首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 865 毫秒
1.
The hippocampal formation is a key structure for memory function in the brain. The functional anatomy of the brain suggests that the hippocampus may be a convergence zone, as it receives polysensory input from distributed association areas throughout the neocortex. However, recent quantitative graph-theoretic analyses of the static large-scale connectome have failed to demonstrate the centrality of the hippocampus; in the context of the whole brain, the hippocampus is not among the most connected or reachable nodes. Here we show that when communication dynamics are taken into account, the hippocampus is a key hub in the connectome. Using a novel computational model, we demonstrate that large-scale brain network topology is organized to funnel and concentrate information flow in the hippocampus, supporting the long-standing hypothesis that this region acts as a critical convergence zone. Our results indicate that the functional capacity of the hippocampus is shaped by its embedding in the large-scale connectome.  相似文献   

2.
Brain function depends on efficient processing and integration of information within a complex network of neural interactions, known as the connectome. An important aspect of connectome architecture is the existence of community structure, providing an anatomical basis for the occurrence of functional specialization. Typically, communities are defined as groups of densely connected network nodes, representing clusters of brain regions. Looking at the connectome from a different perspective, instead focusing on the interconnecting links or edges, we find that the white matter pathways between brain regions also exhibit community structure. Eleven link communities were identified: five spanning through the midline fissure, three through the left hemisphere and three through the right hemisphere. We show that these link communities are consistently identifiable and investigate the network characteristics of their underlying white matter pathways. Furthermore, examination of the relationship between link communities and brain regions revealed that the majority of brain regions participate in multiple link communities. In particular, the highly connected and central hub regions showed a rich level of community participation, supporting the notion that these hubs play a pivotal role as confluence zones in which neural information from different domains merges.  相似文献   

3.
Estimating the functional interactions and connections between brain regions to corresponding process in cognitive, behavioral and psychiatric domains is a central pursuit for understanding the human connectome. Few studies have examined the effects of dynamic evolution on cognitive processing and brain activation using brain network model in scalp electroencephalography (EEG) data. Aim of this study was to investigate the brain functional connectivity and construct dynamic programing model from EEG data and to evaluate a possible correlation between topological characteristics of the brain connectivity and cognitive evolution processing. Here, functional connectivity between brain regions is defined as the statistical dependence between EEG signals in different brain areas and is typically determined by calculating the relationship between regional time series using wavelet coherence. We present an accelerated dynamic programing algorithm to construct dynamic cognitive model that we found that spatially distributed regions coherence connection difference, the topologic characteristics with which they can transfer information, producing temporary network states. Our findings suggest that brain dynamics give rise to variations in complex network properties over time after variation audio stimulation, dynamic programing model gives the dynamic evolution processing at different time and frequency. In this paper, by applying a new construct approach to understand whole brain network dynamics, firstly, brain network is constructed by wavelet coherence, secondly, different time active brain regions are selected by network topological characteristics and minimum spanning tree. Finally, dynamic evolution model is constructed to understand cognitive process by dynamic programing algorithm, this model is applied to the auditory experiment, results showed that, quantitatively, more correlation was observed after variation audio stimulation, the EEG function connection dynamic evolution model on cognitive processing is feasible with wavelet coherence EEG recording.  相似文献   

4.
The balance of global integration and functional specialization is a critical feature of efficient brain networks, but the relationship of global topology, local node dynamics and information flow across networks has yet to be identified. One critical step in elucidating this relationship is the identification of governing principles underlying the directionality of interactions between nodes. Here, we demonstrate such principles through analytical solutions based on the phase lead/lag relationships of general oscillator models in networks. We confirm analytical results with computational simulations using general model networks and anatomical brain networks, as well as high-density electroencephalography collected from humans in the conscious and anesthetized states. Analytical, computational, and empirical results demonstrate that network nodes with more connections (i.e., higher degrees) have larger amplitudes and are directional targets (phase lag) rather than sources (phase lead). The relationship of node degree and directionality therefore appears to be a fundamental property of networks, with direct applicability to brain function. These results provide a foundation for a principled understanding of information transfer across networks and also demonstrate that changes in directionality patterns across states of human consciousness are driven by alterations of brain network topology.  相似文献   

5.
Recent development in diffusion spectrum brain imaging combined to functional simulation has the potential to further our understanding of how structure and dynamics are intertwined in the human brain. At the intra-individual scale, neurocomputational models have already started to uncover how the human connectome constrains the coordination of brain activity across distributed brain regions. In parallel, at the inter-individual scale, nascent social neuroscience provides a new dynamical vista of the coupling between two embodied cognitive agents. Using EEG hyperscanning to record simultaneously the brain activities of subjects during their ongoing interaction, we have previously demonstrated that behavioral synchrony correlates with the emergence of inter-brain synchronization. However, the functional meaning of such synchronization remains to be specified. Here, we use a biophysical model to quantify to what extent inter-brain synchronizations are related to the anatomical and functional similarity of the two brains in interaction. Pairs of interacting brains were numerically simulated and compared to real data. Results show a potential dynamical property of the human connectome to facilitate inter-individual synchronizations and thus may partly account for our propensity to generate dynamical couplings with others.  相似文献   

6.
We study intrinsic properties of attractor in Boolean dynamics of complex networks with scale-free topology, comparing with those of the so-called Kauffman's random Boolean networks. We numerically study both frozen and relevant nodes in each attractor in the dynamics of relatively small networks (20?N?200). We investigate numerically robustness of an attractor to a perturbation. An attractor with cycle length of ?c in a network of size N consists of ?c states in the state space of 2N states; each attractor has the arrangement of N nodes, where the cycle of attractor sweeps ?c states. We define a perturbation as a flip of the state on a single node in the attractor state at a given time step. We show that the rate between unfrozen and relevant nodes in the dynamics of a complex network with scale-free topology is larger than that in Kauffman's random Boolean network model. Furthermore, we find that in a complex scale-free network with fluctuation of the in-degree number, attractors are more sensitive to a state flip for a highly connected node (i.e. input-hub node) than to that for a less connected node. By some numerical examples, we show that the number of relevant nodes increases, when an input-hub node is coincident with and/or connected with an output-hub node (i.e. a node with large output-degree) one another.  相似文献   

7.
Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.  相似文献   

8.
Kochi N  Matache MT 《Bio Systems》2012,108(1-3):14-27
In this paper we provide a mean-field Boolean network model for a signal transduction network of a generic fibroblast cell. The network consists of several main signaling pathways, including the receptor tyrosine kinase, the G-protein coupled receptor, and the Integrin signaling pathway. The network consists of 130 nodes, each representing a signaling molecule (mainly proteins). Nodes are governed by Boolean dynamics including canalizing functions as well as totalistic Boolean functions that depend only on the overall fraction of active nodes. We categorize the Boolean functions into several different classes. Using a mean-field approach we generate a mathematical formula for the probability of a node becoming active at any time step. The model is shown to be a good match for the actual network. This is done by iterating both the actual network and the model and comparing the results numerically. Using the Boolean model it is shown that the system is stable under a variety of parameter combinations. It is also shown that this model is suitable for assessing the dynamics of the network under protein mutations. Analytical results support the numerical observations that in the long-run at most half of the nodes of the network are active.  相似文献   

9.
Sexual dimorphism in the brain maturation during childhood and adolescence has been repeatedly documented, which may underlie the differences in behaviors and cognitive performance. However, our understanding of how gender modulates the development of structural connectome in healthy adults is still not entirely clear. Here we utilized graph theoretical analysis of longitudinal diffusion tensor imaging data over a five-year period to investigate the progressive gender differences of brain network topology. The brain networks of both genders showed prominent economical “small-world” architecture (high local clustering and short paths between nodes). Additional analysis revealed a more economical “small-world” architecture in females as well as a greater global efficiency in males regardless of scan time point. At the regional level, both increased and decreased efficiency were found across the cerebral cortex for both males and females, indicating a compensation mechanism of cortical network reorganization over time. Furthermore, we found that weighted clustering coefficient exhibited significant gender-time interactions, implying different development trends between males and females. Moreover, several specific brain regions (e.g., insula, superior temporal gyrus, cuneus, putamen, and parahippocampal gyrus) exhibited different development trajectories between males and females. Our findings further prove the presence of sexual dimorphism in brain structures that may underlie gender differences in behavioral and cognitive functioning. The sex-specific progress trajectories in brain connectome revealed in this work provide an important foundation to delineate the gender related pathophysiological mechanisms in various neuropsychiatric disorders, which may potentially guide the development of sex-specific treatments for these devastating brain disorders.  相似文献   

10.
11.
We study the interplay between correlations, dynamics, and networks for repeated attacks on a socio-economic network. As a model system we consider an insurance scheme against disasters that randomly hit nodes, where a node in need receives support from its network neighbors. The model is motivated by gift giving among the Maasai called Osotua. Survival of nodes under different disaster scenarios (uncorrelated, spatially, temporally and spatio-temporally correlated) and for different network architectures are studied with agent-based numerical simulations. We find that the survival rate of a node depends dramatically on the type of correlation of the disasters: Spatially and spatio-temporally correlated disasters increase the survival rate; purely temporally correlated disasters decrease it. The type of correlation also leads to strong inequality among the surviving nodes. We introduce the concept of disaster masking to explain some of the results of our simulations. We also analyze the subsets of the networks that were activated to provide support after fifty years of random disasters. They show qualitative differences for the different disaster scenarios measured by path length, degree, clustering coefficient, and number of cycles.  相似文献   

12.
Yan C  He Y 《PloS one》2011,6(8):e23460
Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA) and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86) to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus) and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule). Further split-half analyses indicated that our results were highly reproducible between two independent subgroups. The current study demonstrated the directions of spontaneous information flow and causal influences in the directed brain networks, thus providing new insights into our understanding of human brain functional connectome.  相似文献   

13.
This article presents the integration of brain injury biomechanics and graph theoretical analysis of neuronal connections, or connectomics, to form a neurocomputational model that captures spatiotemporal characteristics of trauma. We relate localized mechanical brain damage predicted from biofidelic finite element simulations of the human head subjected to impact with degradation in the structural connectome for a single individual. The finite element model incorporates various length scales into the full head simulations by including anisotropic constitutive laws informed by diffusion tensor imaging. Coupling between the finite element analysis and network-based tools is established through experimentally-based cellular injury thresholds for white matter regions. Once edges are degraded, graph theoretical measures are computed on the "damaged" network. For a frontal impact, the simulations predict that the temporal and occipital regions undergo the most axonal strain and strain rate at short times (less than 24 hrs), which leads to cellular death initiation, which results in damage that shows dependence on angle of impact and underlying microstructure of brain tissue. The monotonic cellular death relationships predict a spatiotemporal change of structural damage. Interestingly, at 96 hrs post-impact, computations predict no network nodes were completely disconnected from the network, despite significant damage to network edges. At early times ([Formula: see text]) network measures of global and local efficiency were degraded little; however, as time increased to 96 hrs the network properties were significantly reduced. In the future, this computational framework could help inform functional networks from physics-based structural brain biomechanics to obtain not only a biomechanics-based understanding of injury, but also neurophysiological insight.  相似文献   

14.
We view web forums as virtual living organisms feeding on user''s clicks and investigate how they grow at the expense of clickstreams. We find that (the number of page views in a given time period) and (the number of unique visitors in the time period) of the studied forums satisfy the law of the allometric growth, i.e., . We construct clickstream networks and explain the observed temporal dynamics of networks by the interactions between nodes. We describe the transportation of clickstreams using the function , in which is the total amount of clickstreams passing through node and is the amount of the clickstreams dissipated from to the environment. It turns out that , an indicator for the efficiency of network dissipation, not only negatively correlates with , but also sets the bounds for . In particular, when and when . Our findings have practical consequences. For example, can be used as a measure of the “stickiness” of forums, which quantifies the stable ability of forums to remain users “lock-in” on the forum. Meanwhile, the correlation between and provides a method to predict the long-term “stickiness” of forums from the clickstream data in a short time period. Finally, we discuss a random walk model that replicates both of the allometric growth and the dissipation function .  相似文献   

15.
Drosophila melanogaster and its close relatives are used extensively in comparative biology. Despite the importance of phylogenetic information for such studies, relationships between some melanogaster species group members are unclear due to conflicting phylogenetic signals at different loci. In this study, we use twelve nuclear loci (eleven coding and one non-coding) to assess the degree of phylogenetic incongruence in this model system. We focus on two nodes: (1) the node joining the Drosophila erecta-Drosophila orena, Drosophila melanogaster-Drosophila simulans, and Drosophila yakuba-Drosophila teissieri lineages, and (2) the node joining the lineages leading to the melanogaster, takahashii, and eugracilis subgroups. We find limited evidence for incongruence at the first node; our data, as well as those of several previous studies, strongly support monophyly of a clade consisting of D. erecta-D. orena and D. yakuba-D. teissieri. By contrast, using likelihood based tests of congruence, we find robust evidence for topological incongruence at the second node. Different loci support different relationships among the melanogaster, takahashii, and eugracilis subgroups, and the observed incongruence is not easily attributable to homoplasy, non-equilibrium base composition, or positive selection on a subset of loci. We argue that lineage sorting in the common ancestor of these three subgroups is the most plausible explanation for our observations. Such lineage sorting may lead to biased estimation of tree topology and evolutionary rates, and may confound inferences of positive selection.  相似文献   

16.
In recent years, the field of network science has enabled researchers to represent the highly complex interactions in the brain in an approachable yet quantitative manner. One exciting finding since the advent of brain network research was that the brain network can withstand extensive damage, even to highly connected regions. However, these highly connected nodes may not be the most critical regions of the brain network, and it is unclear how the network dynamics are impacted by removal of these key nodes. This work seeks to further investigate the resilience of the human functional brain network. Network attack experiments were conducted on voxel-wise functional brain networks and region-of-interest (ROI) networks of 5 healthy volunteers. Networks were attacked at key nodes using several criteria for assessing node importance, and the impact on network structure and dynamics was evaluated. The findings presented here echo previous findings that the functional human brain network is highly resilient to targeted attacks, both in terms of network structure and dynamics.  相似文献   

17.
Identifying clusters, namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. By means of a lumped Markov chain model of a random walker, we propose two novel ways of inferring the lumped markov transition matrix. Furthermore, some useful results are proposed based on the analysis of the properties of the lumped Markov process. To find the best partition of complex networks, a novel framework including two algorithms for network partition based on the optimal lumped Markovian dynamics is derived to solve this problem. The algorithms are constructed to minimize the objective function under this framework. It is demonstrated by the simulation experiments that our algorithms can efficiently determine the probabilities with which a node belongs to different clusters during the learning process and naturally supports the fuzzy partition. Moreover, they are successfully applied to real-world network, including the social interactions between members of a karate club.  相似文献   

18.
The complex interactions involved in regulation of a cell’s function are captured by its interaction graph. More often than not, detailed knowledge about enhancing or suppressive regulatory influences and cooperative effects is lacking and merely the presence or absence of directed interactions is known. Here, we investigate to which extent such reduced information allows to forecast the effect of a knock-out or a combination of knock-outs. Specifically, we ask in how far the lethality of eliminating nodes may be predicted by their network centrality, such as degree and betweenness, without knowing the function of the system. The function is taken as the ability to reproduce a fixed point under a discrete Boolean dynamics. We investigate two types of stochastically generated networks: fully random networks and structures grown with a mechanism of node duplication and subsequent divergence of interactions. On all networks we find that the out-degree is a good predictor of the lethality of a single node knock-out. For knock-outs of node pairs, the fraction of successors shared between the two knocked-out nodes (out-overlap) is a good predictor of synthetic lethality. Out-degree and out-overlap are locally defined and computationally simple centrality measures that provide a predictive power close to the optimal predictor.  相似文献   

19.
A fundamental assumption in neuroscience is that brain function is constrained by its structural properties. This motivates the idea that the brain can be parcellated into functionally coherent regions based on anatomical connectivity patterns that capture how different areas are interconnected. Several studies have successfully implemented this idea in humans using diffusion weighted MRI, allowing parcellation to be conducted in vivo. Two distinct approaches to connectivity-based parcellation can be identified. The first uses the connection profiles of brain regions as a feature vector, and groups brain regions with similar connection profiles together. Alternatively, one may adopt a network perspective that aims to identify clusters of brain regions that show dense within-cluster and sparse between-cluster connectivity. In this paper, we introduce a probabilistic model for connectivity-based parcellation that unifies both approaches. Using the model we are able to obtain a parcellation of the human brain whose clusters may adhere to either interpretation. We find that parts of the connectome consistently cluster as densely connected components, while other parts consistently result in clusters with similar connections. Interestingly, the densely connected components consist predominantly of major cortical areas, while the clusters with similar connection profiles consist of regions that have previously been identified as the ‘rich club’; regions known for their integrative role in connectivity. Furthermore, the probabilistic model allows quantification of the uncertainty in cluster assignments. We show that, while most clusters are clearly delineated, some regions are more difficult to assign. These results indicate that care should be taken when interpreting connectivity-based parcellations obtained using alternative deterministic procedures.  相似文献   

20.
The connectome, or the entire connectivity of a neural system represented by a network, ranges across various scales from synaptic connections between individual neurons to fibre tract connections between brain regions. Although the modularity they commonly show has been extensively studied, it is unclear whether the connection specificity of such networks can already be fully explained by the modularity alone. To answer this question, we study two networks, the neuronal network of Caenorhabditis elegans and the fibre tract network of human brains obtained through diffusion spectrum imaging. We compare them to their respective benchmark networks with varying modularities, which are generated by link swapping to have desired modularity values. We find several network properties that are specific to the neural networks and cannot be fully explained by the modularity alone. First, the clustering coefficient and the characteristic path length of both C. elegans and human connectomes are higher than those of the benchmark networks with similar modularity. High clustering coefficient indicates efficient local information distribution, and high characteristic path length suggests reduced global integration. Second, the total wiring length is smaller than for the alternative configurations with similar modularity. This is due to lower dispersion of connections, which means each neuron in the C. elegans connectome or each region of interest in the human connectome reaches fewer ganglia or cortical areas, respectively. Third, both neural networks show lower algorithmic entropy compared with the alternative arrangements. This implies that fewer genes are needed to encode for the organization of neural systems. While the first two findings show that the neural topologies are efficient in information processing, this suggests that they are also efficient from a developmental point of view. Together, these results show that neural systems are organized in such a way as to yield efficient features beyond those given by their modularity alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号