首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mercury reduces twitch and tetanic force development in isolated rat papillary muscles, and a putative toxic effect on the contractile machinery has been suggested. Based on that, the actions of HgCl2 on the myosin ATPase activity of the left ventricular myocardium were investigated. Samples for assay of myosin ATPase activity were obtained from rats' left ventricles. Increasing concentrations of HgCl2 reduced dose-dependently the activity of the myosin ATPase. This reduction was observed even at very small concentrations, 50 nM HgCl2. This effect was dependent on the presence of SH groups in the myosin molecule since DTT and glutathione protected the myosin ATPase against toxic effects of mercury; full activity being restored by using 500 nM DTT or 500 nM glutathione. Results also suggested that the metal acts as an uncompetitive inhibitor with a Ki of 200 nM HgCl2. Our results suggest that mercury reduces the activity of the myosin ATPase by an uncompetitive mechanism at a very low dose that does not depress force. DTT and glutathione are effective for protection against the actions of mercury suggesting that SH groups might be the sites of action of the metal on the myosin molecule.  相似文献   

2.
Heat, mechanics, and myosin ATPase in normal and hypertrophied heart muscle   总被引:2,自引:0,他引:2  
In this paper we review our previous work on the myothermic economy of isometric force production in compensated cardiac hypertrophy secondary to pulmonary artery constriction (pressure overload) and/or thyrotoxicosis (volume overload). Hypertrophy-induced changes in isotonic and isometric twitch mechanics are correlated with accompanying changes in actin-activated myosin ATPase and heat liberation. Heat measurements were made with rapid, high-sensitivity thermopiles on right ventricular papillary muscles from normal and hypertrophied rabbit hearts. Total activity-related heat was separated into initial and recovery heat. Initial heat was separated into a tension-dependent component (TDH) relating to cross-bridge activity, and a tension-independent component (TIH) relating to excitation-contraction coupling. There were oppositely directed changes in most parameters studied in pressure overload hypertrophy (P) as compared with thyrotoxic hypertrophy (T). Thus, in P there was depression (30-50% in the rate of isometric force production, mechanical Vmax, TDH and TDH rate, myosin ATPase, TIH, and prolongation in time-to-peak twitch tension, whereas in T all parameters were oppositely changed except for no change in TIH. Thyrotoxicosis following pressure overload reversed the P-induced changes in all parameters. There was a direct, linear relation between in vitro actin-activated myosin ATPase and in vivo TDH. However, TDH per unit twitch tension or tension-time integral varied inversely with ATPase, making force production more economical than normal in P muscles and less economical than normal in T muscles. These cellular changes beneficially equip P hearts for slow, high-pressure, economical pumping the T hearts for fast, high-volume, uneconomical pumping. The differences are similar to those between slow and fast skeletal muscle and between neonatal and adult skeletal muscle. The mechanism of these changes is discussed in terms of an enzyme kinetic scheme of chemomechanical coupling in actomyosin interaction.  相似文献   

3.
The effects of 50 microM lanthanum (La3+) on the contractile force, rate and coronary flow of rat hearts perfused with solutions containing 2.5, 5, 7.5 mM calcium (Ca2+) have been investigated. La3+ produced a rapid and marked decrease in contractile force within 1-3 min ("early La(3+)-effect"). The inhibition of contractility by La3+ was reduced progressively when the Ca2+ ion concentration in the perfusion fluid was raised from 2.5 to 7.5 mM. However, after 10-80 min of La3+ perfusion the contractile force was increased significantly ("late La(3+)-effect"). Elevation of Ca2+ during exposure to La3+ increased its effect. During the late La(3+)-effect, a marked decrease in heart rate and a significant increase in time to reach peak tension, time for half relaxation and twitch duration was observed. High concentrations of perfusate Ca2+ decreased the chronotropic response to La3+, in contrast, elevated Ca2+ potentiated La(3+)-induced increase in time to reach peak tension, time for half relaxation and twitch duration. La3+ produced a significant decrease in coronary flow. High Ca2+ augmented the decrease coronary flow. The findings indicate that La3+ may produce marked effects on myocardial function. High extracellular Ca2+ reduces the La(3+)-induced initial decrease in force of contraction, but potentiates the late increase in contractile force by La3+. Elevated external Ca2+ also increases the effects of La3+ on twitch parameters, heart rate and coronary flow.  相似文献   

4.
The rise time of an isometric twitch, the tetanic tension, the twitch tetanus ratio, the frequency-tension relationship, and the height of the MUAP (motor unit action potential) were measured in fast twitch (medial gastrocnemius) and slow twitch (soleus) muscles of the cat immediately before, in the middle, and immediately after fatiguing isometric contractions at tensions of 30, 50 and 80% of each muscle's initial strength (tetanic tension recorded from the unfatigued muscle). Although the twitch-tetanus ratio was always less for the soleus than for the medial gastrocnemius muscles, the twitch-tetanus ratio for any one muscle was constant throughout the duration of fatiguing isometric contractions at any of the tensions examined. In contrast, the twitch tension and tetanic tension of the muscles were both less after the contractions, the largest reduction occurring for both muscles during contractions sustained at the lowest isometric tensions. The time to peak tension of an isometric twitch was prolonged for both muscles following the contractions. This was associated with a corresponding shift in the frequency tension relationship such that at the point of muscular fatigue, the muscles tetanized at lower frequencies of stimulation than did the unfatigued muscle. In contrast, the amplitude of the MUAP showed only a modest reduction throughout the duration of the fatiguing contractions.  相似文献   

5.
The importance of extracellular glucose in the maintenance of performance of the heart of the American eel (Anguilla rostrata Le Sueur (L.) Under anoxia was assessed under a variety of experimental conditions. Ventricular strips, electrically paced at 36 bpm, in N(2)-gassed medium maintained the imposed pace rate and generated approximately 25% of the initial twitch force of contraction for at least 60 min when glucose was present in the medium. But ventricular strips challenged without glucose in the medium failed to maintain the pacing rate within 5-10 min. Isolated and intact, perfused hearts maintained pressure and followed an imposed pace rate of 24 bpm for at least 2 hr, under anoxic conditions, if glucose was present in the medium. But without glucose in the medium isolated hearts failed within 30 min. Endogenous glycogen stores were utilized in hearts perfused with medium containing NaCN to impair oxidative phosphorylation. The presence of glucose in the medium did not protect against glycogen mobilization. The data indicate that exogenous glucose is necessary to maintain performance under anoxia at high workloads and physiological Ca(2+) levels. Finally, ventricular strips treated with NaCN and forced to contract at 24 bpm lost 70% of initial twitch force. Increasing extracellular Ca(2+) concentration stepwise from 1.5 to 9.5 mM restored twitch force to approximately 50% of the initial level and this response was not dependent on exogenous glucose. However, glucose was required to maintain resting tension even under normoxic conditions in the face of a Ca(2+) challenge.  相似文献   

6.
Exposure to mercury at nanomolar level affects cardiac function but its effects on vascular reactivity have yet to be investigated. Pressor responses to phenylephrine (PHE) were investigated in perfused rat tail arteries before and after treatment with 6 nM HgCl2 during 1 h, in the presence (E+) and absence (E-) of endothelium, after L-NAME (10(-4) M), indomethacin (10(-5 )M), enalaprilate (1 microM), tempol (1 microM) and deferoxamine (300 microM) treatments. HgCl2 increased sensitivity (pD2) without modifying the maximum response (Emax) to PHE, but the pD2 increase was abolished after endothelial damage. L-NAME treatment increased pD2 and Emax. However, in the presence of HgCl2, this increase was smaller, and it did not modify Emax. After indomethacin treatment, the increase of pD2 induced by HgCl2 was maintained. Enalaprilate, tempol and deferoxamine reversed the increase of pD2 evoked by HgCl2. HgCl2 increased the angiotensin converting enzyme (ACE) activity explaining the result obtained with enalaprilate. Results suggest that at nanomolar concentrations HgCl2 increase the vascular reactivity to PHE. This response is endothelium mediated and involves the reduction of NO bioavailability and the action of reactive oxygen species. The local ACE participates in mercury actions and depends on the angiotensin II generation.  相似文献   

7.
We have demonstrated that food restriction that is associated with weight loss can produce a type of cardiac dysfunction similar to that produced by diabetes. As in diabetic atria, the food-restricted atria had a 2-fold increase in contraction force, rate of force development, and rate of force decline compared with controls. Both food-restricted and diabetic atria could tolerate anoxia better than controls. The contractile function of the whole perfused heart from the food-restricted rat was reduced, as in the case of the diabetic heart. As the left ventricular volume was increased, the left ventricular developed pressure and the rate of rise and fall in pressure were significantly reduced in both food-restricted and diabetic hearts, compared with those of age- and weight-matched controls. The positive inotropic responses of atria and whole perfused heart to increasing concentrations of extracellular calcium were similarly altered in food-restricted and diabetic hearts. The possible molecular mechanisms of these findings and some of the differences observed between food-restricted and diabetic hearts are discussed.  相似文献   

8.
The human genome project has increased the demand for simple experimental systems that allow the impact of gene manipulations to be studied under controlled ex vivo conditions. We hypothesized that, in contrast to adult hearts, neonatal hearts allow long-term perfusion and efficient gene transfer ex vivo. A Langendorff perfusion system was modified to allow perfusion for >24 h with particular emphasis on uncompromised contractile activity, sterility, online measurement of force of contraction, inotropic response to beta-adrenergic stimulation, and efficient gene transfer. The hearts were perfused with serum-free medium (DMEM + medium 199, 4 + 1) supplemented with hydrocortisone, triiodothyronine, ascorbic acid, insulin, pyruvate, l-carnitine, creatine, taurine, l-glutamine, mannitol, and antibiotics recirculating (500 ml/2 hearts) at 1 ml/min. Hearts from 2 day-old rats beat constantly at 135-155 beats/min and developed active force of 1-2 mN. During 24 h of perfusion, twitch tension increased to approximately 165% of initial values (P < 0.05), whereas the inotropic response to isoprenaline remained constant. A decrease in total protein content of 10% and histological examination indicated moderate edema, but actin and calsequestrin concentration remained unchanged and perfusion pressure remained constant at 7-11 mmHg. Perfusion with a LacZ-encoding adenovirus at 3 x 108 active virus particles yielded homogeneous transfection of approximately 80% throughout the heart and did not affect heart rate, force of contraction, or response to isoprenaline compared with uninfected controls (n = 7 each). Taken together, the 24-h Langendorff-perfused neonatal rat heart is a relatively simple, inexpensive, and robust new heart model that appears feasible as a test bed for functional genomics.  相似文献   

9.
Myofilament Ca2+ sensitivity and maximal Ca2+-activated force are fundamental properties of the contractile proteins in the heart. Although these properties can be evaluated directly in skinned preparations, they have remained elusive in intact tissue. A novel approach is described that allows maximal Ca2+-activated force to be measured and myofilament Ca2+ sensitivity to be deduced from isovolumic pressure in intact perfused ferret hearts. Phosphorus nuclear magnetic resonance spectra are obtained sequentially to measure the intracellular inorganic phosphate (Pi) and hydrogen ion (H+) concentrations. After a period of perfusion with oxygenated, HEPES-buffered Tyrode solution, hypoxia is induced as a means of elevating [Pi]. The decline in twitch pressure can then be related to the measured increase in [Pi]. After recovery, hearts are perfused with ryanodine to enable tetanization and the measurement of maximal Ca2+-activated pressure. Hypoxia is induced once again, and maximal pressure is correlated with [Pi]. We then compare the relations between [Pi] and maximal pressure on the one hand, and [Pi] and twitch pressure on the other. If the two relations differ only by a constant scaling factor, then the decline in twitch pressure can be attributed solely to a decline in maximal pressure, with no change in myofilament sensitivity. We obtained such a result during hypoxia, which indicated that Pi accumulation decreases maximal force but does not change myofilament sensitivity. We compared these results with acidosis (induced by bubbling with 5% CO2). In contrast with Pi, the accumulation of H+ decreases twitch force primarily by shifting myofilament Ca2+ sensitivity. This approach in intact tissue has strengths and limitations complementary to those of skinned muscle experiments.  相似文献   

10.
Effects of temperature and Zn2+ on the isometric contractile properties of toe muscle fibers of Rana catesbeiana and Xenopus laevis were studied. The maximum twitch tension almost doubled when the temperature was lowered from 20 to 4 degrees C in Rana muscles but not in Xenopus muscles, although the duration of action potential in Xenopus muscle was increased slightly more than that seen in the Rana species. The maximum rate of rise of tension was greater in Xenopus muscle than in the Rana muscle, at 20 degrees C. The prolongation of the time-to-peak tension following exposure to low temperature (4 degrees C) was more pronounced in Rana than in Xenopus muscles. These results suggest that the speed of release and reuptake of Ca2+ by the sarcoplasmic reticulum (SR) differs in Rana and Xenopus muscles and that these factors may be related to differences in the SR and the T-tubular morphology. In Rana muscles, Zn2+ prolonged the falling phase of the action potential and potentiated the twitch tension. In Xenopus muscles, Zn2+ marginally prolonged the duration of action potential and the twitch tension was not markedly potentiated. These results indicate that Zn2+ potentiates the twitch by prolonging the action potential and that Rana muscles are more sensitive to the effects of Zn2+.  相似文献   

11.
The isometric contractile properties of frog (Rana pipiens) and toad (Bufo bufo) sartorii have been studied over the temperature range from 0 to 20 degrees C. The isometric twitch tension was found to vary considerably between these two species and between muscles in the same species. Between 0 and 4 degrees C there was very little change in maximum isometric twitch tension. Between 4 and 12 degrees C several muscles from frog or toad showed a potentiation of twitch tension whereas others showed a decline. Over this temperature range the toad sartorii consistently demonstrated a greater potentiation. By 12 degrees C a steady decline in twitch tension in both muscles was seen as the temperature range the toad sartorii consistently demonstrated a greater potentiation. By 12 degrees C a steady decline in twitch tension in both muscles was seen as the temperature approached 20 degrees C. The maximum isometric tetanic tension recorded between 18 and 20 degrees C increased fractionally to an average of 1.504 +/- 0.029 (n = 4) for frog sartorii and to 1.377 +/- 0.008 (n = 5) for toad sartorii. The time to peak twitch tension and the half-relaxation time decreased markedly with an increase in temperature. Moreover, the half-relaxation time was reduced by a greater proportion than the time to peak twitch tension. Measurements of instantaneous stiffness by controlled velocity releases from the plateau of isometric tetani revealed that the large increase in isometric tetanus tension as the muscle was warmed was not accompanied by a corresponding increase in the total number of active cross-bridges. The possibility that a decreased availability of intracellular Ca2+ ions at the contractile sites contributing to the fall of isometric twitch tension at elevated temperatures is discussed. The possibility exists that at elevated temperatures a change inthe intrinsic contractile ability of the muscle occurs which produces an increased tension per cross-bridge.  相似文献   

12.
Cardiac performance was studied in the isolated perfused hearts of rats heat acclimated at 34 degrees C (AC) and their age-matched controls (C). The pressure-volume curves during isovolumetric conditions showed a shift to the right in AC compared with C hearts. At similar left ventricular (LV) volumes end-diastolic and peak systolic pressures of AC hearts were lower, but no difference was observed in the maximal pressure developed at the highest LV volumes measured. In both C and AC hearts the developed force decreased as pacing rate increased. AC and C heart responses were the same up to 250 pulses/min. At higher frequencies the amplitude of the developed force of AC hearts was smaller than that of the controls. In accordance the tension produced by very early premature beat reduced in AC compared with C hearts. Since no hypertrophy was observed in AC hearts, it is concluded that heat acclimation results in a change in the intrinsic properties of the AC hearts exhibited by increased compliance, reduced chamber stiffness, and a decrease in the tension developed for each volume load. It is also suggested that at a high beating rate AC hearts fail to restitute its contractility as quickly as C hearts.  相似文献   

13.
The decapod crustacean heartbeat is initiated by the cardiac ganglion and is regulated by a variety of neuronal and hormonal inputs. In this paper we examine the effects of the peptide hormone proctolin which appears to have multiple sites of action in the shore crab, Carcinus maenas. To examine some of the potential sites of proctolin action we used three heart preparations: in situ intact and open hearts, and isolated hearts. We provide evidence in support of the hypothesis that proctolin affects cardiac activity at many levels. It acts at the cardiac ganglion to modulate burst rate and at the myocardium to alter contractile force. We calculated the relationship between contractility and ganglionic output of in situ hearts as the ratio of ventricular pressure or tension to amplitude of the electromyogram or intracellular excitatory junction potential. Large proctolin-induced changes in this ratio, which could not be accounted for by ganglionic output, membrane potential or input resistance suggest direct action on the myocardium. The greater increases in ventricular pressure than in tension in the in situ hearts may reflect proctolin-induced contraction of the cardioarterial valves. Finally, proctolin can possibly influence heart rate by action on the cardioregulatory nerves of the central nervous system. Accepted: 11 May 1998  相似文献   

14.
The effects of sustained and rhythmically performed isometric contractions on electrically evoked twitch and tetanic force generation of the triceps surae have been investigated in 4 healthy male subjects. The isometric contractions were performed separately and on different occasions at 30%, 60% and 100% of the force of maximal voluntary contraction (MVC). The area under the maximal voluntary contraction (MVC) force/time curve during the rhythmic and sustained contractions was the same for each experiment. The results showed that following rhythmic isometric exercise there was a small decrease in low (10 and 20 Hz) and high (40 Hz) frequency tetanic tension which was associated with % MVC. However, there was no change in the 20/40 ratio of tetanic forces, MVC or the contraction times and force of the maximal twitch. In contrast, following sustained isometric exercise tetanic forces were markedly reduced, particularly at low frequencies of stimulation. The 20/40 ratio decreased and the induced muscle weakness was greater at 30% than 60% or 100% MVC. The performance of sustained isometric contractions also effected a decrease in contraction time of the twitch and MVC. The results are in accord with previous findings for dynamic work (Davies and White 1982), and show that if isometric exercise is performed rhythmically the effect on tetanic tensions is small and there is no evidence of a preferential loss of electrically evoked force at either high or low frequencies of stimulation following the contractions. For sustained contractions, however, the opposite is true, the ratio of 20/40 Hz forces is markedly reduced and following 30% sustained MVC there is a significant (p less than 0.05) change in the time to peak tension (TPT) of the maximal twitch.  相似文献   

15.
Isolated rabbit hearts, perfused under constant pressure (Langendorff technique) were used to study the effect of neuropeptide Y (NPY) on heart rate, force of heart contraction and rate of myocardial perfusion. No significant net change in heart rate was noted. A dose-dependent negative inotropic effect was consistently demonstrated which was characterised by slow onset and was often preceded by a transient positive inotropic response. Addition of small doses of NPY resulted in a prompt reduction in flow of the perfusate through the coronary vasculature. Since NPY is present locally in cardiac nerves, these effects may have physiological importance.  相似文献   

16.
Concentrations of heavy metals, including mercury, have been shown to be altered in the brain and body fluids of Alzheimer's disease (AD) patients. To explore potential pathophysiological mechanisms we used an in vitro model system (SHSY5Y neuroblastoma cells) and investigated the effects of inorganic mercury (HgCl2) on oxidative stress, cell cytotoxicity, beta-amyloid production, and tau phosphorylation. We demonstrated that exposure of cells to 50 microg/L (180 nM) HgCl2 for 30 min induces a 30% reduction in cellular glutathione (GSH) levels (n = 13, p<0.001). Preincubation of cells for 30 min with 1 microM melatonin or premixing melatonin and HgCl2 appeared to protect cells from the mercury-induced GSH loss. Similarly, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assays revealed that 50 microg/L HgCl2 for 24 h produced a 50% inhibition of MTT reduction (n = 9, p<0.001). Again, melatonin preincubation protected cells from the deleterious effects of mercury, resulting in MTT reduction equaling control levels. The release of beta-amyloid peptide (Abeta) 1-40 and 1-42 into cell culture supernatants after exposure to HgCl2 was shown to be different: Abeta 1-40 showed maximal (15.3 ng/ml) release after 4 h, whereas Abeta 1-42 showed maximal (9.3 ng/ml) release after 6 h of exposure to mercury compared with untreated controls (n = 9, p<0.001). Preincubation of cells with melatonin resulted in an attenuation of Abeta 1-40 and Abeta 1-42 release. Tau phosphorylation was significantly increased in the presence of mercury (n = 9, p<0.001), whereas melatonin preincubation reduced the phosphorylation to control values. These results indicate that mercury may play a role in pathophysiological mechanisms of AD.  相似文献   

17.
This is a review of work dealing with the effect of pressure overload and thryotoxic hypertrophy of rabbit hearts on the production of total activity related (TA) and initial (I) heats during isometric contraction. Pressure overload hypertrophy is produced by constricting the pulmonary artery with a spiral monel metal clip. Thyrotoxic hypertrophy is produced by 14 daily i.m. injections of 0.2 mg L-thyroxine per kilogram. Heat output is measured with Hill-type planar vacuum deposited bismuth and antimony thermopiles, and force is measured with a capacitance strain gauge. The pressure overload results in a depressed velocity of unloaded shortening, a depressed rate of isometric force development, and an increased time-to-peak tension. These changes are associated with a decreased myosin ATPase, a heart with no V1 myosin isoenzyme, and an increase in the economy of isometric force development (integral of Pdt/TA, integral of Pdt/I). The thyrotoxic hearts exhibit an increased velocity of shortening and rate of force development, and a decrease in time-to-peak tension. These changes are associated with an increase in myosin ATPase activity, a heart with increase in the V1 isoenzyme composition (88% V1), and a decrease in the economy of isometric force development (integral of Pdt/TA, integral of Pdt/I). The changes in the two types of hypertrophied hearts are interpreted in terms of altered cross-bridge cycling rates and changes in cross-bridge tension time integral as well as excitation contraction coupling phenomena. In the thyrotoxic hearts there is an increase in the economy of the recovery processes. Both types of hypertrophy are considered to be adaptive and involve the coordinated restructuring of the excitation-contraction, contractile, and recovery systems.  相似文献   

18.
M J Miller  K Shannon  M B Reid 《Life sciences》1989,45(25):2419-2428
The isometric contractile response of the directly-stimulated rat diaphragm was studied before and following addition of the calcium channel blocker, nifedipine. Nifedipine (10 micrograms/ml and 30 micrograms/ml bath concentrations) significantly increased isometric force output during twitch and unfused tetanic stimulation. Force potentiation during unfused tetanic stimulation was equivalent during either high or low voltage stimulation. Nifedipine had no effect on the time to peak force, half relaxation time, or relaxation time during twitch stimulation; thus, both activation and relaxation rates were increased. The force potentiating actions of nifedipine persisted in a calcium-free bathing solution and were enhanced by d-tubocurarine. In contrast to the force enhancing effects found with twitch and unfused tetanic stimulation, nifedipine caused a small but significant reduction in isometric force during maximal fused tetanic stimulation. It is concluded that the force potentiating effects of nifedipine on rat diaphragm are not due to fiber recruitment, enhancement of neuromuscular excitation, or altered inward trans-sarcolemmal calcium flux, but may result from a direct effect of the drug on the rate of activation of the contractile apparatus.  相似文献   

19.
Collagen degradation is suggested to be responsible for long-term contractile dysfunction in different cardiomyopathies, but the effects of acute and specific collagen type I removal (main type in the heart muscle) on tension have not been studied. We determined the diastolic and developed tension length relations in isometric contracting perfused rat papillary muscles (perfusion pressure 60 cmH(2)O) before and after acute and specific removal of small collagen struts with the use of purified collagenase type I. At 95% of the maximal length (95%L(max)), diastolic tension increased 20.4 +/- 8.1% (P < 0.05, n = 6) and developed tension increased 15.0 +/- 6.7% after collagenase treatment compared with time controls. Treatment increased the diastolic muscle diameter by 7.1 +/- 3.4% at 95%L(max), whereas the change in diameter due to contraction was not changed. Diastolic coronary flow and normalized coronary arterial flow impediment did not change after collagenase treatment. Electron microscopy revealed that the number of small collagen struts, interconnecting myocytes, and capillaries was reduced to approximately 32% after treatment. We conclude that removal of the small collagen struts by acute and specific collagen type I degradation increases diastolic and developed tension in perfused papillary muscle. We suggest that diastolic tension is increased due to edema, whereas developed tension is increased because the removal of the struts poses a lower lateral load on the cardiac myocytes, allowing more myocyte thickening.  相似文献   

20.
Factors modulating cardiac susceptibility to ischemia-reperfusion (I/R) are permanently attracting the attention of experimental cardiology research. We investigated, whether continuous 24 h/day light exposure of rats can modify cardiac response to I/R, NO-synthase (NOS) activity and the level of oxidative load represented by conjugated dienes (CD) concentration. Two groups of male adult Wistar rats were studied: controls exposed to normal light/dark cycle (12 h/day light, 12 h/day dark) and rats exposed to continuous light for 4 weeks. Perfused isolated hearts (Langendorff technique) were exposed to 25 min global ischemia and subsequent 30 min reperfusion. The recovery of functional parameters (coronary flow, left ventricular developed pressure, contractility and relaxation index) during reperfusion as well as the incidence, severity and duration of arrhythmias during first 10 min of reperfusion were determined. The hearts from rats exposed to continuous light showed more rapid recovery of functional parameters but higher incidence, duration and severity of reperfusion arrhythmias compared to controls. In the left ventricle, the NOS activity was attenuated, but the CD concentration was not significantly changed. We conclude that the exposure of rats to continuous light modified cardiac response to I/R. This effect could be at least partially mediated by attenuated NO production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号