首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

D-Serine, an endogenous co-agonist of the N-methyl-D-aspartate (NMDA) receptor, is synthesized from L-serine by serine racemase (SRR). Given the role of D-serine in both neurodevelopment and the pathophysiology of schizophrenia, we examined whether neonatal disruption of D-serine synthesis by SRR inhibition could induce behavioral abnormalities relevant to schizophrenia, in later life.

Methodology/Principal Findings

Neonatal mice (7–9 days) were injected with vehicle or phenazine methosulfate (Met-Phen: 3 mg/kg/day), an SRR inhibitor. Behavioral evaluations, such as spontaneous locomotion, novel object recognition test (NORT), and prepulse inhibition (PPI) were performed at juvenile (5–6 weeks old) and adult (10–12 weeks old) stages. In addition, we tested the effects of D-serine on PPI deficits in adult mice after neonatal Met-Phen exposure. Finally, we assessed whether D-serine could prevent the onset of schizophrenia-like behavior in these mice. Neonatal Met-Phen treatment reduced D-serine levels in the brain, 24 hours after the final dose. Additionally, this treatment caused behavioral abnormalities relevant to prodromal symptoms in juveniles and to schizophrenia in adults. A single dose of D-serine improved PPI deficits in adult mice. Interestingly, chronic administration of D-serine (900 mg/kg/day from P35 to P70) significantly prevented the onset of PPI deficits after neonatal Met-Phen exposure.

Conclusions/Significance

This study shows that disruption of D-serine synthesis during developmental stages leads to behavioral abnormalities relevant to prodromal symptoms and schizophrenia, in later life. Furthermore, early pharmacological intervention with D-serine may prevent the onset of psychosis in adult.  相似文献   

2.
3.

Objectives

Maternal infection during pregnancy increases risk of severe neuropsychiatric disorders, including schizophrenia and autism, in the offspring. The most consistent brain structural abnormality in patients with schizophrenia is enlarged lateral ventricles. However, it is unknown whether the aetiology of ventriculomegaly in schizophrenia involves prenatal infectious processes. The present experiments tested the hypothesis that there is a causal relationship between prenatal immune challenge and emergence of ventricular abnormalities relevant to schizophrenia in adulthood.

Method

We used an established mouse model of maternal immune activation (MIA) by the viral mimic PolyI:C administered in early (day 9) or late (day 17) gestation. Automated voxel-based morphometry mapped cerebrospinal fluid across the whole brain of adult offspring and the results were validated by manual region-of-interest tracing of the lateral ventricles. Parallel behavioral testing determined the existence of schizophrenia-related sensorimotor gating abnormalities.

Results

PolyI:C-induced immune activation, in early but not late gestation, caused marked enlargement of lateral ventricles in adulthood, without affecting total white and grey matter volumes. This early exposure disrupted sensorimotor gating, in the form of prepulse inhibition. Identical immune challenge in late gestation resulted in significant expansion of 4th ventricle volume but did not disrupt sensorimotor gating.

Conclusions

Our results provide the first experimental evidence that prenatal immune activation is an environmental risk factor for adult ventricular enlargement relevant to schizophrenia. The data indicate immune-associated environmental insults targeting early foetal development may have more extensive neurodevelopmental impact than identical insults in late prenatal life.  相似文献   

4.

Background

About 30% of people on Earth have latent toxoplasmosis. Infected subjects do not express any clinical symptoms, however, they carry dormant stages of parasite Toxoplasma for the rest of their life. This form of toxoplasmosis is mostly considered harmless, however, recent studies showed its specific effects on physiology, behaviour and its associations with various diseases, including psychiatric disorders such as schizophrenia. Individuals who suffer from schizophrenia have about 2.7 times higher prevalence of Toxoplasma-seropositivity than controls, which suggests that some traits characteristic of schizophrenic patients, including the sex difference in schizophrenia onset, decrease of grey matter density in specific brain areas and modification of prepulse inhibition of startle reaction could in fact be caused by toxoplasmosis for those patients who are Toxoplasma-seropositive.

Methodology/Principal Findings

We measured the effect of prepulse inhibition/facilitation of the startle reaction on reaction times. The students, 170 women and 66 men, were asked to react as quickly as possible to a startling acoustic signal by pressing a computer mouse button. Some of the startling signals were without the prepulse, some were 20 msec. preceded by a short (20 msec.) prepulse signal of lower intensity. Toxoplasma-seropositive subjects had longer reaction times than the controls. Acoustic prepulse shorted the reaction times in all subjects. This effect of prepulse on reaction times was stronger in male subjects and increased with the duration of infection, suggesting that it represented a cumulative effect of latent toxoplasmosis, rather than a fading out after effect of past acute toxoplasmosis.

Conclusions

Different sensitivity of Toxoplasma-seropositive and Toxoplasma-seronegative subjects on effect of prepulses on reaction times (the toxoplasmosis-prepulse interaction) suggested, but of course did not prove, that the alternations of prepulse inhibition of startle reaction observed in schizophrenia patients probably joined the list of schizophrenia symptoms that are in fact caused by latent toxoplasmosis.  相似文献   

5.
Das S  Dutta K  Kumawat KL  Ghoshal A  Adhya D  Basu A 《PloS one》2011,6(3):e17225

Background

Japanese encephalitis virus (JEV) induces neuroinflammation with typical features of viral encephalitis, including inflammatory cell infiltration, activation of microglia, and neuronal degeneration. The detrimental effects of inflammation on neurogenesis have been reported in various models of acute and chronic inflammation. We investigated whether JEV-induced inflammation has similar adverse effects on neurogenesis and whether those effects can be reversed using an anti-inflammatory compound minocycline.

Methodology/Principal Findings

Here, using in vitro studies and mouse models, we observed that an acute inflammatory milieu is created in the subventricular neurogenic niche following Japanese encephalitis (JE) and a resultant impairment in neurogenesis occurs, which can be reversed with minocycline treatment. Immunohistological studies showed that proliferating cells were replenished and the population of migrating neuroblasts was restored in the niche following minocycline treatment. In vitro, we checked for the efficacy of minocycline as an anti-inflammatory compound and cytokine bead array showed that production of cyto/chemokines decreased in JEV-activated BV2 cells. Furthermore, mouse neurospheres grown in the conditioned media from JEV-activated microglia exhibit arrest in both proliferation and differentiation of the spheres compared to conditioned media from control microglia. These effects were completely reversed when conditioned media from JEV-activated and minocycline treated microglia was used.

Conclusion/Significance

This study provides conclusive evidence that JEV-activated microglia and the resultant inflammatory molecules are anti-proliferative and anti-neurogenic for NSPCs growth and development, and therefore contribute to the viral neuropathogenesis. The role of minocycline in restoring neurogenesis may implicate enhanced neuronal repair and attenuation of the neuropsychiatric sequelae in JE survivors.  相似文献   

6.

Background

Microglia, one of the glial cells, play important roles in various brain pathologies including psychiatric disorders. In addition, microglia have recently been proved to monitor synaptic reactions via direct-touching even in normal brain. Human microglia may modulate various social/mental functions, while microglial social/mental roles remain unresolved especially in healthy humans. There is no known drug with the specific effect of modulating microglia. Therefore, using minocycline, a tetracycline antibiotic and the most famous microglial inhibitor, is one of the best alternative approaches to clarify microglial functions on human social/mental activities.

Methodology/Principal Findings

We conducted a double-blind randomized trial of trust game, a monetary decision-making experiment, with ninety-nine human adult males who decided how much to trust an anonymous partner after a four-day administration of minocycline. Our previous pilot trial indicated a positive effect of minocycline, while the underlying mechanisms were not clarified. Therefore, in this trial with larger samples, we additionally measured the effects of anxiety and personality. The monetary score in trust game was significantly lower in the minocycline group. Interestingly, participants’ ways of decision-making were significantly shifted; cooperativeness, one component of personality, proved to be the main modulating factor of decision-making in the placebo group, on the other hand, the minocycline group was mainly modulated by state anxiety and trustworthiness.

Conclusions/Significance

Our results suggest that minocycline led to more situation-oriented decision-making, possibly by suppressing the effects of personality traits, and furthermore that personality and social behaviors might be modulated by microglia. Early-life events may activate human microglia, establish a certain neuro-synaptic connection, and this formation may determine each human’s personality and personality- oriented social behaviors in later life. To explore these mechanisms, further translational research is needed.

Trial Registration

UMIN clinical trial center UMIN000004803  相似文献   

7.

Background

A recent modeling study by the authors predicted that contextual information is poorly integrated into episodic representations in schizophrenia, and that this is a main cause of the retrieval deficits seen in schizophrenia.

Methodology/Principal Findings

We have tested this prediction in patients with first-episode schizophrenia and matched controls. The benefit from contextual cues in retrieval was strongly reduced in patients. On the other hand, retrieval based on item cues was spared.

Conclusions/Significance

These results suggest that reduced integration of context information into episodic representations is a core deficit in schizophrenia and one of the main causes of episodic memory impairment.  相似文献   

8.

Background

Prepulse inhibition (PPI) depicts the effects of a weak sound preceding strong acoustic stimulus on acoustic startle response (ASR). Previous studies suggest that PPI is influenced by physical parameters of prepulse sound such as intensity and preceding time. The present study characterizes the impact of prepulse tone frequency on PPI.

Methods

Seven female C57BL mice were used in the present study. ASR was induced by a 100 dB SPL white noise burst. After assessing the effect of background sounds (white noise and pure tones) on ASR, PPI was tested by using prepulse pure tones with the background tone of either 10 or 18 kHz. The inhibitory effect was assessed by measuring and analyzing the changes in the first peak-to-peak magnitude, root mean square value, duration and latency of the ASR as the function of frequency difference between prepulse and background tones.

Results

Our data showed that ASR magnitude with pure tone background varied with tone frequency and was smaller than that with white noise background. Prepulse tone systematically reduced ASR as the function of the difference in frequency between prepulse and background tone. The 0.5 kHz difference appeared to be a prerequisite for inducing substantial ASR inhibition. The frequency dependence of PPI was similar under either a 10 or 18 kHz background tone.

Conclusion

PPI is sensitive to frequency information of the prepulse sound. However, the critical factor is not tone frequency itself, but the frequency difference between the prepulse and background tones.  相似文献   

9.

Background

Minocycline, a second-generation tetracycline antibiotic, exhibits anti-inflammatory and neuroprotective effects in various experimental models of neurological diseases, such as stroke, Alzheimer’s disease, amyotrophic lateral sclerosis and spinal cord injury. However, conflicting results have prompted a debate regarding the beneficial effects of minocycline.

Methods

In this study, we analyzed minocycline treatment in organotypic spinal cord cultures of neonatal rats as a model of motor neuron survival and regeneration after injury. Minocycline was administered in 2 different concentrations (10 and 100 µM) at various time points in culture and fixed after 1 week.

Results

Prolonged minocycline administration decreased the survival of motor neurons in the organotypic cultures. This effect was strongly enhanced with higher concentrations of minocycline. High concentrations of minocycline reduced the number of DAPI-positive cell nuclei in organotypic cultures and simultaneously inhibited microglial activation. Astrocytes, which covered the surface of the control organotypic cultures, revealed a peripheral distribution after early minocycline treatment. Thus, we further analyzed the effects of 100 µM minocycline on the viability and migration ability of dispersed primary glial cell cultures. We found that minocycline reduced cell viability, delayed wound closure in a scratch migration assay and increased connexin 43 protein levels in these cultures.

Conclusions

The administration of high doses of minocycline was deleterious for motor neuron survival. In addition, it inhibited microglial activation and impaired glial viability and migration. These data suggest that especially high doses of minocycline might have undesired affects in treatment of spinal cord injury. Further experiments are required to determine the conditions for the safe clinical administration of minocycline in spinal cord injured patients.  相似文献   

10.

Background

The R6/1 mouse line is one of the most widely employed models of Huntington Disease (HD), a complex syndrome characterized by motor and non-motor deficits. Surprisingly, its behavioral phenotype during the early phases of the pathology when the motor impairments are not manifest yet has been poorly investigated. It is also not clear whether the expression of HD-like symptoms at the pre-motor stage in this mouse model differs between the two sexes.

Methods

Male and female 12 weeks-old R6/1 mice and their wild-type littermates were tested on a battery of tests modeling some of the major neuropsychiatric non-motor symptoms of HD: alterations in social interest, social interaction and communication, as well as disturbances in prepulse inhibition of the acoustic startle response (PPI) and circadian patterns of activity. The lack of motor symptoms was confirmed during the entire experimental period by means of the tail test for clasping.

Results

R6/1 mice displayed marked alterations in all social behaviors which were mainly observed in males. Male R6/1 animals were also the only ones showing reduced body weight. Both male and female transgenic mice displayed mild alterations in the circadian activity patterns, but no deficits in PPI.

Conclusions

These results demonstrate the validity of the R6/1 mouse in mimicking selected neuropsychiatric symptoms of HD, the social deficits being the clearest markers of the pre-motor phase of the pathology. Furthermore, our data suggest that male R6/1 mice are more suitable for future studies on the early stages of HD.  相似文献   

11.

Objective

In the present study the relationship between behavioural adjustment following cognitive conflict and schizotypy was investigated using a Stroop colour naming paradigm. Previous research has found deficits with behavioural adjustment in schizophrenia patients. Based on these findings, we hypothesized that individual differences in schizotypy, a personality trait reflecting the subclinical expression of the schizophrenia phenotype, would be associated with behavioural adjustment. Additionally, we investigated whether such a relationship would be explained by individual differences in neuroticism, a non-specific measure of negative trait emotionality known to be correlated with schizotypy.

Methods

106 healthy volunteers (mean age: 25.1, 60% females) took part. Post-conflict adjustment was measured in a computer-based version of the Stroop paradigm. Schizotypy was assessed using the Schizotypal Personality Questionnaire (SPQ) and Neuroticism using the NEO-FFI.

Results

We found a negative correlation between schizotypy and post-conflict adjustment (r = −.30, p<.01); this relationship remained significant when controlling for effects of neuroticism. Regression analysis revealed that particularly the subscale No Close Friends drove the effect.

Conclusion

Previous findings of deficits in cognitive control in schizophrenia patients were extended to the subclinical personality expression of the schizophrenia phenotype and found to be specific to schizotypal traits over and above the effects of negative emotionality.  相似文献   

12.
Kim J  Park S  Blake R 《PloS one》2011,6(5):e19971

Background

Anomalous visual perception is a common feature of schizophrenia plausibly associated with impaired social cognition that, in turn, could affect social behavior. Past research suggests impairment in biological motion perception in schizophrenia. Behavioral and functional magnetic resonance imaging (fMRI) experiments were conducted to verify the existence of this impairment, to clarify its perceptual basis, and to identify accompanying neural concomitants of those deficits.

Methodology/Findings

In Experiment 1, we measured ability to detect biological motion portrayed by point-light animations embedded within masking noise. Experiment 2 measured discrimination accuracy for pairs of point-light biological motion sequences differing in the degree of perturbation of the kinematics portrayed in those sequences. Experiment 3 measured BOLD signals using event-related fMRI during a biological motion categorization task.Compared to healthy individuals, schizophrenia patients performed significantly worse on both the detection (Experiment 1) and discrimination (Experiment 2) tasks. Consistent with the behavioral results, the fMRI study revealed that healthy individuals exhibited strong activation to biological motion, but not to scrambled motion in the posterior portion of the superior temporal sulcus (STSp). Interestingly, strong STSp activation was also observed for scrambled or partially scrambled motion when the healthy participants perceived it as normal biological motion. On the other hand, STSp activation in schizophrenia patients was not selective to biological or scrambled motion.

Conclusion

Schizophrenia is accompanied by difficulties discriminating biological from non-biological motion, and associated with those difficulties are altered patterns of neural responses within brain area STSp. The perceptual deficits exhibited by schizophrenia patients may be an exaggerated manifestation of neural events within STSp associated with perceptual errors made by healthy observers on these same tasks. The present findings fit within the context of theories of delusion involving perceptual and cognitive processes.  相似文献   

13.
Wang K  Cheung EF  Gong QY  Chan RC 《PloS one》2011,6(10):e25435

Background

Theoretically semantic processing can be separated into early automatic semantic activation and late contextualization. Semantic processing deficits have been suggested in patients with schizophrenia, however it is not clear which stage of semantic processing is impaired. We attempted to clarify this issue by conducting a meta-analysis of the N400 component.

Methods

Twenty-one studies met the inclusion criteria for the meta-analysis procedure. The Comprehensive Meta-Analysis software package was used to compute pooled effect sizes and homogeneity.

Results

Studies favoring early automatic activation produced a significant effect size of −0.41 for the N400 effect. Studies favoring late contextualization generated a significant effect size of −0.36 for the N400 effect, a significant effect size of −0.52 for N400 for congruent/related target words, and a significant effect size of 0.82 for the N400 peak latency.

Conclusion

These findings suggest the automatic spreading activation process in patients with schizophrenia is very similar for closely related concepts and weakly or remotely related concepts, while late contextualization may be associated with impairments in processing semantically congruent context accompanied by slow processing speed.  相似文献   

14.

Background

Sandhoff disease (SD) is a neurodegenerative lysosomal β-hexosaminidase (Hex) deficiency involving excessive accumulation of undegraded substrates, including terminal GlcNAc-oligosaccharides and GM2 ganglioside. Microglia-mediated neuroinflammation contributes to the pathogenesis and progression of SD. Our previous study demonstrated that MIP-1α, a putative pathogenic factor for SD, is up-regulated in microglial cells derived from SD model mice (SD-Mg) through activation of Akt and JNK.

Methodology/Principal Findings

In this study, we first demonstrated that prostaglandin E2 (PGE2), which is one of the lipid mediators derived from arachidonic acid and is known to suppress activation of microglia, reduced the aberrant MIP-1α production by SD-Mg to the same level as by WT-Mg. PGE2 also attenuated the activation of Akt and JNK. The inhibition of MIP-1α production and the activation of Akt and JNK occurred through the EP2 and 4/cAMP/PKA signaling pathway in the murine microglia derived from SD model mice.

Conclusions/Significance

We propose that PGE2 plays a role as a negative regulator of MIP-1α production in the pathogenesis of SD, and that PGE2-EP2 and 4/cAMP/PKA signaling could be a target pathway for therapy for SD.  相似文献   

15.
Suh HS  Choi N  Tarassishin L  Lee SC 《PloS one》2012,7(4):e35115

Background

The essential role of progranulin (PGRN) as a neurotrophic factor has been demonstrated by the discovery that haploinsufficiency due to GRN gene mutations causes frontotemporal lobar dementia. In addition to neurons, microglia in vivo express PGRN, but little is known about the regulation of PGRN expression by microglia.

Goal

In the current study, we examined the regulation of expression and function of PGRN, its proteolytic enzyme macrophage elastase (MMP-12), as well as the inhibitor of PGRN proteolysis, secretory leukocyte protease inhibitor (SLPI), in human CNS cells.

Methods

Cultures of primary human microglia and astrocytes were stimulated with the TLR ligands (LPS or poly IC), Th1 cytokines (IL-1/IFNγ), or Th2 cytokines (IL-4, IL-13). Results were analyzed by Q-PCR, immunoblotting or ELISA. The roles of MMP-12 and SLPI in PGRN cleavage were also examined.

Results

Unstimulated microglia produced nanogram levels of PGRN, and PGRN release from microglia was suppressed by the TLR ligands or IL-1/IFNγ, but increased by IL-4 or IL-13. Unexpectedly, while astrocytes stimulated with proinflammatory factors released large amounts of SLPI, none were detected in microglial cultures. We also identified MMP-12 as a PGRN proteolytic enzyme, and SLPI as an inhibitor of MMP-12-induced PGRN proteolysis. Experiments employing PGRN siRNA demonstrated that microglial PGRN was involved in the cytokine and chemokine production following TLR3/4 activation, with its effect on TNFα being the most conspicuous.

Conclusions

Our study is the first detailed examination of PGRN in human microglia. Our results establish microglia as a significant source of PGRN, and MMP-12 and SLPI as modulators of PGRN proteolysis. Negative and positive regulation of microglial PGRN release by the proinflammatory/Th1 and the Th2 stimuli, respectively, suggests a fundamentally different aspect of PGRN regulation compared to other known microglial activation products. Microglial PGRN appears to function as an endogenous modulator of innate immune responses.  相似文献   

16.

Background

A large body of evidence suggests impaired context processing in schizophrenia. Here we propose that this impairment arises from defective integration of mediotemporal ‘what’ and ‘where’ routes, carrying object and spatial information to the hippocampus.

Methodology and Findings

We have previously shown, in a mediotemporal lobe (MTL) model, that the abnormal connectivity between MTL regions observed in schizophrenia can explain the episodic memory deficits associated with the disorder. Here we show that the same neuropathology leads to several context processing deficits observed in patients with schizophrenia: 1) failure to choose subordinate stimuli over dominant ones when the former fit the context, 2) decreased contextual constraints in memory retrieval, as reflected in increased false alarm rates and 3) impaired retrieval of contextual information in source monitoring. Model analyses show that these deficits occur because the ‘schizophrenic MTL’ forms fragmented episodic representations, in which objects are overrepresented at the expense of spatial contextual information.

Conclusions and Significance

These findings highlight the importance of MTL neuropathology in schizophrenia, demonstrating that it may underlie a broad spectrum of deficits, including context processing and memory impairments. It is argued that these processing deficits may contribute to central schizophrenia symptoms such as contextually inappropriate behavior, associative abnormalities, conversational drift, concreteness and delusions.  相似文献   

17.

Background

Epidemiological studies suggest that radiation exposure may be a potential risk factor for schizophrenia in adult humans. Here, we investigated whether adult irradiation in rats caused behavioral abnormalities relevant to schizophrenia.

Methodology/Principal Findings

A total dose of 15-Gy irradiation in six fractionations during 3 weeks was exposed to the forebrain including the subventricular zone (SVZ) and subgranular zone (SGZ) with male rats in the prone position. Behavioral, immunohistochemical, and neurochemical studies were performed three months after fractionated ionizing irradiation. Three months after fractionated ionizing irradiation, the total numbers of BrdU-positive cells in both the SVZ and SGZ zones of irradiated rats were significantly lower than those of control (sham-irradiated) rats. Hyperactivity after administration of the dopaminergic agonist methamphetamine, but not the N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine, was significantly enhanced in the irradiated rats although spontaneous locomotion in the irradiated rats was significantly lower than that of controls. Behavioral abnormalities including auditory sensory gating deficits, social interaction deficits, and working memory deficits were observed in the irradiated rats.

Conclusion/Significance

The present study suggests that irradiation in adulthood caused behavioral abnormalities relevant to schizophrenia, and that reduction of adult neurogenesis by irradiation may be associated with schizophrenia-like behaviors in rats.  相似文献   

18.

Background

The Mismatch Negativity (MMN) is an event-related potential (ERP) sensitive to early auditory deviance detection and has been shown to be reduced in schizophrenia patients. Moreover, MMN amplitude reduction to duration deviant tones was found to be related to functional outcomes particularly, to neuropsychological (working memory and verbal domains) and psychosocial measures. While MMN amplitude is thought to be correlated with deficits of early sensory processing, the functional significance of MMN latency remains unclear so far. The present study focused on the investigation of MMN in relation to neuropsychological function in schizophrenia.

Method

Forty schizophrenia patients and 16 healthy controls underwent a passive oddball paradigm (2400 binaural tones; 88% standards [1 kHz, 80 db, 80 ms], 11% frequency deviants [1.2 kHz], 11% duration deviants [40 ms]) and a neuropsychological test-battery. Patients were assessed with regard to clinical symptoms.

Results

Compared to healthy controls schizophrenia patients showed diminished MMN amplitude and shorter MMN latency to both deviants as well as an impaired neuropsychological test performance. Severity of positive symptoms was related to decreased MMN amplitude to duration deviants. Furthermore, enhanced verbal memory performance was associated with prolonged MMN latency to frequency deviants in patients.

Conclusion

The present study corroborates previous results of a diminished MMN amplitude and its association with positive symptoms in schizophrenia patients. Both, the findings of a shorter latency to duration and frequency deviants and the relationship of the latter with verbal memory in patients, emphasize the relevance of the temporal aspect of early auditory discrimination processing in schizophrenia.  相似文献   

19.

Context

Impaired social cognition is a cardinal feature of Autism Spectrum Disorders (ASD) and Schizophrenia (SZ). However, the functional neuroanatomy of social cognition in either disorder remains unclear due to variability in primary literature. Additionally, it is not known whether deficits in ASD and SZ arise from similar or disease-specific disruption of the social cognition network.

Objective

To identify regions most robustly implicated in social cognition processing in SZ and ASD.

Data Sources

Systematic review of English language articles using MEDLINE (1995–2010) and reference lists.

Study Selection

Studies were required to use fMRI to compare ASD or SZ subjects to a matched healthy control group, provide coordinates in standard stereotactic space, and employ standardized facial emotion recognition (FER) or theory of mind (TOM) paradigms.

Data Extraction

Activation foci from studies meeting inclusion criteria (n = 33) were subjected to a quantitative voxel-based meta-analysis using activation likelihood estimation, and encompassed 146 subjects with ASD, 336 SZ patients and 492 healthy controls.

Results

Both SZ and ASD showed medial prefrontal hypoactivation, which was more pronounced in ASD, while ventrolateral prefrontal dysfunction was associated mostly with SZ. Amygdala hypoactivation was observed in SZ patients during FER and in ASD during more complex ToM tasks. Both disorders were associated with hypoactivation within the Superior Temporal Sulcus (STS) during ToM tasks, but activation in these regions was increased in ASD during affect processing. Disease-specific differences were noted in somatosensory engagement, which was increased in SZ and decreased in ASD. Reduced thalamic activation was uniquely seen in SZ.

Conclusions

Reduced frontolimbic and STS engagement emerged as a shared feature of social cognition deficits in SZ and ASD. However, there were disease- and stimulus-specific differences. These findings may aid future studies on SZ and ASD and facilitate the formulation of new hypotheses regarding their pathophysiology.  相似文献   

20.

Background

It has been suggested that working memory deficits is a core feature of symptomatology of schizophrenia, which can be detected in patients and their unaffected relatives. The impairment of working memory has been found related to the abnormal activity of human brain regions in many functional magnetic resonance imaging (fMRI) studies. This study investigated how brain region activation was altered in schizophrenia and how it was inherited independently from performance deficits.

Method

The authors used fMRI method during N-back task to assess working memory related cortical activation in four groups (N = 20 in each group, matching task performance, age, gender and education): schizophrenic patients, their unaffected biological parents, young healthy controls for the patients and older healthy controls for their parents.

Results

Compared to healthy controls, patients showed an exaggerated response in the right dorsolateral prefrontal cortex (brodmann area [BA] 46) and bilateral ventrolateral prefrontal cortex, and had reduced activation in bilateral dorsolateral prefrontal cortex (BA 9). In the conjunction analysis, the effect of genetic risk (parents versus older control) shared significantly overlapped activation with effect of disease (patients versus young control) in the right middle frontal gyrus (BA 46) and left inferior parietal gyrus (BA 40).

Conclusions

Physiological inefficiency of dorsal prefrontal cortex and compensation involvement of ventral prefrontal cortex in working memory function may one physiological characteristics of schizophrenia. And relatively inefficient activation in dorsolateral prefrontal cortex probably can be a promising intermediate phenotype for schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号