首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
禽坦布苏病毒(Avian Tembusu virus,ATMUV)是近年来在我国新发现的一种病毒,可感染多种蛋禽,感染动物临床特征为采食量下降,产蛋量骤减,甚至停产,感染后期呈神经症状,如腿和翅膀麻痹、共济失调等。ATMUV在我国多个省市地区流行,给我国甚至世界养禽业带来严重影响。固有免疫是机体抵抗病原感染的第一道重要防线,是机体与生俱来的抵御病原微生物的能力。适应性免疫是机体免疫系统在抗原刺激下产生特异性抗体及免疫效应细胞的过程,以建立针对某种病原微生物的抵抗力,是机体免疫系统的重要部分。本文将从禽坦布苏病毒诱导宿主固有免疫应答和适应性免疫应答两方面进行综述。  相似文献   

2.
The piscine immune system is normally quite efficient in protecting the host (innate and acquired immunity) from parasitic infections. Innate immunity may occur at two distinct levels — between host species and within a host species. If the resistance is at the host species (or a higher taxonomic group) level, then it is inter-host innate immunity. For example, Oncorhynchus mykiss can be infected with the pathogenic hemoflagellate, Cryptobia salmositica isolated from Oncorhynchus spp. but cannot be infected with Cryptobia catostomi from Catostomus commersoni. At the next level, there are individuals within a susceptible host species that are resistant to infection — this is intra-host innate immunity; e.g. some Salvelinus fontinalis are resistant to C. salmositica infection while others are not. This resistance to infection is not dependent on age or size of the fish; it is inherited and is controlled by a dominant gene. Protection at both levels of innate immunity is via the activation of the alternative pathway of complement activation to lyse the parasite. Also, S. fontinalis can be infected with the pathogenic C. salmositica have very high parasitaemias but they do not suffer from the disease as O. mykiss. This resistance to disease is related to high levels and rapid production of α2-macroglobulin which is one of two natural antiproteases. The α2-macroglobulin in the blood neutralises the metallo-protease secreted by the pathogenic C. salmositica. Acquire immunity was shown in fish that survived infections of pathogenic flagellates. Fish that have recovered from Amyloodinium ocellatum, C. salmositica, Cryptobia bullocki, and Trypanosoma danilewskyi are protected. This protection requires prior exposure to the pathogen and/or its antigens. Humoral (e.g. complement fixing antibodies to lyse the parasite) and cell-mediated (e.g. T-cell cytotoxicity, phagocytosis) are part of the protective mechanism in acquired immunity. Also, an attenuated live C. salmositica vaccine has been developed and it protects juvenile and adult salmonids from cryptobiosis for at least 2 years.  相似文献   

3.
Microbial pathogens impose selective pressures on their hosts, and combatting these pathogens is fundamental to the propagation of a species. Innate immunity is an ancient system that provides the foundation for pathogen resistance, with epithelial cells in humans increasingly appreciated to play key roles in innate defense. Here, we show that the nematode C. elegans displays genetic variation in epithelial immunity against intestinal infection by its natural pathogen, Nematocida parisii. This pathogen belongs to the microsporidia phylum, which comprises a large phylum of over 1400 species of fungal-related parasites that can infect all animals, including humans, but are poorly understood. Strikingly, we find that a wild C. elegans strain from Hawaii is able to clear intracellular infection by N. parisii, with this ability restricted to young larval animals. Notably, infection of older larvae does not impair progeny production, while infection of younger larvae does. The early-life immunity of Hawaiian larvae enables them to produce more progeny later in life, providing a selective advantage in a laboratory setting—in the presence of parasite it is able to out-compete a susceptible strain in just a few generations. We show that enhanced immunity is dominant to susceptibility, and we use quantitative trait locus mapping to identify four genomic loci associated with resistance. Furthermore, we generate near-isogenic strains to directly demonstrate that two of these loci influence resistance. Thus, our findings show that early-life immunity of C. elegans against microsporidia is a complex trait that enables the host to produce more progeny later in life, likely improving its evolutionary success.  相似文献   

4.
The majority (10 of 17) of amino acids tested entered the mature duck erythrocyte by a saturable, non-uphill transport system, whereas for the erythrocyte-free malarial parasite, Plasmodium lophurae, the converse was true: most amino acids entered the parasite by simple diffusion. Only five amino acids (glutamic and aspartic acids, cysteine, lysine, arginine) showed mediated entry into P. lophurae. The pattern of mediated amino acid transport into the duck erythrocyte was altered upon infection, e.g., either entry was by diffusion or there was a reduced affinity for the amino acid. Transport characteristics similar to those found in the malaria-infected erythrocyte were produced by treating normal duck red cells with a cell-free extract of malaria-infected erythrocytes and quinine (a depressor of red cell ATP). It is suggested that depletion of host cell ATP as well as elaboration of as yet unidentified substances by the parasite promote the changes in permeability seen in the malaria-infected cell.  相似文献   

5.
Infection of human erythrocytes by the malarial parasite, Plasmodium falciparum, results in complex membrane sorting and signaling events in the mature erythrocyte. These events appear to rely heavily on proteins resident in erythrocyte lipid rafts. Over the past five years, we and others have undertaken a comprehensive characterization of major proteins present in erythrocyte detergent-resistant membrane lipid rafts and determined which of these proteins traffic to the host-derived membrane that bounds the intraerythrocytic parasite. The data suggest that raft association is necessary but not sufficient for vacuolar recruitment, and that there is likely a mechanism of active uptake of a subset of erythrocyte detergent-resistant membrane proteins. Of the ten internalized proteins, few have been evaluated for a role in malarial entry. The beta(2)-adrenergic receptor and heterotrimeric G protein G(s) signaling pathway proteins regulate invasion. The implications of these differences are discussed. In addition, the latter finding indicates that erythrocytes possess important signaling pathways. These signaling cascades may have important influences on in vivo malarial infection, as well as on erythrocyte membrane flexibility and adhesiveness in sickle cell anemia. With respect to malarial infection, host signaling components alone are not sufficient to induce formation of the malarial vacuole. Parasite proteins are likely to have a major role in making the intraerythrocytic environment conducive for vacuole formation. Such interactions should be the focus of future efforts to understand malarial infection of erythrocytes since host- and parasite-targeted interventions are urgently needed to combat this terrible disease.  相似文献   

6.
Plasmodium falciparum invasion of host erythrocytes is essential for the propagation of the blood stage of malaria infection. Additionally, the brief extracellular merozoite stage of P. falciparum represents one of the rare windows during which the parasite is directly exposed to the host immune response. Therefore, efficient invasion of the host erythrocyte is necessary not only for productive host erythrocyte infection, but also for evasion of the immune response. Host traits, such as hemoglobinopathies and differential expression of erythrocyte invasion ligands, can protect individuals from malaria by impeding parasite erythrocyte invasion. Here we combine RBC barcoding with flow cytometry to study P. falciparum invasion. This novel high-throughput method allows for the (i) direct comparison of P. falciparum invasion into different erythrocyte populations and (ii) assessment of the impact of changing erythrocyte population dynamics on P. falciparum invasion.  相似文献   

7.
白念珠菌是引起浅部、深部真菌感染常见的病原菌.先天免疫反应在宿主抗系统性白念珠菌感染中起主导作用.介导宿主抗念珠菌感染的先天性免疫包括一系列真菌识别受体及免疫效应细胞.宿主对系统性白念珠菌感染的免疫反应是决定患者预后的关键.本文就宿主抗系统性白念珠菌感染的先天性免疫机制进行综述.  相似文献   

8.
Innate immunity plays a central role in combating infections. However, the importance of innate immune sensors in detecting intracellular parasites, such as Plasmodium spp., has only recently emerged as a central topic in the field of host-pathogen interactions. Genetic dissection of innate immune pathways has uncovered a complex relationship between the host innate immune system and Plasmodium blood-stage parasites. In fact, recognition molecules of the innate immune system, such as toll-like receptors, might not only be implicated in host defense but also in the pathogenesis of the disease. Whether Plasmodium liver stage parasites are recognised and controlled by the host innate immune system remains to be discovered. In this review we discuss recent findings on how the host innate immune system may sense and fight the different forms of Plasmodium and how the latter may have evolved mechanisms to escape host detection and/or to manipulate the defensive reaction of the host.  相似文献   

9.
The innate immune system’s ability to sense an infection is critical so that it can rapidly respond if pathogenic microorganisms threaten the host, but otherwise maintain a quiescent baseline state to avoid causing damage to the host or to commensal microorganisms. One important mechanism for discriminating between pathogenic and non-pathogenic bacteria is the recognition of cellular damage caused by a pathogen during the course of infection. In Caenorhabditis elegans, the conserved G-protein coupled receptor FSHR-1 is an important constituent of the innate immune response. FSHR-1 activates the expression of antimicrobial infection response genes in infected worms and delays accumulation of the ingested pathogen Pseudomonas aeruginosa. FSHR-1 is central not only to the worm’s survival of infection by multiple pathogens, but also to the worm’s survival of xenobiotic cadmium and oxidative stresses. Infected worms produce reactive oxygen species to fight off the pathogens; FSHR-1 is required at the site of infection for the expression of detoxifying genes that protect the host from collateral damage caused by this defense response. Finally, the FSHR-1 pathway is important for the ability of worms to discriminate pathogenic from benign bacteria and subsequently initiate an aversive learning program that promotes selective pathogen avoidance.  相似文献   

10.
FINE STRUCTURE OF THE ASEXUAL STAGES OF PLASMODIUM ELONGATUM   总被引:3,自引:3,他引:0       下载免费PDF全文
Plasmodium elongatum, an avian malarial parasite, differs from other such parasites by infecting both the circulating red blood cells and the hematopoietic cells. The exoerythrocytic development of P. elongatum occurs mainly in these red cell precursors. The fine structure of the asexual stages of P. elongatum has been studied in the bone marrow and peripheral blood of canaries and compared with that of the asexual stages of other avian malarial parasites. With minor differences, the merozoites of P. elongatum possess the same organelles as those in the exoerythrocytic merozoites of P. fallax and the erythrocytic stages of P. cathemerium, P. lophurae, P. fallax, and P. gallinaceum. The developmental sequence is also essentially similar to that of other avian malarial parasites, in that upon entry into a new host cell, the dedifferentiation, growth, and redifferentiation phases take place. However, we have found some important differences in the feeding mechanism of P. elongatum. The cytostome is involved in the ingestion of host cell cytoplasm in both exoerythrocytic and erythrocytic stages, in contrast to P. fallax, in which the cytostome is inactive in the exoerythrocytic stages. In P. elongatum, host cell cytoplasm is ingested through the cytostome, and "boluses" are formed and incorporated into a large digestive vacuole. Subsequently, the digestion of the boluses takes place in this digestive vacuole. Thus, in regard to the function of the cytostome, the exoerythrocytic stages of P. elongatum appear to be closely related to the erythrocytic stage which has a feeding mechanism similar to that of the erythrocytic stage of other avian malarial parasites.  相似文献   

11.
Innate immunomodulation via induction of innate memory is one mechanism to alter the host’s innate immune response to reduce or prevent disease. Microbial products modulate innate responses with immediate and lasting effects. Innate memory is characterized by enhanced (training) or depressed (tolerance) innate immune responses, including pro-inflammatory cytokine production, to secondary exposure following a priming event. To investigate the ability of β-glucans and bacillus Calmette-Guerin to induce innate training or tolerance in pig cells, porcine monocytes were cultured with priming agonist (β-glucans or bacillus Calmette-Guerin) then re-stimulated 5 d later with a heterologous microbial agonist to determine induction of innate memory. Priming with β-glucan from Saccharomyces cerevisiae depressed IL-1β and TNF-α cytokine responses to re-stimulation with LPS, indicative of a tolerized state. However, bacillus Calmette-Guerin priming induced a trained state in porcine monocytes, as LPS re-stimulation enhanced IL-1β and TNF-α gene expression and protein production. We present the first evidence of innate memory in pig monocytes, with bacillus Calmette-Guerin (training) or Saccharomyces cerevisiae β-glucan (tolerance). Induction of a trained or tolerized state in vitro is a first step to identify agonists to alter the innate immune system at the animal level with the intent of enhancing disease resistance.  相似文献   

12.
Aspergillus fumigatus is the most common filamentous fungal pathogen of immunocompromised hosts, resulting in invasive aspergillosis (IA) and high mortality rates. Innate immunity is known to be the predominant host defense against A. fumigatus; however, innate phagocyte responses to A. fumigatus in an intact host and their contributions to host survival remain unclear. Here, we describe a larval zebrafish A. fumigatus infection model amenable to real-time imaging of host-fungal interactions in live animals. Following infection with A. fumigatus, innate phagocyte populations exhibit clear preferences for different fungal morphologies: macrophages rapidly phagocytose conidia and form aggregates around hyphae, while the neutrophil response is dependent upon the presence of hyphae. Depletion of macrophages rendered host larvae susceptible to invasive disease. Moreover, a zebrafish model of human leukocyte adhesion deficiency with impaired neutrophil function also resulted in invasive disease and impaired host survival. In contrast, macrophage-deficient but not neutrophil-deficient larvae exhibited attenuated disease following challenge with a less virulent (ΔlaeA) strain of A. fumigatus, which has defects in secondary metabolite production. Taking these results together, we have established a new vertebrate model for studying innate immune responses to A. fumigatus that reveals distinct roles for neutrophils and macrophages in mediating host defense against IA.  相似文献   

13.
Surface antigens of the avian malarial parasite, Plasmodium lophurae, and its host cell, the duckling erythrocyte, were visualized at the ultrastructural level using rabbit antisera and ferritin-labeled goat anti-rabbit IgG. Rabbit antisera to P. lophurae caused an aggregation of parasite and parasitophorous vacuole surface membrane antigens, a phenomenon known as capping. Capping required living plasmodia and did not occur if parasites had been fixed with glutaraldehyde prior to exposure to antisera. Antisera against duckling erythrocytes did not cross-react with erythrocyte-free malarial parasites, and did not form caps on the surface of the red blood cell. Antiplasmodial sera did not react with normal or malaria-infected red cells. These results suggest that surface membrane proteins of the intracellular plasmodium are capable of lateral movement.  相似文献   

14.
肠道病毒属于小核糖核酸病毒科,包括脊髓灰质炎病毒等多种重要人类病原体,已成为全球公共卫生安全的重大威胁之一。固有免疫是机体早期抵御病毒感染的重要防线。不同肠道病毒在进化中已经具备了多种途径躲避免疫识别或诱导固有免疫系统失活。本文重点对肠道病毒调控宿主固有免疫的相关分子机制进行综述,系统整理了肠道病毒逃避干扰素依赖与干扰素非依赖的抗病毒固有免疫防御的分子特征与作用规律,为肠道病毒致病机制的探究和抗病毒药物的研发提供参考。  相似文献   

15.
Malaria continues to be a serious threat to global health. The malaria problem is compounded by the absence of an efficacious vaccine and widespread drug resistance in the Plasmodium malarial parasite. The host factors and parasite virulence determinants that regulate early response to infection and subsequent onset of protective immunity are poorly understood. The molecular characterization of this early host:pathogen interface may identify novel targets for prophylactic or therapeutic intervention. Genetic analyses in mouse model of malaria show that inactivation of the enzyme pantetheinase (Char9 locus) causes susceptibility to blood-stage infection. The pantetheinase product cysteamine is an inexpensive and non-toxic aminothiol that is approved for lifelong clinical management of nephropathic cystinosis. In mouse models of infection, cysteamine not only displays anti-malarial activity of its own, but also dramatically potentiates the anti-malarial activity of artemisinin, at doses currently used for the clinical management of cystinosis. Therefore, the inclusion of cysteamine in current artemisinin combination therapies may significantly increase efficacy and may also prove effective against emerging artemisinin-resistant human Plasmodium parasite.  相似文献   

16.
Studying macrophage biology in the context of a whole living organism provides unique possibilities to understand the contribution of this extremely dynamic cell subset in the reaction to infections, and has revealed the relevance of cellular and molecular processes that are fundamental to the cell-mediated innate immune response. In particular, various recently established zebrafish infectious disease models are contributing substantially to our understanding of the mechanisms by which different pathogens interact with macrophages and evade host innate immunity. Transgenic zebrafish lines with fluorescently labeled macrophages and other leukocyte populations enable non-invasive imaging at the optically transparent early life stages. Furthermore, there is a continuously expanding availability of vital reporters for subcellular compartments and for probing activation of immune defense mechanisms. These are powerful tools to visualize the activity of phagocytic cells in real time and shed light on the intriguing paradoxical roles of these cells in both limiting infection and supporting the dissemination of intracellular pathogens. This Review will discuss how several bacterial and fungal infection models in zebrafish embryos have led to new insights into the dynamic molecular and cellular mechanisms at play when pathogens encounter host macrophages. We also describe how these insights are inspiring novel therapeutic strategies for infectious disease treatment.KEY WORDS: Leukocyte biology, Innate immunity, Infectious disease, Host-directed therapy, Mycobacterium, Salmonella, Burkholderia, Staphylococcus, Shigella, Candida  相似文献   

17.
Innate immunity is inherited and is, therefore, particularly susceptible to analysis by classical genetic methods. The 'phenotype first' approach has already revealed the principal receptors of the innate immune system as well as several essential signalling intermediates. It has recently emerged that innate resistance to mouse cytomegalovirus (MCMV) infection depends upon a large number of host genes with non-redundant functions; hence, random germline mutagenesis frequently causes susceptibility to this pathogen. Approximately one in 30 pedigrees derived from N-ethyl-N-nitrosourea-mutagenised progenitors bears a recessive mutation that disrupts resistance to MCMV. Moreover, many of the genes required for resistance to MCMV will undoubtedly prove to have broad roles in immunity, creating resistance to many other microbes. The forward genetics approach offers an excellent opportunity to identify many of the key components of the innate immune system.  相似文献   

18.
Plasmodium falciparum merozoites engage the erythrocyte surface through several receptor (host)-ligand (parasite) interactions during a brief exchange that results in parasite invasion of the red blood cell. Tens of thousands of these events occur during the initial cycle of blood-stage infections but advance towards billions as the parasite becomes visible to microscopists attempting to diagnose the underlying cause of illness in febrile patients. Advancing blood-stage infection leads to massive proportions of erythrocytes that rupture during repetitive cycles of asexual reproduction. As the infection leads to illness, non-immune or semi-immune individuals can suffer from life-threatening consequences of severe malarial anemia that play a leading role in pathogenesis. Through natural selection, some erythrocyte membrane polymorphisms are likely to have reduced the invasion success of the P. falciparum merozoite and increased the fitness of the human host population.  相似文献   

19.
Infectious bursal disease virus (IBDV), a double-stranded RNA virus, causes immunosuppression and high mortality in 3–6-week-old chickens. Innate immune defense is a physical barrier to restrict viral replication. After viral infection, the host shows crucial defense responses, such as stimulation of antiviral effectors to restrict viral replication. Here, we conducted RNA-seq in avian cells infected by IBDV and identified TRIM25 as a host restriction factor. Specifically, TRIM25 deficiency dramatically increased viral yields, whereas overexpression of TRIM25 significantly inhibited IBDV replication. Immunoprecipitation assays indicated that TRIM25 only interacted with VP3 among all viral proteins, mediating its K27-linked polyubiquitination and subsequent proteasomal degradation. Moreover, the Lys854 residue of VP3 was identified as the key target site for the ubiquitination catalyzed by TRIM25. The ubiquitination site destroyed enhanced the replication ability of IBDV in vitro and in vivo. These findings demonstrated that TRIM25 inhibited IBDV replication by specifically ubiquitinating and degrading the structural protein VP3.  相似文献   

20.
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused mass mortality leading to population declines and extinctions in many frog species worldwide. The lack of host resistance may be due to fungal immunosuppressive effects that have been observed when Bd is incubated with cultured lymphocytes, but whether in vivo host immunosuppression occurs is unknown. We used a broad range of hematologic and protein electrophoresis biomarkers, along with various functional tests, to assess immune competence in common green (Litoria caerulea) and white-lipped (L. infrafrenata) tree frogs experimentally infected with Bd. Compared with uninfected frogs, Bd infection in L. caerulea caused a reduction in immunoglobulin and splenic lymphocyte responses to antigenic stimulation with sheep red blood cells, along with decreased white blood cell and serum protein concentrations, indicating possible impaired immune response capability of Bd-infected frogs. This is the first in vivo study suggesting that infection with Bd causes multiple defects in systemic host immune function, and this may contribute to disease development in susceptible host species. Although L. infrafrenata failed to maintain Bd infection after exposure, white blood cell and serum globulin concentrations were lower in recovered frogs compared with unexposed frogs, but antigen-specific serum and splenic antibody, and splenic cellular, responses were similar in both recovered and unexposed frogs. This may indicate potential systemic costs associated with infection clearance and/or redirection of host resources towards more effective mechanisms to overcome infection. No clear mechanism for resistance was identified in L. infrafrenata, suggesting that localized and/or innate immune defense mechanisms may be important factors involved in disease resistance in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号