首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Trans-cleaving hammerhead ribozymes with long target-specific antisense sequences flanking the catalytic domain share some features with conventional antisense RNA and are therefore termed 'catalytic antisense RNAs'. Sequences 5' to the catalytic domain form helix I and sequences 3' to it form helix III when complexed with the target RNA. A catalytic antisense RNA of more than 400 nucleotides, and specific for the human immunodeficiency virus type 1 (HIV-1), was systematically truncated within the arm that constituted originally a helix I of 128 base pairs. The resulting ribozymes formed helices I of 13, 8, 5, 3, 2, 1 and 0 nucleotides, respectively, and a helix III of about 280 nucleotides. When their in vitro cleavage activity was compared with the original catalytic antisense RNA, it was found that a helix I of as little as three nucleotides was sufficient for full endonucleolytic activity. The catalytically active constructs inhibited HIV-1 replication about four-fold more effectively than the inactive ones when tested in human cells. A conventional hammerhead ribozyme having helices of just 8 nucleotides on either side failed to cleave the target RNA in vitro when tested under the conditions for catalytic antisense RNA. Cleavage activity could only be detected after heat-treatment of the ribozyme substrate mixture which indicates that hammerhead ribozymes with short arms do not associate as efficiently to the target RNA as catalytic antisense RNA. The requirement of just a three-nucleotide helix I allows simple PCR-based generation strategies for asymmetric hammerhead ribozymes. Advantages of an asymmetric design will be discussed.  相似文献   

3.
4.
Most researchers who intend to suppress a particular gene are interested primarily in the application of ribozyme technology rather than its mechanistic details. This article provides some background information and describes a straightforward strategy to generate and test a special design of a ribozyme: the asymmetric hammerhead ribozyme. This version of a hammerhead ribozyme carries at its 5' end the catalytic domain and at its 3' end a relatively long antisense flank that is complementary to the target RNA. Asymmetric hammerhead ribozymes can be constructed via polymerase chain reaction amplification, and rules are provided on how to select the DNA oligonucleotides required for this reaction. In addition to details on construction, we describe how to test asymmetric hammerhead ribozymes for association with the target RNA in vitro, so that RNA constructs can be selected and optimized for fast hybridization with their target RNA. This test can allow one to minimize association problems caused by the secondary structure of the target RNA. Additionally, we describe the in vitro cleavage assay and the determination of the cleavage rate constant. Testing for efficient cleavage is also a prerequisite for reliable and successful application of the technology. A carefully selected RNA will be more promising when eventually used for target suppression in living cells.  相似文献   

5.
Developing RNase P ribozymes for gene-targeting and antiviral therapy   总被引:5,自引:0,他引:5  
RNase P, a tRNA processing enzyme, contains both RNA and protein subunits. M1 RNA, the catalytic RNA subunit of RNase P from Escherichia coli, recognizes its target RNA substrate mainly on the basis of its structure and cleaves a double stranded RNA helix at the 5' end that resembles the acceptor stem and T-stem structure of its natural tRNA substrate. Accordingly, a guide sequence (GS) can be covalently attached to the M1 RNA to generate a sequence specific ribozyme, M1GS RNA. M1GS ribozyme can target any mRNA sequence of choice that is complementary to its guide sequence. Recent studies have shown that M1GS ribozymes efficiently cleave the mRNAs of herpes simplex virus 1 and human cytomegalovirus, and the BCR-ABL oncogenic mRNA in vitro and effectively reduce the expression of these mRNAs in cultured cells. Moreover, an in vitro selection scheme has been developed to select for M1 GS ribozyme variants with more efficient catalytic activity in cleaving mRNAs. When expressed in cultured cells, these selected ribozymes also show an enhance ability to inhibit viral gene expression and growth. These recent results demonstrate the feasibility of developing the M1GS ribozyme-based technology as a promising gene targeting approach for basic research and clinical therapeutic application.  相似文献   

6.
7.
Subsequent to the discovery that RNA can have site specific cleavage activity, there has been a great deal of interest in the design and testing of trans-acting catalytic RNAs as both surrogate genetic tools and as therapeutic agents. We have been developing catalytic RNAs or ribozymes with target specificity for HIV-1 RNA and have been exploring chemical synthesis as one method for their production. To this end, we have chemically synthesized and experimentally analyzed chimeric catalysts consisting of DNA in the non-enzymatic portions, and RNA in the enzymatic core of hammerhead type ribozymes. Substitutions of DNA for RNA in the various stems of a hammerhead ribozyme have been analyzed in vitro for kinetic efficiency. One of the chimeric ribozymes used in this study, which harbors 24 bases of DNA capable of base-pairing interactions with an HIV-1 gag target, but maintains RNA in the catalytic center and in stem-loop II, has a sixfold greater kcat value than the all RNA counterpart. This increased activity appears to be the direct result of enhanced product dissociation. Interestingly, a chimeric ribozyme in which stem-loop II (which divides the catalytic core) is comprised of DNA, exhibited a marked reduction in cleavage activity, suggesting that DNA in this region of the ribozyme can impart a negative effect on the catalytic function of the ribozyme. DNA-RNA chimeric ribozymes transfected by cationic liposomes into human T-lymphocytes are more stable than their all-RNA counterparts. Enhanced catalytic turnover and stability in the absence of a significant effect on Km make chimeric ribozymes favorable candidates for therapeutic agents.  相似文献   

8.
The hairpin ribozyme is a small catalytic RNA that has been reengineered resulting in a number of variants with extended or even new functions. Thus, manipulation of the hairpin ribozyme structure has allowed for activity control by external effectors, namely oligonucleotides, flavine mononucleotide, and adenine. Hairpin ribozyme-derived twin ribozymes that mediate RNA fragment exchange reactions as well as self-processing hairpin ribozymes were designed. Furthermore, several hairpin ribozyme variants have been engineered for knock down of specific RNA substrates by adapting the substrate-binding domain to the specific target sequence. This review will focus on hairpin ribozymes possessing structural extensions/variations and thus functionally differing from the parent hairpin ribozyme.  相似文献   

9.
Substitutional RNA editing plays a crucial role in the regulation of biological processes. Cleavage of target RNA that depends on the specific site of substitutional RNA editing is a useful tool for analyzing and regulating intracellular processes related to RNA editing. Hammerhead ribozymes have been utilized as small catalytic RNAs for cleaving target RNA at a specific site and may be used for RNA-editing-specific RNA cleavage. Here we reveal a design strategy for a hammerhead ribozyme that specifically recognizes adenosine to inosine (A-to-I) and cytosine to uracil (C-to-U) substitutional RNA-editing sites and cleaves target RNA. Because the hammerhead ribozyme cleaves one base upstream of the target-editing site, the base that pairs with the target-editing site was utilized for recognition. RNA-editing-specific ribozymes were designed such that the recognition base paired only with the edited base. These ribozymes showed A-to-I and C-to-U editing-specific cleavage activity against synthetic serotonin receptor 2C and apolipoprotein B mRNA fragments in vitro, respectively. Additionally, the ribozyme designed for recognizing A-to-I RNA editing at the Q/R site on filamin A (FLNA) showed editing-specific cleavage activity against physiologically edited FLNA mRNA extracted from cells. We demonstrated that our strategy is effective for cleaving target RNA in an editing-dependent manner. The data in this study provided an experimental basis for the RNA-editing-dependent degradation of specific target RNA in vivo.  相似文献   

10.
Stathmin is a major cytosolic phosphoprotein that plays an important role in the control of cellular proliferation by regulating the dynamics of the microtubules that make up the mitotic spindle. Because stathmin is expressed at high levels in all human cancers, it is an attractive molecular target for anticancer interventions. We had shown previously that antisense stathmin inhibition results in marked abrogation of the transformed phenotype of leukemic cells in vitro and in vivo. Unlike the antisense approach, ribozymes can catalytically cleave several molecules of target RNA. This may provide a more efficient strategy for downregulating genes, such as stathmin, that are expressed at very high levels in cancer cells. We designed several antistathmin hammerhead ribozymes and tested their cleavage activity against short synthetic stathmin RNA substrates. In vitro cleavage studies demonstrated site-specific cleavage of stathmin RNA that was dependent on ribozyme concentration and duration of exposure to ribozyme. The most active antistathmin ribozyme was capable of cleaving >90% stathmin RNA in a catalytic manner, cleaving multiple substrate molecules per ribozyme molecule. We also demonstrated that the designed antistathmin ribozymes are capable of selectively cleaving native stathmin RNA in a mixture of total RNA isolated from leukemic cells. These antistathmin ribozymes may provide a novel and effective form of gene therapy that may be applicable to a wide variety of human cancers.  相似文献   

11.
Ribozymes are RNA molecules with enzymatic activity that can cleave target RNA molecules in a sequence specific manner. To date, various types of ribozyme have been constructed to cleave other RNAs and such trans-acting ribozymes include hammerhead, hairpin and HDV ribozymes. External guide sequence (EGS) can also induce the suppression of a gene-expression by taking advantage of cellular RNase P. Here we compared the activities of various functional RNA cleavers both in vitro and in vivo. The first purpose of this comparison was intended to determine the best ribozyme motif with the highest activity in cells. The second purpose is to know the correlation between the activities of ribozymes in vitro and in vivo. Our results indicated that the intrinsic cleavage activity of ribozymes is not the sole determinant that is responsible for the activity of a ribozyme in cultured cells.  相似文献   

12.
Catalytic RNAs are a genetic property not only of some particular viroids or viruses, but also are more common naturally among eukaryotes and even prokaryotes than earlier expected. However, the major interest in ribozymes results from their potential for development of “tailor-made” cDNA constructions designed to be transcribed into catalytic RNAs that will recognize by hybridization and destroy by specific cleavage their cellular or viral RNA targets. The efficiency of an antiviral ribozyme is determined by both the accessibility and sequence conservation of the target region, as well as the design of the ribozyme: its type, size, and composition of flanking sequences; expression rates; and cellular compartment localization. Until now the most frequently selected viral target is the human immunodeficiency virus, where an up to a 104-fold inhibition in its progeny production has been achieved. Although the first generation ribozymes focused on improvements in basic design and expression rates, more recently the efficiency of antiviral catalytic activity has been increased by employing polyribozymes and/or multitarget ribozymes, as well as special constructions to enhance the cellular co-compartmentation of the ribozyme with its viral RNA target.  相似文献   

13.
14.
Engineered RNase P ribozymes are promising gene-targeting agents that can be used in both basic research and clinical applications. We have previously selected ribozyme variants for their activity in cleaving an mRNA substrate from a pool of ribozymes containing randomized sequences. In this study, one of the variants was used to target the mRNA encoding thymidine kinase (TK) of herpes simplex virus 1 (HSV-1). The variant exhibited enhanced cleavage and substrate binding and was at least 30 times more efficient in cleaving TK mRNA in vitro than the ribozyme derived from the wild type sequence. Our results provide the first direct evidence to suggest that a point mutation at nucleotide 95 of RNase P catalytic RNA from Escherichia coli (G(95) --> U(95)) increases the rate of cleavage, whereas another mutation at nucleotide 200 (A(200) --> C(200)) enhances substrate binding of the ribozyme. A reduction of about 99% in TK expression was observed in cells expressing the variant, whereas a 70% reduction was found in cells expressing the ribozyme derived from the wild type sequence. Thus, the RNase P ribozyme variant is highly effective in inhibiting HSV-1 gene expression. Our study demonstrates that ribozyme variants increase their cleavage activity and efficacy in blocking gene expression in cells through enhanced substrate binding and rate of cleavage. These results also provide insights into the mechanism of how RNase P ribozymes efficiently cleave an mRNA substrate and, furthermore, facilitate the development of highly active RNase P ribozymes for gene-targeting applications.  相似文献   

15.
The subclass of catalytic RNAs termed ribozymes cleave specific target RNA sequences in vitro. Only circumstantial evidence supports the idea that ribozymes may also act in vivo. In this study, ribozymes with a hammerhead motif directed against a target sequence within the mRNA of the neomycin phosphotransferase gene (npt) were embedded into a functional chimeric gene. Two genes, one containing the ribozyme and the other producing the target, were cotransfected into plant protoplasts. Following in vivo expression, a predefined cleavage product of the target mRNA was detected by ribonuclease protection. Expression of both the ribozyme gene and the target gene was driven by the CaMV 35S promoter. Concomitant with the endonucleolytic cleavage of the target mRNA, a complete reduction of NPT activity was observed. An A to G substitution within the ribozyme domain completely inactivates ribozyme-mediated hydrolysis but still shows a reduction in NPT activity, albeit less pronounced. Therefore, the reduction of NPT activity produced by the active ribozyme is best explained by both hydrolytic cleavage and an antisense effect. However, the mutant ribozyme--target complex was more stable than the wildtype ribozyme--target complex. This may result in an overestimation of the antisense effect contributing to the overall reduction of gene expression.  相似文献   

16.
Inhibition of gene expression by catalytic RNA (ribozymes) requires that ribozymes efficiently cleave specific sites within large target RNAs. However, the cleavage of long target RNAs by ribozymes is much less efficient than cleavage of short oligonucleotide substrates because of higher order structure in the long target RNA. To further study the effects of long target RNA structure on ribozyme cleavage efficiency, we determined the accessibility of seven hammerhead ribozyme cleavage sites in a target RNA that contained human immunodeficiency virus type 1 (HIV-1) vif - vpr . The base pairing-availability of individual nucleotides at each cleavage site was then assessed by chemical modification mapping. The ability of hammerhead ribozymes to cleave the long target RNA was most strongly correlated with the availability of nucleotides near the cleavage site for base pairing with the ribozyme. Moreover, the accessibility of the seven hammerhead ribozyme cleavage sites in the long target RNA varied by up to 400-fold but was directly determined by the availability of cleavage sites for base pairing with the ribozyme. It is therefore unlikely that steric interference affected hammerhead ribozyme cleavage. Chemical modification mapping of cleavage site structure may therefore provide a means to identify efficient hammerhead ribozyme cleavage sites in long target RNAs.  相似文献   

17.
A ribozyme (M1GS RNA) constructed from the catalytic RNA subunit of RNase P from Escherichia coli was used to target the overlapping region of two human cytomegalovirus (HCMV) mRNAs, which encode for the viral essential protease (PR) and capsid assembly proteins (AP), respectively. The results show a reduction of >80% in the expression levels of PR and AP and an inhibition of approximately 2000-fold of viral growth in cells that stably expressed the ribozyme. In comparison, <10% reduction in the expression of the targets and viral growth was found in cells that either did not express the ribozyme or produced a "disabled" ribozyme carrying mutations that abolished its catalytic activity. Examination of replication of the virus in the ribozyme-expressing cells indicates that packaging of the viral genomic DNA into capsids is blocked, and suggests that the antiviral effects are because the ribozyme specifically inhibits the AP and PR expression and, consequently, abolishes viral capsid formation and growth. Our results show that RNase P ribozymes are highly effective in blocking HCMV growth by targeting the PR and AP mRNAs and demonstrate the feasibility to use these ribozymes in gene therapy for antiviral applications.  相似文献   

18.
19.
RNA double cleavage by a hairpin-derived twin ribozyme   总被引:4,自引:4,他引:0  
The hairpin ribozyme is a small catalytic RNA that catalyses reversible sequence-specific RNA hydrolysis in trans. It consists of two domains, which interact with each other by docking in an antiparallel fashion. There is a region between the two domains acting as a flexible hinge for interdomain interactions to occur. Hairpin ribozymes with reverse-joined domains have been constructed by dissecting the domains at the hinge and rejoining them in reverse order. We have used both the conventional and reverse-joined hairpin ribozymes for the design of a hairpin-derived twin ribozyme. We show that this twin ribozyme cleaves a suitable RNA substrate at two specific sites while maintaining the target specificity of the individual monoribozymes. For characterisation of the studied ribozymes we have evaluated a quantitative assay of sequence-specific ribozyme activity using fluorescently labelled RNA substrates in conjunction with an automated DNA sequencer. This assay was found to be applicable with hairpin and hairpin-derived ribozymes. The results demonstrate the potential of hairpin ribozymes for multi-target strategies of RNA cleavage and suggest the possibility for employing hairpin-derived twin ribozymes as powerful tools for RNA manipulation in vitro and in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号