首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Recent studies have demonstrated that Bacillus subtilis-derived poly-gamma glutamic acid (γPGA) treatment suppresses the development of allergic diseases such as atopic dermatitis (AD). Although basophils, an innate immune cell, are known to play critical roles in allergic immune responses and repeated long-term administration of γPGA results in decreased splenic basophils in an AD murine model, the underlying mechanisms by which γPGA regulates basophil frequency remain unclear. To investigate how γPGA modulates basophils, we employed basophil-mediated Th2 induction in vivo model elicited by the allergen papain protease. Repeated injection of γPGA reduced the abundance of basophils and their production of IL4 in mice, consistent with our previous study using NC/Nga AD model mice. The depletion of basophils by a single injection of γPGA was dependent on the TLR4/DC/IL12 axis. CD1d-dependent Vα14 TCR invariant natural killer T (iNKT) cells are known to regulate a variety of immune responses, such as allergy. Because iNKT cell activation is highly sensitive to IL12 produced by DCs, we evaluated whether the effect of γPGA on basophils is mediated by iNKT cell activation. We found that in vivo γPGA treatment did not induce the reduction of basophils in iNKT cell-deficient CD1d KO mice, suggesting the critical role of iNKT cells in γPGA-mediated basophil depletion at the early time points. Furthermore, increased apoptotic basophil reduction triggered by iNKT cells upon γPGA stimulation was mainly attributed to Th1 cytokines such as IFNγ and TNFα, consequently resulting in inhibition of papain-induced Th2 differentiation via diminishing basophil-derived IL4. Taken together, our results clearly demonstrate that γPGA-induced iNKT cell polarization toward the Th1 phenotype induces apoptotic basophil depletion, leading to the suppression of Th2 immune responses. Thus, elucidation of the crosstalk between innate immune cells will contribute to the design and development of new therapeutics for Th2-mediated immune diseases such as AD.  相似文献   

5.
Systemic inflammatory response syndrome (SIRS) is a common complication after cardiovascular surgery that in severe cases can lead to multiple organ dysfunction syndrome and even death. We therefore set out to identify reliable early biomarkers for SIRS in a prospective small patient study for timely intervention. 21 Patients scheduled for planned cardiovascular surgery were recruited in the study, monitored for signs of SIRS and blood samples were taken to investigate biomarkers at pre-assigned time points: day of admission, start of surgery, end of surgery, days 1, 2, 3, 5 and 8 post surgery. Stored plasma and cryopreserved blood samples were analyzed for cytokine expression (IL1β, IL2, IL6, IL8, IL10, TNFα, IFNγ), other pro-inflammatory markers (sCD163, sTREM-1, ESM-1) and response to endotoxin. Acute phase proteins CRP, PCT and pro-inflammatory cytokines IL6 and IL8 were significantly increased (p<0.001) at the end of surgery in all patients but could not distinguish between groups. Normalization of samples revealed significant increases in IL1β changes (p<0.05) and decreased responses to endotoxin (p<0.01) in the SIRS group at the end of surgery. Soluble TREM-1 plasma concentrations were significantly increased in patients with SIRS (p<0.01). This small scale patient study could show that common sepsis markers PCT, CRP, IL6 and TNFα had low predictive value for early diagnosis of SIRS after cardiovascular surgery. A combination of normalized IL1β plasma levels, responses to endotoxin and soluble TREM-1 plasma concentrations at the end of surgery are predictive markers of SIRS development in this small scale study and could act as an indicator for starting early therapeutic interventions.  相似文献   

6.
Neutrophils are significant compositions of solid tumors and exert distinct functions in different types of tumors. However, the precise role of neutrophils in the progression of breast cancer (BC) is presently unclear. In this study, by investigating the single-cell RNA sequencing data, we identify a new neutrophil subset, C5aR1-positive neutrophils, that correlates with tumor progression and poor survival for BC patients. Furthermore, it is discovered that C5aR1-positive neutrophils enhance BC cell glycolysis via upregulating ENO1 expression. Mechanically, C5aR1-positive neutrophil-secreted IL1β and TNFα cooperatively activate ERK1/2 signaling, which phosphorylates WTAP at serine341 and thereby stabilizes WTAP protein. The stabilization of WTAP further promotes RNA m6A methylation of ENO1, impacting the glycolytic activity of BC cells. Importantly, C5aR1-positive neutrophils also promote breast cancer growth in vivo, and this effect is abolished by WTAP silencing. In clinical BC samples, increased C5aR1-positive neutrophils correlate with elevated IL1β, TNFα, and ENO1 expression. A high co-expression of C5aR1-positive neutrophil gene signature and ENO1 predicts worse prognosis of BC patients compared with a low co-expression. Collectively, our study reveals a novel subset of C5aR1-positive neutrophils that induces breast cancer glycolysis via increasing ERK1/2-WTAP-dependent m6A methylation of ENO1. These findings support the potential for exploration of C5aR1-positive neutrophils as a therapeutic target in breast cancer.Subject terms: Cancer microenvironment, Breast cancer, Oncogenesis  相似文献   

7.
8.
Chronic obstructive pulmonary disease (COPD) is characterized by intense lung infiltrations of immune cells (macrophages and monocytes). Lipopolysaccharide (LPS) activates macrophages/monocytes, leading to production of tumor necrosis factor α (TNFα) and other cytokines, which cause subsequent lung damages. In the current study, our results demonstrated that AS-703026, a novel MEK/ERK inhibitor, suppressed LPS-induced TNFα mRNA expression and protein secretion in RAW 264.7 murine macrophages, and in murine bone marrow-derived macrophages (BMDMs). Meanwhile, TNFα production in LPS-stimulated COPD patents’ peripheral blood mononuclear cells (PBMCs) was also repressed by AS-703026. At the molecular level, we showed that AS-703026 blocked LPS-induced MEK/ERK activation in above macrophages/monocytes. However, restoring ERK activation in AS-703026-treated RAW 264.7 cells by introducing a constitutive-actively (CA)-ERK1 only partially reinstated LPS-mediated TNFα production. Meanwhile, AS-703026 could still inhibit TNFα response in ERK1/2-depleted (by shRNA) RAW 264.7 cells. Significantly, we found that AS-703026 inhibited LPS-induced nuclear factor κB (NFκB) activation in above macrophages and COPD patients’ PBMCs. In vivo, oral administration of AS-703026 inhibited LPS-induced TNFα production and endotoxin shock in BALB/c mice. Together, we show that AS-703026 in vitro inhibits LPS-induced TNFα production in macrophages/monocytes, and in vivo protects mice from LPS-induced endotoxin shock. Thus, it could be further studied as a useful anti-inflammatory therapy for COPD patients.  相似文献   

9.

Background

Mucus hypersecretion and excessive cytokine synthesis is associated with many of the pathologic features of chronic airway diseases such as asthma. 6-Mercaptopurine (6-MP) is an immunosuppressive drug that is widely used in several inflammatory disorders. Although 6-MP has been used to treat asthma, its function and mechanism of action in airway epithelial cells is unknown.

Methods

Confluent NCI-H292 and MLE-12 epithelial cells were pretreated with 6-MP followed by stimulation with TNFα or PMA. mRNA levels of cytokines and mucins were measured by RT-PCR. Western blot analysis was performed to assess the phosphorylation of IκBα and luciferase assays were performed using an NFκB reporter plasmid to determine NFκB activity. Periodic Acid Schiff staining was used to assess the production of mucus.

Results

6-MP displayed no effect on cell viability up to a concentration of 15 μM. RT-PCR analysis showed that 6-MP significantly reduces TNFα- and PMA-induced expression of several proinflammatory cytokines in NCI-H292 and MLE-12 cells. Consistent with this, we demonstrated that 6-MP strongly inhibits TNFα-induced phosphorylation of IκBα and thus attenuates NFκB luciferase reporter activity. In addition, 6-MP decreases Rac1 activity in MLE-12 cells. 6-MP down-regulates gene expression of the mucin Muc5ac, but not Muc2, through inhibition of activation of the NFκB pathway. Furthermore, PMA- and TNFα-induced mucus production, as visualized by Periodic Acid Schiff (PAS) staining, is decreased by 6-MP.

Conclusions

Our data demonstrate that 6-MP inhibits Muc5ac gene expression and mucus production in airway epithelial cells through inhibition of the NFκB pathway, and 6-MP may represent a novel therapeutic target for mucus hypersecretion in airway diseases.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0236-0) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
12.
13.
Single stranded RNA (ssRNA) virus infection activates the retinoic acid inducible gene I (RIG-I)- mitochondrial antiviral signaling (MAVS) complex, a complex that coordinates the host innate immune response via the NF-κB and IRF3 pathways. Recent work has shown that the IκB kinase (IKK)γ scaffolding protein is the final common adapter protein required by RIG-I·MAVS to activate divergent rate-limiting kinases downstream controlling the NF-κB and IRF3 pathways. Previously we discovered a ubiquitous IKKγ splice-variant, IKKγΔ, that exhibits distinct signaling properties.

Methodology/Principal Findings

We examined the regulation and function of IKKγ splice forms in response to ssRNA virus infection, a condition that preferentially induces full length IKKγ-WT mRNA expression. In IKKγΔ-expressing cells, we found increased viral translation and cytopathic effect compared to those expressing full length IKKγ-WT. IKKγΔ fails to support viral-induced IRF3 activation in response to ssRNA infections; consequently type I IFN production and the induction of anti-viral interferon stimulated genes (ISGs) are significantly attenuated. By contrast, ectopic RIG-I·MAVS or TNFα-induced canonical NF-κB activation is preserved in IKKγΔ expressing cells. Increasing relative levels of IKKγ-WT to IKKγΔ (while keeping total IKKγ constant) results in increased type I IFN expression. Conversely, overexpressing IKKγΔ (in a background of constant IKKγ-WT expression) shows IKKγΔ functions as a dominant-negative IRF3 signaling inhibitor. IKKγΔ binds both IKK-α and β, but not TANK and IKKε, indicating that exon 5 encodes an essential TANK binding domain. Finally, IKKγΔ displaces IKKγWT from MAVS explaining its domainant negative effect.

Conclusions/Significance

Relative endogenous IKKγΔ expression affects cellular selection of inflammatory/anti-viral pathway responses to ssRNA viral infection.  相似文献   

14.
In West Africa, Trypanosoma brucei gambiense, causing human African trypanosomiasis (HAT), is associated with a great diversity of infection outcomes. In addition to patients who can be diagnosed in the early hemolymphatic phase (stage 1) or meningoencephalitic phase (stage 2), a number of individuals can mount long-lasting specific serological responses while the results of microscopic investigations are negative (SERO TL+). Evidence is now increasing to indicate that these are asymptomatic subjects with low-grade parasitemia. The goal of our study was to investigate the type of immune response occurring in these “trypanotolerant” subjects. Cytokines levels were measured in healthy endemic controls (n = 40), stage 1 (n = 10), early stage 2 (n = 19), and late stage 2 patients (n = 23) and in a cohort of SERO TL+ individuals (n = 60) who were followed up for two years to assess the evolution of their parasitological and serological status. In contrast to HAT patients which T-cell responses appeared to be activated with increased levels of IL2, IL4, and IL10, SERO TL+ exhibited high levels of proinflammatory cytokines (IL6, IL8 and TNFα) and an almost absence of IL12p70. In SERO TL+, high levels of IL10 and low levels of TNFα were associated with an increased risk of developing HAT whereas high levels of IL8 predicted that serology would become negative. Further studies using high throughput technologies, hopefully will provide a more detailed view of the critical molecules or pathways underlying the trypanotolerant phenotype.  相似文献   

15.
16.
Tenofovir (TFV) has been widely used for pre-exposure prophylaxis of HIV-1 infection with mixed results. While the use of TFV in uninfected individuals for prevention of HIV-1 acquisition is actively being investigated, the possible consequences of TFV exposure for the HIV-target cells and the mucosal microenvironment are unknown. In the current study, we evaluated the effects of TFV treatment on blood-derived CD4+ T cells, monocyte-derived macrophages and dendritic cells (DC). Purified HIV-target cells were treated with different concentrations of TFV (0.001-1.0 mg/ml) for 2 to 24hr. RNA was isolated and RT-PCR was performed to compare the levels of mRNA expression of nucleotidases and pro-inflammatory cytokine genes (MIP3α, IL-8 and TNFα) in the presence or absence of TFV. We found that TFV increases 5’-ecto-nucleotidase (NT5E) and inhibits mitochondrial nucleotidase (NT5M) gene expression and increases 5’ nucleotidase activity in macrophages. We also observed that TFV stimulates the expression and secretion of IL-8 by macrophages, DC, and activated CD4+ T cells and increases the expression and secretion of MIP3α by macrophages. In contrast, TFV had no effect on TNFα secretion from macrophages, DC and CD4+ T cells. Our results demonstrate that TFV alters innate immune responses in HIV-target cells with potential implications for increased inflammation at mucosal surfaces. As new preventive trials are designed, these findings should provide a foundation for understanding the effects of TFV on HIV-target cells in microbicide trials.  相似文献   

17.
Cytokines such as TNFα can polarize microglia/macrophages into different neuroinflammatory types. Skewing of the phenotype towards a cytotoxic state is thought to impair phagocytosis and has been described in Alzheimer’s Disease (AD). Neuroinflammation can be perpetuated by a cycle of increasing cytokine production and maintenance of a polarized activation state that contributes to AD progression. In this study, 3xTgAD mice, age 6 months, were treated orally with 3 doses of the TNFα modulating compound isoindolin-1,3 dithione (IDT) for 10 months. We demonstrate that IDT is a TNFα modulating compound both in vitro and in vivo. Following long-term IDT administration, mice were assessed for learning & memory and tissue and serum were collected for analysis. Results demonstrate that IDT is safe for long-term treatment and significantly improves learning and memory in the 3xTgAD mouse model. IDT significantly reduced paired helical filament tau and fibrillar amyloid accumulation. Flow cytometry of brain cell populations revealed that IDT increased the infiltrating neutrophil population while reducing TNFα expression in this population. IDT is a safe and effective TNFα and innate immune system modulator. Thus small molecule, orally bioavailable modulators are promising therapeutics for Alzheimer’s disease.  相似文献   

18.

Introduction

Adalimumab is a fully human anti–tumor necrosis factor α (anti-TNFα) monoclonal antibody that specifically blocks the interaction of TNFα with its receptors. It binds both soluble and transmembrane TNFα. We hypothesized that blocking these TNFα signals regulates the altered TNFα production in rheumatoid arthritis (RA) patients.

Methods

We compared, by flow cytometry, Toll-like receptor induction levels of membrane and intracellular TNFα in monocytes (iTNFα + CD14+ cells) from 12 patients before and after adalimumab treatment with those from 5 healthy donors.

Results

Before starting the treatment, the percentage of iTNFα+ CD14+ cells in the RA patients was significantly lower than that in healthy donors (mean ± SEM = 33.16 ± 4.82% vs 66.51 ± 2.4%, P < 0.001). When we added in vitro TNFα to healthy donor culture cells, levels of iTNFα+ CD14+ cells decreased, suggesting that the TNFα signal was responsible for the iTNFα+ CD14+ cell downregulation observed in the RA patients. After 2, 6 and 12 adalimumab injections, we observed significant blocking of membrane and soluble TNFα and a progressive increase in iTNFα+ CD14+ cells in ten patients with a good to moderate response as defined by the European League Against Rheumatism (EULAR) criteria. Levels of iTNFα+ CD14+ cells after 12 injections in these 10 patients were comparable to levels in healthy donors. In two patients, iTNFα+ CD14+ cell upregulation was not observed, and their EULAR-defined responses had not improved. The first patient developed antiadalimumab antibodies, explaining why adalimumab was not able to block membrane and soluble TNFα. In the second patient, adalimumab was discontinued because of adverse effects, which led to a decrease in iTNFα+ CD14+ cells to levels measured before treatment.

Conclusions

Our findings suggest that adalimumab treatment in RA patients can return iTNFα levels to those of healthy donors. This effect was not observed in the presence of neutralizing antiadalimumab antibodies.  相似文献   

19.
20.
Increased adiposity results in a heightened infiltration of immune cells into fat depots, which in turn generates a pro-inflammatory phenotype in obese individuals. To better understand the causal factors that establish this pro-inflammatory profile, we examined events leading to crosstalk between adipocytes and immune cells. Using isolated spleen-derived immune cells, stimulated with LPS, together with cultured adipocytes, we differentiated the effects of paracrine factors and cell-cell contact on TNFα, IL-6 and MCP-1 secretion levels and secretion profiles. When splenocytes and adipocytes were co-cultured without direct contact, permitting only paracrine communication, secretion of IL-6 and MCP-1 were increased by 3- and 2.5-fold, respectively, over what was secreted by individual cultures, whereas TNFα secretion was reduced by 55%. When cells were co-cultured with direct cell-cell contact, IL-6 and MCP-1 secretion were increased by an additional 36% and 38%, respectively, over that measured from just paracrine stimulation alone, indicating that cell contact provides a synergistic signal that amplifies elevated cytokine secretion stimulated by paracrine signals. Using splenocytes from TNFα-/- mice showed that the absence of TNFα has little effect on paracrine stimulation of cytokine secretion, but attenuates cell contact-mediated enhancement of IL-6 and MCP-1 secretion. Furthermore, TNFα supports cell contact-mediated signaling in part, but not exclusively, through Nuclear Factor-κB activation. These findings indicate that engagement of cell contact between immune cells and adipocytes, in conjunction with locally secreted paracrine factors, activates a unique signaling pathway that mediates crosstalk between these cell types leading to marked effects on cytokine secretion and profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号