首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The red junglefowl Gallus gallus is the ancestor of the domestic chicken and arguably the most important bird species on Earth. Continual gene flow between domestic and wild populations has compromised its gene pool, especially since the last century when human encroachment and habitat loss would have led to increased contact opportunities. We present the first combined genomic and morphological admixture assessment of a native population of red junglefowl, sampled from recolonized parts of its former range in Singapore, partly using whole genomes resequenced from dozens of individuals. Crucially, this population was genomically anchored to museum samples from adjacent Peninsular Malaysia collected ~110–150 years ago to infer the magnitude of modern domestic introgression across individuals. We detected a strong feral–wild genomic continuum with varying levels of domestic introgression in different subpopulations across Singapore. Using a trait scoring scheme, we determined morphological thresholds that can be used by conservation managers to successfully identify individuals with low levels of domestic introgression, and selected traits that were particularly useful for predicting domesticity in genomic profiles. Our study underscores the utility of combined genomic and morphological approaches in population management and suggests a way forward to safeguard the allelic integrity of wild red junglefowl in perpetuity.  相似文献   

2.
    
The origins of the four major geographical groups recognized as Australomelanesians, Micronesians, Polynesians, and East and Southeast Asians are still far from obvious. The earliest arrivals in Sahulland may have migrated from Sundaland about 40,000-50,000 years B.P. and begun the Australomelanesian lineage. The aboriginal populations in Southeast Asia may have originated in the tropical rain forest of Sundaland, and their direct descendants may be the modern Dayaks of Borneo and Negritos of Luzon. These populations, the so-called \"Proto-Malays,\" are possible representatives of the lineage leading to not only modern Southeast Asians, but also the Neolithic Jomon populations in Japan. The present study suggests, moreover, that the Polynesians and western Micronesians have closer affinities with modern Southeast Asians than with Melanesians or Jomonese.  相似文献   

3.
    
Hybridization and admixture can threaten the genetic integrity of populations and be of particular concern to endangered species. Hybridization between grey wolves and dogs has been documented in many wolf populations worldwide and is a prominent example of human-mediated hybridization between a domesticated species and its wild relative. We analysed whole-genome sequences from >200 wolves and >100 dogs to study admixture in Fennoscandian wolf populations. A principal component analysis of genetic variation and Admixture showed that wolves and dogs were well-separated, without evidence for introgression. Analyses of local ancestry revealed that wolves had <1% mixed ancestry, levels comparable to the degree of mixed ancestry in many dogs, and likely not resulting from recent wolf–dog hybridization. We also show that the founders of the Scandinavian wolf population were genetically inseparable from Finnish and Russian Karelian wolves, pointing at the geographical origin of contemporary Scandinavian wolves. Moreover, we found Scandinavian-born animals among wolves sampled in Finland, demonstrating bidirectional gene flow between the Scandinavian Peninsula and eastern countries. The low incidence of admixture between wolves and dogs in Fennoscandia may be explained by the fact that feral dogs are rare in this part of Europe and that careful monitoring and management act to remove hybrids before they backcross into wolf populations.  相似文献   

4.
Neanderthals represent an extinct hominid lineage that existed in Europe and Asia for nearly 400,000 years. They thrived in these regions for much of this time, but declined in numbers and went extinct around 30,000 years ago. Interestingly, their disappearance occurred subsequent to the arrival of modern humans into these areas, which has prompted some to argue that Neanderthals were displaced by better suited and more adaptable modern humans. Still others have postulated that Neanderthals were assimilated into the gene pool of modern humans by admixture. Until relatively recently, conclusions about the relationships between Neanderthals and contemporary humans were based solely upon evidence left behind in the fossil and archaeological records. However, in the last decade, we have witnessed the introduction of metagenomic analyses, which have provided novel tools with which to study the levels of genetic interactions between this fascinating Homo lineage and modern humans. Were Neanderthals replaced by contemporary humans through dramatic extinction resulting from competition and/or hostility or through admixture? Were Neanderthals and modern humans two independent, genetically unique species or were they a single species, capable of producing fertile offspring? Here, we review the current anthropological, archaeological and genetic data, which shed some light on these questions and provide insight into the exact nature of the relationships between these two groups of humans.  相似文献   

5.
    
Bombus baguionensis is found above about 1400 m on Mt Banahaw, Luzon, Philippines. Only two other social bees and very few solitary bees were observed at these elevations.

Around the end of the dry season, bumble bees were found foraging at seven species of flowering plants, of which three accounted for all but a very few visits. Behavioral observations and analysis of pollen loads show Melastoma polyanthum (Melastomataceae) as the almost exclusive pollen source. Hedyotis elmeri (Rubiaceae) appears to be the main nectar source, with Rubus rosaefolius (Rosaceae) inferred as a secondary nectar source.

Bees also drank human urine on fallen leaves, presumably as a source of salts.

The period of foraging activity on a northwest-facing slope was closely congruent with the period of daylight, about 05:30-18:00. Data from a nectar-plant patch and a predominantly pollen-plant patch are consistent with a gradual switch from pollenforaging to nectar-foraging throughout the day.  相似文献   

6.
    
The feasibility to sequence entire genomes of virtually any organism provides unprecedented insights into the evolutionary history of populations and species. Nevertheless, many population genomic inferences – including the quantification and dating of admixture, introgression and demographic events, and inference of selective sweeps – are still limited by the lack of high‐quality haplotype information. The newest generation of sequencing technology now promises significant progress. To establish the feasibility of haplotype‐resolved genome resequencing at population scale, we investigated properties of linked‐read sequencing data of songbirds of the genus Oenanthe across a range of sequencing depths. Our results based on the comparison of downsampled (25×, 20×, 15×, 10×, 7×, and 5×) with high‐coverage data (46–68×) of seven bird genomes mapped to a reference suggest that phasing contiguities and accuracies adequate for most population genomic analyses can be reached already with moderate sequencing effort. At 15× coverage, phased haplotypes span about 90% of the genome assembly, with 50% and 90% of phased sequences located in phase blocks longer than 1.25–4.6 Mb (N50) and 0.27–0.72 Mb (N90). Phasing accuracy reaches beyond 99% starting from 15× coverage. Higher coverages yielded higher contiguities (up to about 7 Mb/1 Mb [N50/N90] at 25× coverage), but only marginally improved phasing accuracy. Phase block contiguity improved with input DNA molecule length; thus, higher‐quality DNA may help keeping sequencing costs at bay. In conclusion, even for organisms with gigabase‐sized genomes like birds, linked‐read sequencing at moderate depth opens an affordable avenue towards haplotype‐resolved genome resequencing at population scale.  相似文献   

7.
苗林  罗述金 《生物多样性》2014,22(1):40-651
东南亚地区东起菲律宾群岛, 西至印度次大陆, 北及中国中部, 南至巽他群岛, 涵盖了世界上25个最重要的生物多样性热点地区之中的6个, 具有极其重要的全球生物多样性保护的战略意义。该地区复杂的地质地貌和气候历史使其动植物的种类和数量都极为丰富。经典的生物地理分界线华莱士线和克拉地峡将该地区进一步划分出包括部分巽他群岛和马来半岛在内的南部巽他区和北部印度支那区两个生物多样性热点地区。主要基于形态学的生物地理学研究认为巽他区和印度支那区通过马来半岛陆地相连, 并且第四纪大部分时间海平面下降形成大陆桥, 直到一万年前该地区的众多岛屿仍与大陆连接, 促进了哺乳动物的种群迁徙与基因交流, 因此物种种群间的差别将很细微。然而近来分子遗传学研究表明, 由于其他生态因素制约, 哺乳动物的迁移能力可能比以往认为的低, 大陆桥的存在并不一定导致迁徙的发生, 许多种群的隔离早在200万年前便已形成, 并且没有因为后来冰川期海平面降低而恢复种群交流, 而距今7.3万年前发生的苏门答腊多巴超级火山爆发也可能进一步影响了物种间和物种内多样性的形成和分化。通过已有的东南亚哺乳动物种群遗传学研究结果, 我们认为物种间或种群间的差异主要表现为三个层次: 巽他区种群与印度支那区种群间约百万年尺度的分化, 巽他区不同岛屿种群间约数十万年尺度的分化, 以及发生于晚更新世的分化事件。已有的东南亚种群遗传学研究主要采用线粒体及核基因多位点数据进行分析, 而种群基因组学分析则使得获得详尽的种群历史动态成为可能, 并使我们可以进一步了解东南亚哺乳动物类群所经历的物种形成过程。  相似文献   

8.
Roberts TE 《Molecular ecology》2006,15(8):2183-2199
The comparative phylogeography of widespread, codistributed species provides unique insights into regional biodiversity and diversification patterns. I used partial DNA sequences of the mitochondrial genes ND2 and cyt b to investigate phylogeographic structure in three widespread Philippine fruit bats. Ptenochirus jagori is endemic to the oceanic region of the Philippines and is most abundant in lowland primary forest. Macroglossus minimus and Cynopterus brachyotis are most common in disturbed and open habitats and are not endemic. In all three, genetic differentiation is present at multiple spatial scales and is associated to some degree with Pleistocene landbridge island groups. In P. jagori and C. brachyotis, genetic distance is correlated with geographic distance; in C. brachyotis and M. minimus, it is correlated with the sea-crossing distance between islands. P. jagori has the least overall genetic structure of these three species, whereas C. brachyotis and M. minimus have more geographic association among haplotypes, suggesting that phylogeographic patterns are linked to ecology and habitat preference. However, contrary to expectation, the two widespread, disturbed habitat species have more structure than the endemic species. Mismatch distributions suggest rapid changes in effective population size in C. brachyotis and P. jagori, whereas M. minimus appears to be demographically more stable. Geologic and geographic history are important in structuring variation, and phylogeographic patterns are the result of dynamic long-term processes rather than simply reflecting current conditions.  相似文献   

9.
    
Recent conceptual, technological and methodological advances in phylogenetics have enabled increasingly robust statistical species delimitation in studies of biodiversity. As the variety of evidence purporting species diversity has increased, so too have the kinds of tools and inferential power of methods for delimiting species. Here, we showcase an organismal system for a data‐rich, comparative molecular approach to evaluating strategies of species delimitation among monitor lizards of the genus Varanus. The water monitors (Varanus salvator Complex), a widespread group distributed throughout Southeast Asia and southern India, have been the subject of numerous taxonomic treatments, which have drawn recent attention due to the possibility of undocumented species diversity. To date, studies of this group have relied on purportedly diagnostic morphological characters, with no attention given to the genetic underpinnings of species diversity. Using a 5‐gene data set, we estimated phylogeny and used multilocus genetic networks, analysis of population structure and a Bayesian coalescent approach to infer species boundaries. Our results contradict previous systematic hypotheses, reveal surprising relationships between island and mainland lineages and uncover novel, cryptic evolutionary lineages (i.e. new putative species). Our study contributes to a growing body of literature suggesting that, used in concert with other sources of data (e.g. morphology, ecology, biogeography), multilocus genetic data can be highly informative to systematists and biodiversity specialists when attempting to estimate species diversity and identify conservation priorities. We recommend holding in abeyance taxonomic decisions until multiple, converging lines of evidence are available to best inform taxonomists, evolutionary biologists and conservationists.  相似文献   

10.
    
Thailand and Laos, located in the center of Mainland Southeast Asia (MSEA), harbor diverse ethnolinguistic groups encompassing all five language families of MSEA: Tai-Kadai (TK), Austroasiatic (AA), Sino-Tibetan (ST), Hmong-Mien (HM), and Austronesian (AN). Previous genetic studies of Thai/Lao populations have focused almost exclusively on uniparental markers and there is a paucity of genome-wide studies. We therefore generated genome-wide SNP data for 33 ethnolinguistic groups, belonging to the five MSEA language families from Thailand and Laos, and analyzed these together with data from modern Asian populations and SEA ancient samples. Overall, we find genetic structure according to language family, albeit with heterogeneity in the AA-, HM-, and ST-speaking groups, and in the hill tribes, that reflects both population interactions and genetic drift. For the TK speaking groups, we find localized genetic structure that is driven by different levels of interaction with other groups in the same geographic region. Several Thai groups exhibit admixture from South Asia, which we date to ∼600–1000 years ago, corresponding to a time of intensive international trade networks that had a major cultural impact on Thailand. An AN group from Southern Thailand shows both South Asian admixture as well as overall affinities with AA-speaking groups in the region, suggesting an impact of cultural diffusion. Overall, we provide the first detailed insights into the genetic profiles of Thai/Lao ethnolinguistic groups, which should be helpful for reconstructing human genetic history in MSEA and selecting populations for participation in ongoing whole genome sequence and biomedical studies.  相似文献   

11.
    
Island Southeast Asia (ISEA) and Oceania host one of the world’s richest assemblages of human phenotypic, linguistic, and cultural diversity. Despite this, the region’s male genetic lineages are globally among the last to remain unresolved. We compiled ∼9.7 Mb of Y chromosome (chrY) sequence from a diverse sample of over 380 men from this region, including 152 first reported here. The granularity of this data set allows us to fully resolve and date the regional chrY phylogeny. This new high-resolution tree confirms two main population bursts: multiple rapid diversifications following the region’s initial settlement ∼50 kya, and extensive expansions <6 kya. Notably, ∼40–25 kya the deep rooting local lineages of C-M130, M-P256, and S-B254 show almost no further branching events in ISEA, New Guinea, and Australia, matching a similar pause in diversification seen in maternal mitochondrial DNA lineages. The main local lineages start diversifying ∼25 kya, at the time of the last glacial maximum. This improved chrY topology highlights localized events with important historical implications, including pre-Holocene contact between Mainland and ISEA, potential interactions between Australia and the Papuan world, and a sustained period of diversification following the flooding of the ancient Sunda and Sahul continents as the insular landscape observed today formed. The high-resolution phylogeny of the chrY presented here thus enables a detailed exploration of past isolation, interaction, and change in one of the world’s least understood regions.  相似文献   

12.
    
Due to pervasive gene flow and admixture, simple bifurcating trees often do not provide an accurate representation of relationships among diverging lineages, but limited resolution in the available genomic data and the spatial distribution of samples has hindered detailed insights regarding the evolutionary and demographic history of many species and populations. In this issue of Molecular Ecology, Foote et al. (2019) combine a powerful sampling design with novel analytical methods adopted from human genetics to describe previously unrecognized patterns of recurrent vicariance and admixture among lineages in the globally distributed killer whale (Orcinus orca). Based on sequence data from modern samples alone, they discover clear signatures of ancient admixture with a now extinct “ghost” lineage, providing one of the first accounts of archaic introgression in a nonhominid species. Coupling a cost‐effective sequencing strategy with novel analytical approaches, their paper provides a roadmap for advancing inference of evolutionary history in other nonmodel species, promising exciting times ahead for our field.  相似文献   

13.
    
Speciation occurs when populations diverge and become reproductively isolated from each other. Natural selection is commonly accepted to play a large role in this process, and it has been widely assumed that reproductive isolation often results as a by‐product of divergence driven by adaptation in allopatry. When such populations come into secondary contact, reinforcement can act to strengthen reproductive isolation, but the frequency and importance of this process are still unknown. Here, we explored genomic signatures of selection in allopatry and sympatry for loci associated with reproductive isolation using a natural primate hybrid zone. By analysing reduced‐representation sequencing data, we quantified admixture and population structure across a howler monkey hybrid zone and examined the relationship between locus‐specific differentiation and introgression. We detected extensive admixture that was mostly limited to the narrow contact zone. Loci with reduced introgression into the heterospecific genomic background (the pattern expected for loci associated with reproductive isolation due to selection against hybrids) were significantly more differentiated between allopatric parental populations than loci with neutral and increased introgression, supporting the hypothesis that reproductive isolation is a by‐product of divergence in allopatry. Further, loci with reduced introgression showed greater differentiation in sympatry than in allopatry, suggesting a role for reinforcement. Thus, our results reflect multiple forms of selection that have shaped reproductive isolation in this system. We conclude that reproductive isolation may have initially been driven by divergence in allopatry, but later reinforced by divergent selection in sympatry.  相似文献   

14.
    
Adaptive introgression—the flow of adaptive genetic variation between species or populations—has attracted significant interest in recent years and it has been implicated in a number of cases of adaptation, from pesticide resistance and immunity, to local adaptation. Despite this, methods for identification of adaptive introgression from population genomic data are lacking. Here, we present Ancestry_HMM-S, a hidden Markov model-based method for identifying genes undergoing adaptive introgression and quantifying the strength of selection acting on them. Through extensive validation, we show that this method performs well on moderately sized data sets for realistic population and selection parameters. We apply Ancestry_HMM-S to a data set of an admixed Drosophila melanogaster population from South Africa and we identify 17 loci which show signatures of adaptive introgression, four of which have previously been shown to confer resistance to insecticides. Ancestry_HMM-S provides a powerful method for inferring adaptive introgression in data sets that are typically collected when studying admixed populations. This method will enable powerful insights into the genetic consequences of admixture across diverse populations. Ancestry_HMM-S can be downloaded from https://github.com/jesvedberg/Ancestry_HMM-S/.  相似文献   

15.
    
This paper elaborates on a hybrid index that utilizes information from genetic markers to quantify the genetic contribution of hybridizing species to individuals of unknown ancestry. Dominant markers will only lead to reliable and accurate estimates of hybrid index in later generation hybrids. In contrast, codominant markers can be fully resolved and their use is unproblematic. For both types of markers and allele frequencies that differ substantially between parental species (FST ≥ 0.17), a hybrid index based on 35–45 loci will have a nearly minimal confidence interval. Estimates of hybrid index are robust to modest errors in estimates of parental allele frequencies.  相似文献   

16.
We introduce a method for comparing a test genome with numerous genomes from a reference population. Sites in the test genome are given a weight, w, that depends on the allele frequency, x, in the reference population. The projection of the test genome onto the reference population is the average weight for each x, w¯(x). The weight is assigned in such a way that, if the test genome is a random sample from the reference population, then w¯(x)=1. Using analytic theory, numerical analysis, and simulations, we show how the projection depends on the time of population splitting, the history of admixture, and changes in past population size. The projection is sensitive to small amounts of past admixture, the direction of admixture, and admixture from a population not sampled (a ghost population). We compute the projections of several human and two archaic genomes onto three reference populations from the 1000 Genomes project—Europeans, Han Chinese, and Yoruba—and discuss the consistency of our analysis with previously published results for European and Yoruba demographic history. Including higher amounts of admixture between Europeans and Yoruba soon after their separation and low amounts of admixture more recently can resolve discrepancies between the projections and demographic inferences from some previous studies.  相似文献   

17.
18.
    
Previous studies show that the indigenous people of the southern Cape of South Africa were dramatically impacted by the arrival of European colonists starting ~400 years ago and their descendants are today mixed with Europeans and Asians. To gain insight on the occupants of the Vaalkrans Shelter located at the southernmost tip of Africa, we investigated the genetic make-up of an individual who lived there about 200 years ago. We further contextualize the genetic ancestry of this individual among prehistoric and current groups. From a hair sample excavated at the shelter, which was indirectly dated to about 200 years old, we sequenced the genome (1.01 times coverage) of a Later Stone Age individual. We analyzed the Vaalkrans genome together with genetic data from 10 ancient (pre-colonial) individuals from southern Africa spanning the last 2000 years. We show that the individual from Vaalkrans was a man who traced ~80% of his ancestry to local southern San hunter–gatherers and ~20% to a mixed East African-Eurasian source. This genetic make-up is similar to modern-day Khoekhoe individuals from the Northern Cape Province (South Africa) and Namibia, but in the southern Cape, the Vaalkrans man's descendants have likely been assimilated into mixed-ancestry “Coloured” groups. The Vaalkrans man's genome reveals that Khoekhoe pastoralist groups/individuals lived in the southern Cape as late as 200 years ago, without mixing with non-African colonists or Bantu-speaking farmers. Our findings are also consistent with the model of a Holocene pastoralist migration, originating in Eastern Africa, shaping the genomic landscape of historic and current southern African populations.  相似文献   

19.
    
Human natural killer (NK) cells are essential for controlling infection, cancer, and fetal development. NK cell functions are modulated by interactions between polymorphic inhibitory killer cell immunoglobulin-like receptors (KIR) and polymorphic HLA-A, -B, and -C ligands expressed on tissue cells. All HLA-C alleles encode a KIR ligand and contribute to reproduction and immunity. In contrast, only some HLA-A and -B alleles encode KIR ligands and they focus on immunity. By high-resolution analysis of KIR and HLA-A, -B, and -C genes, we show that the Chinese Southern Han (CHS) are significantly enriched for interactions between inhibitory KIR and HLA-A and -B. This enrichment has had substantial input through population admixture with neighboring populations, who contributed HLA class I haplotypes expressing the KIR ligands B*46:01 and B*58:01, which subsequently rose to high frequency by natural selection. Consequently, over 80% of Southern Han HLA haplotypes encode more than one KIR ligand. Complementing the high number of KIR ligands, the CHS KIR locus combines a high frequency of genes expressing potent inhibitory KIR, with a low frequency of those expressing activating KIR. The Southern Han centromeric KIR region encodes strong, conserved, inhibitory HLA-C-specific receptors, and the telomeric region provides a high number and diversity of inhibitory HLA-A and -B-specific receptors. In all these characteristics, the CHS represent other East Asians, whose NK cell repertoires are thus enhanced in quantity, diversity, and effector strength, likely augmenting resistance to endemic viral infections.  相似文献   

20.
    
Variation at the ABO locus was one of the earliest sources of data in the study of human population identity and history, and to this day remains widely genotyped due to its importance in blood and tissue transfusions. Here, we look at ABO blood type variants in our archaic relatives: Neanderthals and Denisovans. Our goal is to understand the genetic landscape of the ABO gene in archaic humans, and how it relates to modern human ABO variation. We found two Neanderthal variants of the O allele in the Siberian Neanderthals (O1 and O2), one of these variants is shared with an European Neanderthal, who is a heterozygote for this O1 variant and a rare cis-AB variant. The Denisovan individual is heterozygous for two variants of the O1 allele, functionally similar to variants found widely in modern humans. Perhaps more surprisingly, the O2 allele variant found in Siberian Neanderthals can be found at low frequencies in modern Europeans and Southeast Asians, and the O1 allele variant found in Siberian and European Neanderthal is also found at very low frequency in modern East Asians. Our genetic distance analyses suggest both alleles survive in modern humans due to inbreeding with Neanderthals. We find that the sequence backgrounds of the surviving Neanderthal-like O alleles in modern humans retain a higher sequence divergence than other surviving Neanderthal genome fragments, supporting a view of balancing selection operating in the Neanderthal ABO alleles by retaining highly diverse haplotypes compared with portions of the genome evolving neutrally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号