首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ghose S  Chase H 《Bioseparation》2000,9(1):29-36
The scaled down system developed in Part I of this series was further validated by using a 1-cm diameter column for method development studies for the separation of two model proteins, alcohol dehydrogenase and -glucosidase, from unclarified yeast homogenate by hydrophobic interaction expanded bed chromatography based on the STREAMLINE matrix. The efficacy of solids removal and establishment of optimal binding and separation condition by stepwise elution were investigated. Equilibration of the EBA column and loading at high salt strengths affected the subsequent recovery of the two target proteins. Although good resolution between the target proteins could be achieved, peak tailing was found to be a consistent problem. The optimised separation protocol was scaled up 25-fold to a column diameter of 5.0 cm. The results were in good agreement with the run conducted in the 1-cm column, indicating the potential of using the small columns as an viable approach for method scouting and development studies.  相似文献   

2.
A number of N- and C-terminal deletion and point mutants of bovine -1,4 galactosyltransferase (-1,4GT) were expressed inE. coli to determine the binding regions of the enzyme that interact withN-acetylglucosamine (NAG) and UDP-galactose. The N-terminal truncated forms of the enzyme between residues 1–129, do not show any significant difference in the apparentK ms toward NAG or linear oligosaccharide acceptors e.g. for chitobiose and chitotriose, or for the nucleotide donor UDP-galactose. Deletion or mutation of Cys 134 results in the loss of enzymatic activity, but does not affect the binding properties of the protein either to NAG- or UDP-agarose. From these columns the protein can be eluted with 15mm NAG and 50mm EDTA, like the enzymatically active protein, TL-GT129, that contains residues 130–402 of bovine -1,4GT. Also the N-terminus fragment, TL-GT129NAG, that contains residues 130–257 of the -1,4GT, binds to, and elutes with 15mm NAG and 50mm EDTA from the NAG-agarose column as efficiently as the enzymatically active TL-GT129. Unlike TL-GT129, the TL-GT129NAG binds to UDP-columns less efficiently and can be eluted from the column with only 15mm NAG. The C-terminus fragment GT-257UDP, containing residues 258–402 of -1,4GT, binds tightly to both NAG- and UDP-agarose columns. A small fraction, 5–10% of the bound protein, can be eluted from the UDP-agarose column with 50mm EDTA alone. The results show that the binding behaviour of N- and C-terminal fragments of -1,4GT towards the NAG- and UDP-agarose columns differ, the former binds preferentially to NAG-columns, while the latter binds to UDP-agarose columns via Mn2+.  相似文献   

3.
扩张柱床吸附层析回收纯化灌流培养生产的单克隆抗体   总被引:1,自引:0,他引:1  
用扩张柱床吸附层析技术,一步回收纯化连续灌流培养的单克隆抗体。用Streamline SP阳离子交换介质在固定床柱XK16/20上进行条件摸索,扩张床柱Streamline25和50分别用于小规模条件优化和中试规模放大。培养液中的低浓度单抗经此步处理,浓缩10倍以上,纯度提高5~7倍,回收率>90%,制备周期比固定柱床层析缩短一半以上。 根据培养液中单抗浓度的不同,一次处理量为18~50L,纯化规模由实验室水平(400mg)扩大至中试水平(2g),生产成本和工艺复杂性大为降低。应用扩张柱床吸附层析技术,建立单克隆抗体回收纯化工艺,具有经济、简便、高效实用和良好的可放大性。  相似文献   

4.
A simple and rapid method, using only two chromatographic steps, is described for the purification and preparation of enolase isoenzymes from human and beef brain extracts. In the first step, a crude enolase was obtained by chromatography on Q-Sepharose Fast Flow column. The crude fraction was then purified by high performance anion exchange chromatography on a Mono-Q column. enolase obtained in this manner was shown to be homogeneous by two dimensional polyacrylamide gel electrophoresis and by high performance gel permeation chromatography. The yield of enolase by this method was 7–8 mg of pure enzyme per 100 g of brain.  相似文献   

5.
Expanded bed adsorption is a technique for recovery of biomolecules directly from unclarified feedstocks. The work described here demonstrates that expanded bed adsorption is a scaleable technique. The methods used to test scaleability were “determination of degree of bed expansion”, “determination of axial dispersion” and “determination of protein breakthrough capacity”. The performance of a production scale expanded bed column with 600?mm diameter was tested using these methods and the results were found to be consistent with the results obtained from lab scale and pilot scale expanded bed columns. The scaleability and function of the expanded bed technique was also tested by performing a “process example”: a purification mimicking a real process using a yeast culture spiked with bovine serum albumin as feedstock. The results show that the 600?mm diameter production scale column was as efficient as a 25?mm diameter lab scale column in recovering bovine serum albumin from the unclarified yeast culture. The production scale runs were fully automated using a software controlled system containing an adaptor position sensor and an adsorbent sensor. A cleaning study was performed which showed that after use of a proper cleaning protocol, no surviving microorganisms could be detected in the column or in the adsorbent.  相似文献   

6.
The mixing performance as well as the adsorption performance in expanded bed chromatography (EBC) was investigated by using various types of adsorption media (average particle size = 100–700 m, density = 1100–1700 kg/m3, base matrix = hydroxyapatite, styrene-divinylbenzene, cross-linked agarose). The scale down study with 0.8 cm diameter columns was also attempted. Pulse response curves were measured with vitamin B12 as a tracer [Residence time distribution RTD experiments], and the HETP (height equivalent to a theoretical plate or plate height) values were calculated from the peak variance and the peak retention time. The HETP values for different types of packing media tested showed very similar values (0.5–1.0 cm), which did not depend on the flow-rate or the column diameter (0.8–2.6 cm). Dynamic binding capacity (DBC) values of lactic acid on a Dowex anion-exchange resin were determined from breakthrough curve (BTC) measurements for both EBC and fixed bed chromatography (FBC). The DBC values for EBC were similar to those for FBC. When the liquid feed contained insoluble particles (yeast cells) the degree of mixing increased. However, the contribution of the mixing to the total spreading of BTCs for EBC was usually small so that this increase in the mixing did not affect the adsorption performance or the DBC values significantly.  相似文献   

7.
The intracellular enzyme -D-galactosidase provides interesting applications in the dairy industry, which are able to solve problems related to product processing, or can alleviate lactose intolerance in some populations. In order to obtain a technical enzyme, yeast cells of Kluyveromyces marxianus CDB 002 were disrupted by high pressure homogenization and an innovative chromatographic technique was tested for the recovery of -D-galactosidase. A STREAMLINE 25 column, containing 65 ml STREAMLINE-DEAE was equilibrated with 50 mM potassium phosphate buffer pH 7.5 at an upward flow of 250 cmh–1. 100–200 ml cell homogenate were applied onto the expanded gel. After unbound proteins and cellular debris were washed out, the bed was allowed to sediment and -D-galactosidase was eluted with a downward flow of 0.2 M NaCl in the same buffer. A 6-fold purification factor was achieved with 63% activity recovery, while removing cell debris at a single step, thus avoiding a centrifugation step. Concentration and volume of the applied sample affected purification and gel performance. The results presented show STREAMLINE-DEAE chromatography to be an interesting method for the production of -D-galactosidase as a technical enzyme, since it can also be applied on a large scale without much modification.  相似文献   

8.
Bruce LJ  Ghose S  Chase HA 《Bioseparation》1999,8(1-5):69-75
The effect of column verticality on liquid dispersion and separation efficiency in expanded bed adsorption columns was investigated using 1 and 5 cm diameter columns. Column misalignment of only 0.15° resulted in the reduction of the Bodenstein number from 140 to 50 for the 1 cm dia. column and from 75 to 45 for the 5 cm dia. column. This degree of misalignment was not detectable by visual assessment of adsorbent particle movement within the column. Depending on the relative importance of transport limitations, kinetic limitations and dispersion to any specific separation, this increase in dispersion with column alignment can significantly affect separation efficiency. Pure protein breakthrough profiles resulting from the application of bovine serum albumin onto STREAMLINE Q XL demonstrated that, at 10% breakthrough, 7.8% more protein could be applied to a vertical 1 cm dia. column compared to the same column misaligned by 0.15°. When an unclarified yeast homogenate was applied to a 1 cm dia. vertical column packed with STREAMLINE DEAE, 10% breakthrough of glucose-6-phosphate dehydrogenase (G6PDH) corresponded to a load 55% greater compared to the same column aligned 0.185° off-vertical. The G6PDH breakthrough curves for vertical and 0.15° off-vertical runs performed using a 5 cm column were essentially indistinguishable.  相似文献   

9.
The removal of As(III) and As(V) from aqueous solutions by waste materials   总被引:1,自引:0,他引:1  
The use of different waste materials such as Atlantic Cod fish scale, chicken fat, coconut fibre and charcoal in removing arsenic [As(III) and As(V)] from aqueous solutions was investigated. Initial experimental runs, conducted for both As(III) and As(V) with the aforementioned materials, demonstrated the potential of using Atlantic Cod fish scale in removing both species of arsenic from aqueous streams. Therefore, the biosorbent fish scale was selected for further investigations and various parameters such as residence time, adsorbent dose, initial concentration of adsorbate, grain size of the adsorbent and pH of the bulk phase were studied to establish optimum conditions. The maximum adsorption capacity was observed at pH value 4.0. The equilibrium adsorption data were interpreted by using both Freundlich and Langmuir models. Rapid small-scale column tests (RSSCT) were also performed to determine the breakthrough characteristics of the arsenic species with respect to packed biosorbent columns.  相似文献   

10.
The inclusion of drug-resistance plasmids (R-plasmids) in Escherichia coli strains has been shown to determine the formation of specific surface structures which could modify bacterial surface characteristics relevant for pathogenic processes.Thirtyone R-plasmids (from different incompatibility groups) have been transferred to three E. coli laboratory strains, and surface hydrophobicity modifications have been measured by three methods: salting-out, adsorption to hexadecane and adsorption to xylene.The results obtained show that the presence of R-plasmids produced variations which are dependent on the receptor strains and measuring method employed. Also, it has been found that the plasmids behave differently depending on the strain in which they are included.The results obtained by the salting-out method are not correlative with those obtained by adsorption to hydrocarbons, probably due to the implication of different hydrophobic molecules in the interaction with salt or hydrocarbons.Concluding, the choice of receptor strain and measuring method are of great importance for the investigation of surface hydrophobicity (and probably other characteristics) encoded by R-plasmids.Abbreviations TSB Trypticase soya broth - TSA trypticase soya agar  相似文献   

11.
In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein 1. The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification.HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH4)2SO4). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) 2. As salt concentrations decrease, the protein-ligand interaction dissipates, the protein again becomes mobile and elutes from the column. Several HIC media are commercially available in pre-packed columns, each containing one of several hydrophobic ligands (e.g. S-butyl, butyl, octyl, and phenyl) cross-linked at varying densities to agarose beads of a specific diameter 3. Automated column scouting allows for an efficient approach for determining which HIC media should be employed for future, more exhaustive optimization experiments and protein purification runs 4.The specific protein being purified here is recombinant green fluorescent protein (GFP); however, the approach may be adapted for purifying other proteins with one or more hydrophobic surface regions. GFP serves as a useful model protein, due to its stability, unique light absorbance peak at 397 nm, and fluorescence when exposed to UV light 5. Bacterial lysate containing wild type GFP was prepared in a high-salt buffer, loaded into a Bio-Rad DuoFlow medium pressure liquid chromatography system, and adsorbed to HiTrap HIC columns containing different HIC media. The protein was eluted from the columns and analyzed by in-line and post-run detection methods. Buffer blending, dynamic sample loop injection, sequential column selection, multi-wavelength analysis, and split fraction eluate collection increased the functionality of the system and reproducibility of the experimental approach.Download video file.(63M, mov)  相似文献   

12.
Most mAb platform purification processes consist of an affinity capture step followed by one or two polishing steps. An understanding of the performance linkages between the unit operations can lead to robust manufacturing processes. In this study, a weak‐partitioning anion‐exchange chromatography polishing step used in a mAb purification process was characterized through high‐throughput screening (HTS) experiments, small‐scale experiments including a cycling study performed on qualified scale‐down models, and large‐scale manufacturing runs. When material from a Protein A column that had been cycled <10× was loaded on the AEX resin, early breakthrough of impurities and premature loss of capacity was observed. As the cycle number on the Protein A resin increased, the capacity of the subsequent AEX step increased. Different control strategies were considered for preventing impurity breakthrough and improving AEX resin lifetimes. Depth filtration of the Protein A peak pool significantly improved the AEX resin capacity, robustness, and lifetime. Further, the turbidity of the Protein A pool has the potential for use as an in‐process control parameter for monitoring the performance of the AEX step. Biotechnol. Bioeng. 2013; 110: 1142–1152. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
A new type of agarose material, superporous agarose, was used as a support material in an analytical system designed for monitoring of bioprocesses with respect to metabolites and intracellular enzymes. The superporous agarose was used in the form of miniaturised gel plug columns (15×5.0 mM I.D. monolithic gel bed). The gel plugs were designed to have one set of very large pores (about 50 m in diameter) through which cells, cell debris and other particulate contaminants from the bioreactor could easily pass. The material also had normal diffusion pores (300 Å) characteristic of all agarose materials, providing ample surface for covalent attachment of antibodies and enzymes used in the analytical sequence. The superporous agarose gel plug columns were characterised with respect to flow properties and handling of heavy cell loads as well as dispersion of injected samples (a Bodenstein number of about 40 was observed with acetone tracer at a flow rate of 1 ml min–1). To evaluate the practical performance of the superporous gel plug columns, two applications were studied: (1) on-line determination of glucose in cultivation broth (gel plug with immobilized glucose oxidase) and (2) immunochemical quantification of intracellular -galactosidase in E. coli (gel plug with lysozyme to achieve cell lysis and gel plug with antibodies against -galactosidase).  相似文献   

14.
The adsorption of adenosine 5-monophosphate (5-AMP) ontopyrite (FeS2) and its modulation by acetate, an organic precursor of complex metabolic pathways, was studied in aqueousmedia that simulate primitive environments. 5-AMP adsorptionrequires divalent cations, indicating that a cationic bridge mediates its attachment to negatively charged sites of the mineral surface. The isotherm of 5-AMP adsorption exhibits a strong cooperative effect at low nucleotide concentrations inacetate-rich medium, whereas high levels of adsorption were only found at high nucleotide concentrations in a model of primitive seawater (acetate free). The modulating role of acetate is also evidenced in the presence of high dipolar moment molecules: dimethyl sulfoxide (Me2SO) and dimethylformamide (DMF) strongly inhibit 5-AMP adsorption in acetate-rich media, whereas no effect of DMF was found in artificial seawater. The observation that exogenous divalentcations are not needed for acetate attachment onto FeS2 reveals that organic acids can interact with the Fe2+ atoms in the mineral surface. All considered, the results showthat complex and flexible iron-sulfide/biomonomers interactionscan be modulated by molecules that accumulate in the interfacelayer.  相似文献   

15.
The dynamic removal of lead, copper and cadmium in a single component system by Phanerochaete chrysosporium was studied in packed columns. The packed columns consisted of biomass of P. chrysosporium immobilized on polyurethane foam cubes. The performances of packed columns were described through the concept of breakthrough and the values of column parameters predicted as a function of bed depth. The column biosorption data were evaluated in terms of maximum (equilibrium) capacity of the column, the amount of metal loading and the yield of the process. The maximum capacities for lead, copper and cadmium were 70.7, 43.7 and 70.8 mg, respectively, and their yields were 39.2, 40.6 and 41%, respectively. The kinetic and mass transfer aspects of the dynamic removal of the three metals were studied using three mathematical models commonly used to describe the column performance in adsorption processes. Column studies showed good agreement between the experimental data and the simulated breakthrough curves obtained with Adams-Bohart or the Wolborska model and the Clark model. While the initial segment of the breakthrough curve was defined by the Adams-Bohart and Wolborska models, the whole breakthrough curve was well predicted by the Clark model for all the three metals studied.  相似文献   

16.
A 1.5 μL ion exchange chromatography column to accommodate resins used for biopharmaceutical processing has been designed to produce breakthrough curves and to quantify dynamic and maximum protein binding capacities. Channels within a glass chip were fabricated using photolithography and isotropic etching. The design includes a 1 cm long microfluidic column in which compressible, polydispersed porous agarose beads (70 μm mean diameter) were packed using a keystone method where particles aggregate in a narrow channel. The depth of the column is such that two bead layers exist. The fabrication technique used forms Cartesian geometries as opposed to circular cross sections found in standard columns. The voidage was therefore higher than standard values when measured by 3D confocal microscopy. In conjunction with microscopic techniques, the column allows visualization of events within the bed such as adsorption profiles that would otherwise be difficult to observe. In this work, the binding of fluorescently labeled protein during isocratic loading was used to generate breakthrough from the microcolumn. Useful breakthrough curves were achieved using mobile phase velocities from 60 to 270 cm h?1. Calculated dynamic binding capacities were compared well with previously published data on conventional scale columns. The microfluidic chromatography column described here thus allows study of process scale chromatography behavior at scales 20,000 times smaller than in current practice. The work described in this article is representative of the proof of principle of a potentially powerful tool for the generation of microfluidic process bed data for the biopharmaceutical industry. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

17.
Ultra scale‐down approaches represent valuable methods for chromatography development work in the biopharmaceutical sector, but for them to be of value, scale‐down mimics must predict large‐scale process performance accurately. For example, one application of a scale‐down model involves using it to predict large‐scale elution profiles correctly with respect to the size of a product peak and its position in a chromatogram relative to contaminants. Predicting large‐scale profiles from data generated by small laboratory columns is complicated, however, by differences in dispersion and retention volumes between the two scales of operation. Correcting for these effects would improve the accuracy of the scale‐down models when predicting outputs such as eluate volumes at larger scale and thus enable the efficient design and operation of subsequent steps. This paper describes a novel ultra scale‐down approach which uses empirical correlations derived from conductivity changes during operation of laboratory and pilot columns to correct chromatographic profiles for the differences in dispersion and retention. The methodology was tested by using 1 mL column data to predict elution profiles of a chimeric monoclonal antibody obtained from Protein A chromatography columns at 3 mL laboratory‐ and 18.3 L pilot‐scale. The predictions were then verified experimentally. Results showed that the empirical corrections enabled accurate estimations of the characteristics of larger‐scale elution profiles. These data then provide the justification to adjust small‐scale conditions to achieve an eluate volume and product concentration which is consistent with that obtained at large‐scale and which can then be used for subsequent ultra scale‐down operations. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

18.
The technique of expanded bed adsorption is originally designed for a direct recovery of proteins from fermentor feedstocks. In this article we describe the use of expanded bed adsorption for the recovery of -lactalbumins from defatted milk using the hydrophobic Streamline Phenyl gel. -Lactalbumins are Ca2+- binding proteins. Upon Ca2+ removal, they undergo a significant conformation change rendering them more hydrophobic. Based on this unique property we develop a protocol for fast and efficient purification of -lactalbumin from milk. The use of this technique results in a reduction of the number of chromatographic purification steps.  相似文献   

19.
A new method of protein immobilization into polyelectrolyte microparticles by alternative adsorption of the oppositely charged polyelectrolytes on the aggregates obtained by salting out of protein is proposed. The model protein -chymotrypsin (ChT) was included in the polyelectrolyte microparticles obtained by various number of polyelectrolyte adsorption steps (from 1 to 11). The main parameters of ChT inclusion into microparticles were calculated. Scanning electron and optical microscopy were used for characterization of morphology and determination of particle size which was from 1 to 10 m in most cases. It was shown that the size and shape of protein-containing particles and protein aggregates used as a matrix were similar. Change in ChT enzymatic activity during entrapment into polyelectrolyte particles and activity of released protein were studied. The effect of pH on release of incorporated proteins was investigated; it was shown that change in pH and the number of polyelectrolyte adsorption steps allows protein release to be manipulated.  相似文献   

20.
Experiments with batch suspensions, recirculating columns and flow-through columns have been carried out involving a sandy soil and five bacteriophages: MS2, PRD1, X174, Q and PM2. In batch and recirculating column experiments, attachment and detachment rate coefficients were determined by fitting a two-parameter (attachment and detachment) model. In general, attachment and detachment rate coefficients were not found to be significantly different between the two kinds of experiments. There was one exception, however: MS2 appeared to detach faster in the presence of strong advective flow. In the case of flow-through column experiments, it is shown that a two-site model, with adsorption to equilibrium and kinetic sites, fits the breakthrough curves of all the phages, except PM2, satisfactorily. A one-site kinetic model was found to be appropriate for phage PM2. A small proportion of bacteriophages MS2, PRD1, and Q adsorbed to equilibrium sites, whereas a large proportion of X174 adsorbed to equilibrium sites. Such a distinction between adsorption to equilibrium and kinetic sites cannot be made in the case of batch or recirculating column experiments. Kinetic attachment rate coefficients were found to be significantly higher for the bacteriophages with presumably stronger negative charge. This may be ascribed to the presence of multivalent cations. Under these conditions, bacteriophage X174 appears to behave more conservatively than more negatively charged viruses, and may then be a better choice as a relatively conservative tracer for virus transport through the subsurface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号