首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various mitogenic or growth inhibitory stimuli induce a rapid change in the association of terminal oligopyrimidine (TOP) mRNAs with polysomes. It is generally believed that such translational control hinges on the mammalian target of rapamycin (mTOR)-S6 kinase pathway. Amino acid availability affects the translation of TOP mRNAs, although the signaling pathway involved in this regulation is less well characterized. To investigate both serum- and amino acid-dependent control of TOP mRNA translation and the signaling pathways involved, HeLa cells were subjected to serum and/or amino acid deprivation and stimulation. Our results indicate the following. 1). Serum and amino acid deprivation had additive effects on TOP mRNA translation. 2). The serum content of the medium specifically affected TOP mRNA translation, whereas amino acid availability affected both TOP and non-TOP mRNAs. 3). Serum signaling to TOP mRNAs involved only a rapamycin-sensitive pathway, whereas amino acid signaling depended on both rapamycin-sensitive and rapamycin-insensitive but wortmannin-sensitive events. 4). Eukaryotic initiation factor-2alpha phosphorylation increased during amino acid deprivation, but not following serum deprivation. Interestingly, rapamycin treatment suggests a novel connection between the mTOR pathway and eukaryotic initiation factor-2alpha phosphorylation in mammalian cells, which may not, however, be involved in TOP mRNA translational regulation.  相似文献   

2.
Fatty acids are essential compounds in the cell. Since the yeast Saccharomyces cerevisiae does not feed typically on fatty acids, cellular function and growth relies on endogenous synthesis. Since all cellular organelles are involved in--or dependent on--fatty acid synthesis, multiple levels of control may exist to ensure proper fatty acid composition and homeostasis. In this review, we summarize what is currently known about enzymes involved in cellular fatty acid synthesis and elongation, and discuss potential links between fatty acid metabolism, physiology and cellular regulation.  相似文献   

3.
Prolonged or excess stimulation of excitatory amino acid receptors leads to seizures and the induction of excitotoxic nerve cell injury. Kainic acid acting on glutamate receptors produces degeneration of vulnerable neurons in parts of the hippocampus and amygdala, but the exact mechanisms are not fully understood. We have here investigated whether the anti-apoptotic protein Bruce is involved in kainic acid-induced neurodegeneration. In the rat hippocampus and cortex, Bruce was exclusively expressed by neurons. The levels of Bruce were rapidly downregulated by kainic acid in hippocampal neurons as shown both in vivo and in cell culture. Caspase-3 was activated in neurons exhibiting low levels of Bruce causing cell death. Likewise, downregulation of Bruce using antisense oligonucleotides decreased viability and enhanced the effect of kainic acid in the hippocampal neurons. The results show that Bruce is involved in neurodegeneration caused by kainic acid and the downregulation of the protein promotes neuronal death.  相似文献   

4.
A wheat (Triticum aestivum L., near isogenic line of Hamlet) O-methyltransferase (OMT) was previously reported as a putative caffeic acid OMT (TaCOMT1), involved in lignin biosynthesis, based on its high sequence similarity with a number of graminaceous COMTs. The fact that the putative TaCOMT1 exhibits a significantly high sequence homology to another recently characterized wheat flavone-specific OMT (TaOMT2), and that molecular modeling studies indicated several conserved amino acid residues involved in substrate binding and catalysis of both proteins, prompted an investigation of its appropriate substrate specificity. We report here that TaCOMT1 exhibits highest preference for the flavone tricetin, and lowest activity with the lignin precursors, caffeic acid/5-hydroxyferulic acid as the methyl acceptor molecules, indicating that it is not involved in lignin biosynthesis. We recommend its reannotation to a flavone-specific TaOMT1 that is distinct from TaOMT2.  相似文献   

5.
We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid–ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine.  相似文献   

6.
Simvastatin suppresses myoblast differentiation via inhibition of Rac GTPase, which is involved in the mevalonic acid pathway that produces cholesterol. Statins also inhibit adipogenic differentiation and receptor activator of NFκB ligand (RANKL) expression, possibly through the mevalonic acid pathway, although the involvement of that pathway and effector proteins in these cellular events has not been fully clarified. In the present study, we aimed to elucidate the mechanism of the effects of simvastatin on adipogenic differentiation and calcitriol‐induced RANKL expression in bone marrow stromal ST2 cells. Adipogenesis and mRNA up‐regulation of peroxisome proliferator–activated receptor γ and adipocyte fatty acid–binding protein were induced by troglitazone, and those events were efficiently inhibited by simvastatin. In addition, RANKL expression induced by calcitriol was abrogated by simvastatin in ST2 cells. The inhibitory effects of simvastatin were adequately compensated by the addition of either mevalonic acid or an intermediate of the mevalonic acid pathway, geranylgeranyl pyrophosphate, but not by another intermediate, farnesyl pyrophosphate. These findings suggest that protein geranylgeranylation is related to cellular differentiation in those two directions. Furthermore, inhibitor analysis demonstrated that Rac GTPase is involved in adipogenic differentiation, whereas Rho GTPase was found to be involved in RANKL expression. Taken together, the present findings suggest that geranylgeranylation of Rho family GTPase is involved in both adipogenesis and RANKL expression of stromal cells, while Rac GTPase is involved in adipogenesis and Rho GTPase in RANKL expression. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The biosynthesis of o-succinylbenzoic acid (OSB), the first aromatic intermediate involved in the biosynthesis of menaquinone (vitamin K2) is demonstrated for the first time in the gram-positive bacterium Bacillus subtilis. Cell extracts were found to contain isochorismate synthase, 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylic acid (SHCHC) synthase-alpha-ketoglutarate decarboxylase and o-succinylbenzoic acid synthase activities. An odhA mutant which lacks the decarboxylase component (usually termed E1, EC 1.2.4.2, oxoglutarate dehydrogenase [lipoamide]) of the alpha-ketoglutarate dehydrogenase complex was found to synthesize SHCHC and form succinic semialdehyde-thiamine pyrophosphate. Thus, the presence of an alternate alpha-ketoglutarate decarboxylase activity specifically involved in menaquinone biosynthesis is established for B. subtilis. A number of OSB-requiring mutants were also assayed for the presence of the various enzymes involved in the biosynthesis of OSB. All mutants were found to lack only the SHCHC synthase activity.  相似文献   

8.
水杨酸在植物抗病中的作用   总被引:30,自引:0,他引:30  
水杨酸是一种重要的能激活植物抗病防卫反应的内源信号分子,本文首先介绍了水杨酸的基本性质及水杨酸在植物抗病中的作用,然后从水杨酸与水杨酸结合蛋白的相互作用以及水杨酸介导的信号传导途径与非水杨酸介导的信号途径等方面初步探讨了水杨酸诱导植物抗病性的作用机制,最后总结了研究水杨酸作用机制对植物抗性生理和抗性分子生物学发展的意义。  相似文献   

9.
水杨酸在植物抗病中的作用   总被引:1,自引:0,他引:1  
水杨酸是一种重要的能激活植物抗病防卫反应的内源信号分子。本文首先介绍了水杨酸的基本性质及水杨酸在植物抗病中的作用,然后从水杨酸与水杨酸结合蛋白的相互作用以及水杨酸介导的信号传导途径与非水杨酸介导的信号途径等方面初步探讨了水杨酸诱导植物抗病性的作用机制,最后总结了研究水杨酸作用机制对植物抗性生理和抗性分子生物学发展的意义。  相似文献   

10.
Cutin is synthesized from oxygenated fatty acids derived preponderantly from oleic acid. The enzymatic pathways involved in the biosynthesis of such cutin monomers have been studied, i.e. 18-hydroxyoleic acid, 9,10-epoxy-18-hydroxystearic acid (the major constituent) and 9,10,18-trihydroxystearic acid. This was approached by studying (i) the substrate specificity and stereoselectivity of purified peroxygenase, which epoxidizes unsaturated fatty acids, and fatty acid epoxide hydrolase, i.e. two enzyme activities that have been found recently in higher plants, and (ii) the transformation of oleic acid into cutin monomers by a cell free system, i.e. soybean microsomes. These two enzymes, along with a ω-hydroxylating activity, can account for the biosynthesis of the oleic acid-derived cutin monomers and their precursors. A new biosynthetic scheme is proposed, whose pathways take into account the dynamic aspects of the expression of the different enzyme activities involved. Importantly, since peroxygenase, for its activity, is strictly dependent on fatty acid hydroperoxides, which act as co-substrates, the biosynthesis of cutin monomers is also dependent on the activity of lipoxygenases.  相似文献   

11.
植物AP2/ERF类转录因子研究进展   总被引:6,自引:0,他引:6  
Zhang JY  Wang QJ  Guo ZR 《遗传》2012,34(7):835-847
植物AP2/ERF是一个庞大的转录因子基因家族,含有由60~70个氨基酸组成的AP2/ERF结构域而得名,存在于所有的植物中。AP2/ERF转录因子参与多种生物学过程,包括植物生长、花发育、果实发育、种子发育、损伤、病菌防御、高盐、干旱等环境胁迫响应等。AP2/ERF类转录因子参与水杨酸、茉莉酸、乙烯、脱落酸等多种信号转导途径,而且是逆境信号交叉途径中的连接因子。文章对国内外近年来有关植物AP2/ERF类转录因子的分类、生物学功能、基因调控等方面的研究进行了综述。  相似文献   

12.
13.
F J Gella  F Palomo  J Beleta 《Enzyme》1988,39(3):167-173
Several well-established procedures for the isolation of enzymes involved in glycogen metabolism have been modified such that all the enzymes can now be isolated from the same muscle preparation. The purified proteins are the catalytic subunit of cyclic AMP-dependent protein kinase, its thermostable inhibitor, glycogen phosphorylases a and b, and phosphorylase kinase. Phosphorylase kinase is separated by acid precipitation of the muscle extract. The other proteins are purified from the acid supernatant by chromatography on DEAE-cellulose. Further purification of each protein to homogeneity is then achieved using previously described methods. The proposed protocol saves sample tissue, and considerably reduces the work involved in obtaining muscle samples.  相似文献   

14.
Plewa MJ  Weber DF 《Genetics》1975,81(2):277-286
The effects of monosomy of specific chromosomes on the fatty acid composition of maize embryos were studied. A novel technique was developed to obtain fatty acid profiles of single embryos without reducing the viability of the sampled kernels. Monosomic 2 embryos had significantly more oleic acid and significantly less linoleic acid than diploid control embryos. Since the conversion of oleic acid to linoleic acid is a single-enzyme-mediated reaction, we suggest that a gene involved in linoleic acid biosynthesis is located on chromosome 2. Additional consistent variations were found in other monosomic types. This study demonstrates that monosomic analysis can be used to study gene dosage effects at the biochemical level.  相似文献   

15.
Conversion of γ-Hydroxybutyrate to γ-Aminobutyrate In Vitro   总被引:3,自引:3,他引:0  
[3H]gamma-Hydroxybutyric acid [( 3H]GHB) at physiological concentration incubated with brain slices in Krebs-Ringer medium produced [3H]gamma-aminobutyric acid [( 3H]GABA). This compound was identified by its Rf values on thin-layer chromatograms and by analysis of the dansyl derivatives of the free amino acid fraction. No labelled glutamate could be detected. Brain slices incubated with labelled glutamate and nonradioactive GHB generated labelled 2-oxoglutarate, suggesting that gamma-aminobutyrate-2-oxoglutarate transaminase (GABA-T) is involved in catalyzing this reaction. Furthermore, specific inhibitors of GABA-T blocked the production of labelled GABA from labelled GHB and of labelled 2-oxoglutarate from labelled glutamate. Transformation of [3H]GHB into [3H]GABA was not inhibited by malonate, demonstrating that the succinate-linked pathway is not involved in the generation of GABA. The kinetic characteristics of the multienzyme system involved in GHB degradation studied in vitro are compatible with the production of GABA in vivo.  相似文献   

16.
Exposure to the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) results in a variety of pathological lesions in humans via activation of the aryl hydrocarbon receptor (AhR) pathway. It has become apparent that this pathway interacts with a variety of signaling pathways that are believed to be involved in mediating TCDD/AhR biological effects. Our hypothesis is that TCDD mediates these pathological lesions by directly altering the expression of genes involved in matrix deposition and remodeling and that the retinoic acid signaling pathway is involved in modulating TCDD-induced effects. Therefore, we examined the effect of TCDD and all-trans retinoic acid (atRA) on the expression of matrix metalloproteinase-1 (MMP-1, interstitial collagenase), one of the proteolytic enzymes that degrade type I collagen, in normal human keratinocytes. The data show that TCDD exposure results in increased MMP-1 expression in keratinocytes that is further enhanced by co-treatment with all-trans retinoic acid. TCDD-induced expression of MMP-1 appears to be mediated through two AP-1 elements in the proximal promoter of the MMP-1 gene. However, retinoic acid-mediated induction of keratinocyte MMP-1 is a result of both promoter activation and increased mRNA stability. These findings are the first to demonstrate TCDD-induced expression of MMP-1 and to demonstrate interactions between the TCDD/AhR and retinoic acid pathways on MMP-1 expression.  相似文献   

17.
We examined the involvement of chlorogenic acid (CGA) and salicylic acid (SA) in the stress-induced flowering of Pharbitis nil (synonym Ipomoea nil). The incorporation efficiency of exogenously applied CGA and the deactivation rate of incorporated CGA were determined in cotyledons by high-performance liquid chromatography. The assay plants could not incorporate a sufficient amount of CGA via roots. The perfusion technique by which the assay solution was forced into the plant from the cut end of the hypocotyl improved the efficiency of CGA incorporation. However, no flower-inducing activity was detected, indicating that CGA was not involved in flowering. It was concluded that the close correlation between CGA content and flowering response is merely coincidence or a parallelism. Flowering under long-day conditions induced by low-temperature stress was completely inhibited by aminooxyacetic acid (AOA), an inhibitor of phenylalanine ammonialyase. The flower-inhibiting effect of AOA was nullified by co-applied t-cinnamic acid and by benzoic acid. This indicates that the metabolic pathway from t-cinnamic acid to SA via benzoic acid is involved in the stress-induced flowering. The results indicate that the metabolic pathway of SA is involved in the stress-induced flowering of P. nil not the metabolic pathway of CGA.  相似文献   

18.
The cellular retinoic acid binding protein is thought to be involved in the retinoic-acid-mediated signal transduction pathway. We have isolated the mouse cellular retinoic acid binding protein cDNA from an embryonal-carcinoma-derived cell line by using differential cDNA cloning strategies. In situ hybridization on sections of mouse embryos of various developmental stages indicated that the cellular retinoic acid binding protein gene, which we localized on mouse chromosome 9, is preferentially expressed in a subpopulation of neurectodermal cells. This restricted expression pattern suggests an important role for cellular retinoic acid binding protein in murine neurogenesis.  相似文献   

19.
We previously reported that endogenous nitric oxide (NO) is involved in the peripheral control of gastric acid secretion induced by some secretagogues, and that endogenous NO is involved in the acid secretion process via histamine release from histamine-containing cells. However, the stimulus-secretion coupling in the cells remains to be clarified. In the present study, we investigated the effect of dibutyryl cyclic GMP on gastric acid secretion in mouse isolated stomach and on histamine release in gastric mucosal cells, in comparison with those of dibutyryl cyclic AMP. Dibutyryl cyclic GMP (300 microM) produced a slight but significant increase of gastric acid secretion, which was completely inhibited by the histamine-H2 receptor antagonist famotidine. In contrast, dibutyryl cyclic GMP (1 mM) markedly inhibited histamine-induced acid secretion. Dibutyryl cyclic AMP (100 microM) produced a sustained increase of gastric acid secretion. The pretreatment with famotidine partially inhibited dibutyryl cyclic AMP-induced gastric acid secretion. Dibutyryl cyclic GMP and dibutyryl cyclic AMP significantly increased the histamine release from gastric mucosal cells. These results suggest that both intracellular cyclic GMP and cyclic AMP act as second messengers for histamine release in the histamine-containing cells, probably ECL cells. On the other hand, in gastric parietal cells, cyclic AMP has a stimulatory effect on gastric acid secretion, whereas cyclic GMP has an inhibitory effect.  相似文献   

20.
The glutaryl 7-aminocephalosporanic acid (GL-7-ACA) acylase from Pseudomonas sp. strain GK16 is an (alphabeta)2 heterotetramer of two non-identical subunits that are cleaved autoproteolytically from an enzymatically inactive precursor polypeptide. The newly formed N-terminal serine of the beta subunit plays an essential role as a nucleophile in enzyme activity. Chemical modification studies on the recombinant enzyme purified from Escherichia coli revealed the involvement of a single arginine and tryptophan residue, per alphabeta heterodimer of the enzyme, in the catalytic activity of the enzyme. Glutaric acid, 7-aminocephalosporanic acid (7-ACA) (competitive inhibitors) and GL-7-ACA (substrate) could not protect the enzyme against phenylglyoxal-mediated inactivation, whereas except for glutaric acid protection was observed in case of N-bromosuccinimide-mediated inactivation of the enzyme. Kinetic parameters of partially inactivated enzyme samples suggested that while arginine is involved in catalysis, tryptophan is involved in substrate binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号