首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Duchenne Muscular Dystrophy (DMD) is an incurable inherited disease ofchildhood, characterized by progressive muscle degeneration and weakness. Our previousfindings supported the idea that dystrophin and associated proteins, absent or greatlyreduced in DMD, are degraded in dystrophin-deficient muscle by the proteasomaldependentpathway. Indeed, treatment with the proteasome inhibitor MG-132 of skeletalmuscles from mdx mice --a spontaneous mouse model of DMD-- as well as from DMDpatients, effectively rescued the expression and correct cellular localization of dystrophinand associated proteins. These promising results led us to further explore the use ofproteasome inhibitors as a therapy for DMD. Therefore, we directed our attentiontowards two new dipeptide boronic acid inhibitors blocking the proteasomal-dependentdegradation pathway: Velcade (bortezomib or PS-341) and MLN273 (PS-273). Theexciting aspect of this development is that these drugs have already progressed to preclinicaland clinical trials, in different fields than muscular dystrophy. Indeed, Velcadehas been already FDA-approved for treatment of multiple myeloma and its side effectshad been already explored and managed. Promisingly, MLN273 is currently in thepreclinical trial phase. Here, we test the effectiveness of Velcade and MLN273 by localinjection into the gastrocnemius muscle of mdx mice. We show the rescue of expressionand membrane localization of 􀀁-dystroglycan, 􀀂-dystroglycan, 􀀁-sarcoglycan, anddystrophin after Velcade and MLN273 localized treatment, versus untreated (PBS only)mdx mice. Intriguingly, we also show that localized treatment with Velcade and MLN273reduces the activation of Nuclear Factor-kappaB (NF-kB). Because NF-kB pathway hasbeen shown to be involved in inflammation responses in myopathies and DMD, ourcurrent results may have important clinical implications. Clearly, more investigations areneeded, but our results emphasize the effectiveness of the pharmacological approach as apotential treatment for Duchenne muscular dystrophy.  相似文献   

3.
Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder characterized by primary muscle degeneration. Therapeutic strategies for DMD have been extensively explored, and some are in the stage of human clinical trials. Along with the development of new therapies, sensitive outcome measures are needed to monitor the effects of new treatments. Therefore, we investigated outcome measures such as biomarkers and motor function evaluation in a dystrophic model of beagle dogs, canine X-linked muscular dystrophy in Japan (CXMDJ). Osteopontin (OPN), a myogenic inflammatory cytokine, was explored as a potential biomarker in dystrophic dogs over the disease course. The serum OPN levels of CXMDJ dystrophic dogs were elevated, even in the early disease phase, and this could be related to the presence of regenerating muscle fibers; as such, OPN would be a promising biomarker for muscle regeneration. Next, accelerometry, which is an efficient method to quantify performance in validated tasks, was used to evaluate motor function longitudinally in dystrophic dogs. We measured three-axis acceleration and angular velocity with wireless hybrid sensors during gait evaluations. Multiple parameters of acceleration and angular velocity showed notedly lower values in dystrophic dogs compared with wild-type dogs, even at the onset of muscle weakness. These parameters accordingly decreased with exacerbation of clinical manifestations along with the disease course. Multiple parameters also indicated gait abnormalities in dystrophic dogs, such as a waddling gait. These outcome measures could be applicable in clinical trials of patients with DMD or other muscle disorders.  相似文献   

4.
Muscular dystrophies are a group of genetic disorders that progressively weaken and degenerate muscle. Many zebrafish models for human muscular dystrophies have been generated and analysed, including dystrophin-deficient zebrafish mutants dmd that model Duchenne Muscular Dystrophy. Under polarised light the zebrafish muscle can be detected as a bright area in an otherwise dark background. This light effect, called birefringence, results from the diffraction of polarised light through the pseudo-crystalline array of the muscle sarcomeres. Muscle damage, as seen in zebrafish models for muscular dystrophies, can readily be detected by a reduction in the birefringence. Therefore, birefringence is a very sensitive indicator of overall muscle integrity within larval zebrafish. Unbiased documentation of the birefringence followed by densitometric measurement enables the quantification of the birefringence of zebrafish larvae. Thereby, the overall level of muscle integrity can be detected, allowing the identification and categorisation of zebrafish muscle mutants. In addition, we propose that the establish protocol can be used to analyse treatments aimed at ameliorating dystrophic zebrafish models.  相似文献   

5.
Dystrophin is a cytoskeletal protein normally expressed underneath the sarcolemma of muscle fibers. The lack of dystrophin in Duchenne muscular Dystrophy (DMD) muscles results in fiber necrosis, which was proposed to be mediated by chronic calcium mishandling. The extensive comparison of dystrophic cells from human or mdx mice with normal muscles have suggested that the lack of dystrophin may alter the resting calcium permeability and steady-state levels of calcium, but this latter observation remains controversial. It is also not clear, whether calcium mishandling is resulting from the dystrophic process or if dystrophin can directly regulate calcium handling in muscle cells. This prompted us to determine if transfection of full-length dystrophin or Becker Muscular Dystrophy (BMD) minidystrophin, a candidate for viral-mediated gene therapy, could change calcium handling properties. We took advantage of specific properties of Sol8 cell line showing the absence of dystrophin expression together with a drastic calcium mishandling. Here, we show that full-length dystrophin allowed the recovery of a low resting intracellular-free calcium concentration together with lower calcium transients. We also show for the first time that stable expression of minidystrophin was able to restore normal calcium handling in Sol8 myotubes through a better control of steady-state levels, calcium transients, and subcellular calcium events. It suggests that dystrophin could play a regulatory role on calcium homeostasis apparatus and that functional links exist between calcium signaling and cytoskeleton.  相似文献   

6.
One therapeutic approach to Duchenne Muscular Dystrophy (DMD) recently entering clinical trials aims to convert DMD phenotypes to that of a milder disease variant, Becker Muscular Dystrophy (BMD), by employing antisense oligonucleotides (AONs) targeting splice sites, to induce exon skipping and restore partial dystrophin function. In order to search for small molecule and genetic modulators of AON-dependent and independent exon skipping, we screened ∼10,000 known small molecule drugs, >17,000 cDNA clones, and >2,000 kinase- targeted siRNAs against a 5.6 kb luciferase minigene construct, encompassing exon 71 to exon 73 of human dystrophin. As a result, we identified several enhancers of exon skipping, acting on both the reporter construct as well as endogenous dystrophin in mdx cells. Multiple mechanisms of action were identified, including histone deacetylase inhibition, tubulin modulation and pre-mRNA processing. Among others, the nucleolar protein NOL8 and staufen RNA binding protein homolog 2 (Stau2) were found to induce endogenous exon skipping in mdx cells in an AON-dependent fashion. An unexpected but recurrent theme observed in our screening efforts was the apparent link between the inhibition of cell cycle progression and the induction of exon skipping.  相似文献   

7.
Duchenne Muscular Dystrophy is a chronic, progressive and ultimately fatal skeletal muscle wasting disease characterised by sarcolemmal fragility and intracellular Ca2+ dysregulation secondary to the absence of dystrophin. Mounting literature also suggests that the dysfunction of key energy systems within the muscle may contribute to pathological muscle wasting by reducing ATP availability to Ca2+ regulation and fibre regeneration. No study to date has biochemically quantified and contrasted mitochondrial ATP production capacity by dystrophic mitochondria isolated from their pathophysiological environment such to determine whether mitochondria are indeed capable of meeting this heightened cellular ATP demand, or examined the effects of an increasing extramitochondrial Ca2+ environment. Using isolated mitochondria from the diaphragm and tibialis anterior of 12 week-old dystrophin-deficient mdx and healthy control mice (C57BL10/ScSn) we have demonstrated severely depressed Complex I-mediated mitochondrial ATP production rate in mdx mitochondria that occurs irrespective of the macronutrient-derivative substrate combination fed into the Kreb’s cycle, and, which is partially, but significantly, ameliorated by inhibition of Complex I with rotenone and stimulation of Complex II-mediated ATP-production with succinate. There was no difference in the MAPR response of mdx mitochondria to increasing extramitochondrial Ca2+ load in comparison to controls, and 400 nM extramitochondrial Ca2+ was generally shown to be inhibitory to MAPR in both groups. Our data suggests that DMD pathology is exacerbated by a Complex I deficiency, which may contribute in part to the severe reductions in ATP production previously observed in dystrophic skeletal muscle.  相似文献   

8.

Background

Duchenne muscular dystrophy (DMD) is the most common fatal form of muscular dystrophy characterized by striated muscle wasting and dysfunction. Patients with DMD have a very high incidence of heart failure, which is increasingly the cause of death in DMD patients. We hypothesize that in the in vivo system, the dystrophic cardiac muscle displays bioenergetic deficits prior to any functional or structural deficits. To address this we developed a complete non invasive 31P magnetic resonance spectroscopy (31P MRS) approach to measure myocardial bioenergetics in the heart in vivo.

Methods and Results

Six control and nine mdx mice at 5 months of age were used for the study. A standard 3D -Image Selected In vivo Spectroscopy (3D-ISIS) sequence was used to provide complete gradient controlled three-dimensional localization for heart 31P MRS. These studies demonstrated dystrophic hearts have a significant reduction in PCr/ATP ratio compare to normal (1.59±0.13 vs 2.37±0.25, p<0.05).

Conclusion

Our present study provides the direct evidence of significant cardiac bioenergetic deficits in the in vivo dystrophic mouse. These data suggest that energetic defects precede the development of significant hemodynamic or structural changes. The methods provide a clinically relevant approach to use myocardial energetics as an early marker of disease in the dystrophic heart. The new method in detecting the in vivo bioenergetics abnormality as an early non-invasive marker of emerging dystrophic cardiomyopathy is critical in management of patients with DMD, and optimized therapies aimed at slowing or reversing the cardiomyopathy.  相似文献   

9.
Lipofuscin, the so-called ageing pigment, is formed by the oxidative degradation of cellular macromolecules by oxygen-derived free radicals and redox-active metal ions. Usually it accumulates in post-mitotic, long-lived cells such as neurons and cardiac muscle cells. In contrast, it is rarely seen in either normal or diseased skeletal muscle fibres. In this paper, we report that lipofuscin accumulates at an early age in both human and murine dystrophic muscles. Autofluorescent lipofuscin granules were localized, using confocal laser scanning microscopy and electron microscopy, in dystrophin-deficient skeletal muscles of X chromosome-linked young Duchenne muscular dystrophy (DMD) patients and of mdx mice at various ages after birth. Age-matched normal controls were studied similarly. Autofluorescent lipofuscin granules were observed in dystrophic biceps brachii muscles of 2-7-year-old DMD patients where degeneration and regeneration of myofibres are active, but they were rarely seen in age-matched normal controls. In normal mice, lipofuscin first appears in diaphragm muscles nearly 20 weeks after birth but in mdx muscles it occurs much earlier, 4 weeks after birth, when the primary degeneration of dystrophin-deficient myofibres is at a peak. Lipofuscin accumulation increases with age in both mdx and normal controls and is always higher in dystrophic muscles than in age-matched normal controls. At the electron microscopical level, it was confirmed that the localisation of autofluorescent granules observed by light microscopy in dystrophin-deficient skeletal muscles coincided with lipofuscin granules in myofibres and myosatellite cells, and in macrophages accumulating around myofibres and in interstitial connective tissue. Our results agree with previous biochemical and histochemical data implying increased oxidative damages in DMD and mdx muscles. They indicate that dystrophin-deficient myofibres are either more susceptible to oxidative stress, or are subjected to higher intra- or extracellular oxidative stress than normal controls, or both.  相似文献   

10.
11.
The pathology of Duchenne Muscular Dystrophy (DMD) is characterised by unstable muscle fibres and by increased cell turnover due to the absence of functional dystrophin protein. We have used skeletal muscle, primary muscle stem cell cultures (Smith and Schofield, 1994; Smith et al., paper submitted) and clonal cell lines of the mouse DMD model (mdx) and its congenic control (C57BI) to demonstrate that programmed cell death (PCD) and apoptotic morphology is increased in dystrophic (mdx) muscle and in cultured muscle cells. We also show that the peptide growth factor (IGF-II), which is thought to play a role in mammalian myogenesis, reduces PCD in mammalian skeletal muscle myoblasts both in vivo and in vitro. This is the first time that apoptosis or PCD have been demonstrated in normal mammalian skeletal muscle. We discuss the potential of this system in determining the role of PCD in mammalian myogenesis and skeletal muscle maturation, its significance in dystrophic muscle, and suggest a novel therapeutic route whereby the pathology of DMD may be alleviated using the survival properties of IGF-II.  相似文献   

12.
Urinary spontaneous visible luminescence is enhanced in children with Duchenne Muscular Dystrophy (DMD). This result is indicative of systemic oxidative stress in DMD patients. It is proposed that measurement of the urinary luminescence could be employed to follow the progress of the disease, as well as the response of the patients to antioxidant therapy.  相似文献   

13.

Objectives:

To describe muscle size and architecture of the gastrocnemius medialis (GM) muscle in eleven adult males with Duchenne Muscular Dystrophy (DMD, age 24.5±5.4 years), and a control group of eleven males without DMD (CTRL, age 22.1±0.9 years).

Methods:

GM anatomical cross sectional area (ACSA), volume (VOL), physiological cross sectional area (PCSA), fascicle length (Lf) and pennation angle (θ) were assessed using B-Mode Ultrasonography. GM ACSA was measured at 25, 50 and 75% of muscle length (Lm), from which VOL was calculated. At 50% of Lm, sagittal plane images were analysed to determine GM Lf and θ. GM PCSA was calculated as VOL/Lf. The ratio of Lf and Lm was also calculated.

Results:

GM ACSA at 50% Lm, VOL and PCSA were smaller in DMD males compared to CTRL males by 36, 47 and 43%, respectively (P<0.01). There were no differences in Lf and θ. GM Lm was 29% shorter in DMD compared to CTRL. Lf/Lm was 29% longer in DMD (P<0.01).

Conclusions:

Unlike previous data in children with DMD, our results show significant atrophy in adult males with DMD, and no change in Lf or θ. The shorter Lm may have implications for joint flexibility.  相似文献   

14.
Duchenne Muscular Dystrophy (DMD) originates from deleterious mutations in the dystrophin gene, with a complete loss of the protein product. Subsequently, the disease is manifested in severe striated muscle wasting and death in early adulthood. Dystrophin provides a structural base for the assembly of an integral membrane protein complex. As such, dystrophin deficiency leads to an altered mechanical integrity of the myofiber and a predisposition to contraction-induced damage. However, the development of myofiber degeneration prior to an observed mechanical defect has been documented in various dystrophic models. Although activation of a detrimental signal transduction pathway has been suggested as a probable cause, a specific cellular cascade has yet to be defined. Here, it is shown that murine models of DMD displayed a muscle-specific activation of JNK1. Independent activation of JNK1 resulted in defects in myotube viability and integrity in vitro, similar to a dystrophic phenotype. In addition, direct muscle injection of an adenoviral construct containing the JNK1 inhibitory protein, JIP1, dramatically attenuated the progression of dystrophic myofiber destruction. Taken together, these results suggest that a JNK1-mediated signal cascade is a conserved feature of dystrophic muscle and contributes to the progression of the disease pathogenesis.  相似文献   

15.
Analysis of fibronectin expression during human muscle differentiation   总被引:4,自引:0,他引:4  
Fibronectin expression during human muscle differentiation was investigated by determining its distribution in foetal, normal adult and dystrophic muscle and in foetal, normal adult and dystrophic muscle cultures during myogenesis. Muscle sections and muscle cultures were studied by indirect immunofluorescence staining using polyclonal and monoclonal anti-human antibodies. Mass and clonal muscle cultures were prepared from foetal, adult and dystrophic muscle tissue. Immunofluorescence staining detected fibronectin on the epimysium, perimysium and endomysium of transverse sections of normal adult muscle, while sarcoplasm was devoid of this glycoprotein. In foetal muscle, some fibers showed a prominent ring of fibronectin. In mass and clonal cultures, myoblasts were found to synthesize and accumulate fibronectin while myotubes did not. No difference in fibronectin distribution was observed between Duchenne Muscular Dystrophy (DMD) and control myotubes. An enzyme-linked immunoassay (ELISA), performed on homogenated muscle, sonicated fibroblasts and muscle cells, showed a high fibronectin level in fibroblasts when compared with the other samples tested.  相似文献   

16.
17.
Dystrophin, a component of the muscle membrane cytoskeleton, is the protein altered in Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). Dystrophin shares significant homology with other cytoskeletal proteins, such as α-actinin and spectrin. On the basis of its sequence similarity with α-actinin and spectrin, dystrophin has been proposed to function as dimer. However, the existence of both dimers and monomers have been observed by electron microscopy. To address this apparent discrepancy, we expressed dystrophin fragments composed of different domains in an in vitro translation system. The expressed fragments were tested for their ability to interact with each other and full-length dystrophin by both immunoprecipitation and blot overlay assays. These assays were successfully used to demonstrate the dimerization of α-actinin and spectrin, yet failed to detect any interaction between dystrophin fragments. Although these in vitro results do not prove that dystrophin is not a dimer in vivo, they do indicate that this interaction is not like that of the α-actinin and spectrin.  相似文献   

18.
The GRMD (Golden retriever muscular dystrophy) dog has been widely used in pre-clinical trials targeting DMD (Duchenne muscular dystrophy), using in many cases a concurrent immune-suppressive treatment. The aim of this study is to assess if such a treatment could have an effect on the disease course of these animals. Seven GRMD dogs were treated with an association of cyclosporine A (immunosuppressive dosage) and prednisolone (2 mg/kg/d) during 7 months, from 2 to 9 months of age. A multi-parametric evaluation was performed during this period which allowed us to demonstrate that this treatment had several significant effects on the disease progression. The gait quality as assessed by 3D-accelerometry was dramatically improved. This was consistent with the evolution of other parameters towards a significant improvement, such as the clinical motor score, the post-tetanic relaxation and the serum CK levels. In contrast the isometric force measurement as well as the histological evaluation argued in favor of a more severe disease progression. In view of the disease modifying effects which have been observed in this study it should be concluded that immunosuppressive treatments should be used with caution when carrying out pre-clinical studies in this canine model of DMD. They also highlight the importance of using a large range of multi-parametric evaluation tools to reliably draw any conclusion from trials involving dystrophin-deficient dogs, which reproduce the complexity of the human disease.  相似文献   

19.
Duchenne muscular dystrophy (DMD) is a severe and the most prevalent form of muscular dystrophy, characterized by rapid progression of muscle degeneration. Antisense-mediated exon skipping is currently one of the most promising therapeutic options for DMD. However, unmodified antisense oligos such as morpholinos require frequent (weekly or bi-weekly) injections. Recently, new generation morpholinos such as vivo-morpholinos are reported to lead to extensive and prolonged dystrophin expression in the dystrophic mdx mouse, an animal model of DMD. The vivo-morpholino contains a cell-penetrating moiety, octa-guanidine dendrimer. Here, we sought to test the efficacy of multiple exon skipping of exons 6-8 with vivo-morpholinos in the canine X-linked muscular dystrophy, which harbors a splice site mutation at the boundary of intron 6 and exon 7. We designed and optimized novel antisense cocktail sequences and combinations for exon 8 skipping and demonstrated effective exon skipping in dystrophic dogs in vivo. Intramuscular injections with newly designed cocktail oligos led to high levels of dystrophin expression, with some samples similar to wild-type levels. This is the first report of successful rescue of dystrophin expression with morpholino conjugates in dystrophic dogs. Our results show the potential of phosphorodiamidate morpholino oligomer conjugates as therapeutic agents for DMD.  相似文献   

20.
The amino acid taurine is essential for the function of skeletal muscle and administration is proposed as a treatment for Duchenne Muscular Dystrophy (DMD). Taurine homeostasis is dependent on multiple processes including absorption of taurine from food, endogenous synthesis from cysteine and reabsorption in the kidney. This study investigates the cause of reported taurine deficiency in the dystrophic mdx mouse model of DMD. Levels of metabolites (taurine, cysteine, cysteine sulfinate and hypotaurine) and proteins (taurine transporter [TauT], cysteine deoxygenase and cysteine sulfinate dehydrogenase) were quantified in juvenile control C57 and dystrophic mdx mice aged 18 days, 4 and 6 weeks. In C57 mice, taurine content was much higher in both liver and plasma at 18 days, and both cysteine and cysteine deoxygenase were increased. As taurine levels decreased in maturing C57 mice, there was increased transport (reabsorption) of taurine in the kidney and muscle. In mdx mice, taurine and cysteine levels were much lower in liver and plasma at 18 days, and in muscle cysteine was low at 18 days, whereas taurine was lower at 4: these changes were associated with perturbations in taurine transport in liver, kidney and muscle and altered metabolism in liver and kidney. These data suggest that the maintenance of adequate body taurine relies on sufficient dietary intake of taurine and cysteine availability and metabolism, as well as retention of taurine by the kidney. This research indicates dystrophin deficiency not only perturbs taurine metabolism in the muscle but also affects taurine metabolism in the liver and kidney, and supports targeting cysteine and taurine deficiency as a potential therapy for DMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号