intragranular processing to insulin (achieving normal levels within 2 h) and minor perturbation of sorting of newly synthesized lysosomal proenzymes. We conclude that expression of the Syn6t mutant slows a rate-limiting step in endosomal maturation but provides only modest and potentially indirect interference with regulated and constitutive secretory pathways, and in TGN sorting of lysosomal enzymes.  相似文献   

11.
Neurotensin (NT) is secreted from neurons and gastrointestinal endocrine cells. We previously reported that the three NT receptors (NTSRs) are expressed in pancreatic islets and beta cell lines on which we observed a protective effect of NT against cytotoxic agents. In this study, we explored the role of NT on insulin secretion in the endocrine pancreatic beta cells. We observed that NT stimulates insulin secretion at low glucose level and has a small inhibiting effect on stimulated insulin secretion from isolated islets or INS-1E cells. We studied the mechanisms by which NT elicited calcium concentration changes using fura-2 loaded islets or INS-1E cells. NT increases calcium influx through the opening of cationic channels. Similar calcium influxes were observed after treatment with NTSR selective ligands. NT-evoked calcium regulation involves PKC and the translocation of PKCα and PKC? to the plasma membrane. Part of NT effects appears to be also mediated by PKA but not via the Erk pathway. Taken together, these data provide evidence for an important endocrine role of NT in the regulation of the secretory function of beta cells.  相似文献   

12.
In human type 2 diabetes mellitus, loss of glucose-sensitive insulin secretion from the pancreatic beta-cell is an early pathogenetic event, but the mechanisms involved in glucose sensing are poorly understood. A messenger role has been postulated for L-glutamate in linking glucose stimulation to sustained insulin exocytosis in the beta-cell, but the precise nature by which L-glutamate controls insulin secretion remains elusive. Effects of L-glutamate on the activities of ser/thr protein phosphatases (PPase) and Ca(2+)-regulated insulin exocytosis in INS-1E cells were investigated. Glucose increases L-glutamate contents and promotes insulin secretion from INS-1E cells. L-glutamate also dose-dependently inhibits PPase enzyme activities analogous to the specific PPase inhibitor, okadaic acid. L-glutamate and okadaic acid directly and non-additively promote insulin exocytosis from permeabilized INS-1E cells in a Ca(2+)-independent manner. Thus, an increase in phosphorylation state, through inhibition of protein dephosphorylation by glucose-derived L-glutamate, may be a novel regulatory mechanism linking glucose sensing to sustained insulin exocytosis.  相似文献   

13.
Pancreatic beta-cells exposed to hyperglycemia produce reactive oxygen species (ROS). Because beta-cells are sensitive to oxidative stress, excessive ROS may cause dysfunction of beta-cells. Here we demonstrate that mitochondrial ROS suppress glucose-induced insulin secretion (GIIS) from beta-cells. Intracellular ROS increased 15min after exposure to high glucose and this effect was blunted by inhibitors of the mitochondrial function. GIIS was also suppressed by H(2)O(2), a chemical substitute for ROS. Interestingly, the first-phase of GIIS could be suppressed by 50 microM H(2)O(2). H(2)O(2) or high glucose suppressed the activity of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme, and inhibitors of the mitochondrial function abolished the latter effects. Our data suggested that high glucose induced mitochondrial ROS, which suppressed first-phase of GIIS, at least in part, through the suppression of GAPDH activity. We propose that mitochondrial overwork is a potential mechanism causing impaired first-phase of GIIS in the early stages of diabetes mellitus.  相似文献   

14.
Modulation of K+ conductance by intracellular pH in pancreatic beta-cells   总被引:3,自引:0,他引:3  
L M Rosario  E Rojas 《FEBS letters》1986,200(1):203-209
Measurements of the effects of NH3/NH4+ on glucose-induced electrical activity in beta-cells from microdissected mouse islets of Langerhans and on intracellular pH in single collagenase-isolated islets pre-loaded with a fluorescent pH probe were performed and are reported here. Application of NH3/NH4+ (15 mM) in the presence of glucose (11 mM) promptly hyperpolarized the beta-cell membrane, reduced input resistance by 60% and blocked electrical activity. These changes were paralleled by an increase in islet fluorescence indicative of a cytosolic pH increase. Removal of NH4Cl initially stimulated electrical activity, which returned to resting level with a time constant of 51 s. Concomitant with the removal of NH4Cl there was a drop in pHi followed by a slow return to resting level with a time constant of 83 s. The results suggest that the [Ca2+]-dependent K+ channel in the beta-cell membrane is activated by a rise in cytosolic pH.  相似文献   

15.
16.
17.
18.
19.
Proteins on the membrane of secretory granules (SGs) involved in their biogenesis and exocytosis are poorly characterized compared with those of synaptic vesicle in neurons. Thus the secretory granule membrane was prepared from a mouse pancreatic beta-cell line MIN6 by subcellular fractionation, and protein constituents were analyzed by microscale two-dimensional liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Using this proteomics approach, one of the p24 family proteins, p23, was unexpectedly found in the granule fraction, although p24 proteins are generally regarded as functioning in the early secretory pathways between the endoplasmic reticulum and the Golgi apparatus. We further showed that p23 is expressed at high levels in endocrine cells. Furthermore, immunocytochemical analyses of pancreatic beta-cells at the light and electron microscopic levels demonstrated that a significant amount of p23 is localized on the insulin granule membrane, although it is most intensely concentrated at the cis-Golgi compartment as previously shown in non-endocrine cells. These findings suggest that a fraction of p23 enters post-Golgi compartments and may function in the biogenesis and/or quality control of SGs.  相似文献   

20.
In the beta-cells of pancreatic islets, insulin is stored as the predominant protein within storage granules that undergo regulated exocytosis in response to glucose. By pulse-chase analysis of radiolabeled protein condensation in beta-cells, the formation of insoluble aggregates of regulated secretory protein lags behind the conversion of proinsulin to insulin. Condensation occurs within immature granules (IGs), accounting for passive protein sorting as demonstrated by constitutive-like secretion of newly synthesized C- peptide in stoichiometric excess of insulin (Kuliawat, R., and P. Arvan. J. Cell Biol. 1992. 118:521-529). Experimental manipulation of condensation conditions in vivo reveals a direct relationship between sorting of regulated secretory protein and polymer assembly within IGs. By contrast, entry from the trans-Golgi network into IGs does not appear especially selective for regulated secretory proteins. Specifically, in normal islets, lysosomal enzyme precursors enter the stimulus-dependent secretory pathway with comparable efficiency to that of proinsulin. However, within 2 h after synthesis (the same period during which proinsulin processing occurs), newly synthesized hydrolases are fairly efficiently relocated out of the stimulus- dependent pathway. In tunicamycin-treated islets, while entry of new lysosomal enzymes into the regulated secretory pathway continues unperturbed, exit of nonglycosylated hydrolases from this pathway does not occur. Consequently, the ultimate targeting of nonglycosylated hydrolases in beta-cells is to storage granules rather than lysosomes. These results implicate a post-Golgi mechanism for the active removal of lysosomal hydrolases away from condensed granule contents during the storage process for regulated secretory proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号