首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In winemaking, the use of alternative yeast starters is becoming increasingly popular. They contribute to the diversity and complexity of wine sensory features and are typically used in combination with Saccharomyces cerevisiae, to ensure complete fermentation. This practice has drawn the interest on interactions between different oenological yeasts, which are also relevant in spontaneous and conventional fermentations, or in the vineyard. Although several interactions have been described and some mechanisms have been suggested, the possible involvement of extracellular vesicles (EVs) has not yet been considered. This work describes the production of EVs by six wine yeast species (S. cerevisiae, Torulaspora delbrueckii, Lachancea thermotolerans, Hanseniaspora uvarum, Candida sake and Metschnikowia pulcherrima) in synthetic grape must. Proteomic analysis of EV-enriched fractions from S. cerevisiae and T. delbrueckii showed enrichment in glycolytic enzymes and cell-wall-related proteins. The most abundant protein found in S. cerevisiae, T. delbrueckii and L. thermotolerans EV-enriched fractions was the enzyme exo-1,3-β-glucanase. However, this protein was not involved in the here-observed negative impact of T. delbrueckii extracellular fractions on the growth of other yeast species. These findings suggest that EVs may play a role in fungal interactions during wine fermentation and other aspects of wine yeast biology.  相似文献   

2.
Genetic diversity and population structure of Ammodytes personatus in the Northwestern Pacific were investigated for 16 collections using eight highly variable microsatellite loci. Microsatellite analyses gave strong support for the presence of two distinct groups of genotypes. Pleistocene glaciations can cause significant geographical differentiation in A. personatus populations. However, microsatellite data cannot confirm completely reproductive isolation between north group and south group. About half of comparison values within the first and second cluster were significant after sequential Bonferroni corrections. Routine oceanic currents associated with strong wind condition may provide an excellent chance for connectivity of among populations within clusters. However, gene flow can be restricted by marine gyres due to complex geographical characteristic.  相似文献   

3.
Alcoholic fermentation of grape must is a complex process, involving several yeast genera and species. The early stages in fermentation are dominated by non-Saccharomyces yeasts that are gradually replaced by the Saccharomyces cerevisiae species, which takes over the fermentation. Quantitative studies have reported the influence of non-Saccharomyces yeast species on wine quality and evaluated their biotechnological interest. The industrial yeast market, which, until recently, exclusively focused on S. cerevisiae, now offers S. cerevisiae/non-Saccharomyces (including Torulaspora delbrueckii) multi-starters. The development of these new mixed industrial starters requires a better understanding of the interaction mechanisms between yeast populations in order to optimize the aromatic impact of the non-Saccharomyces yeast while ensuring complete alcoholic fermentation thanks to S. cerevisiae. For this purpose, a new double-compartment fermentor was designed with the following characteristics: (1) physical separation of two yeast populations, (2) homogeneity of the culture medium in both compartments, (3) fermentation kinetics monitored by weight loss due to CO2 release, and (4) independent monitoring of growth kinetics in the two compartments. This tool was used to compare mixed inoculations of S. cerevisiae/T. delbrueckii with and without physical separation. Our results revealed that physical contact/proximity between S. cerevisiae and T. delbrueckii induced rapid death of T. delbrueckii, a phenomenon previously described and attributed to a cell–cell contact mechanism. In contrast, when physically separated from S. cerevisiae, T. delbrueckii maintained its viability and its metabolic activity had a marked impact on S. cerevisiae growth and viability. The double fermentor is thus a powerful tool for studying yeast interactions. Our findings shed new light on interaction mechanisms described in microorganism populations.  相似文献   

4.
Summary The growth kinetics and fermentation behaviour of five non-Saccharomyces yeast species associated with wine-making were evaluated.The results showed that the Candida stellata and Torulspora delbrueckii species are interesting for biotechnological applications in wine-making, whereas small-size apiculate yeasts could be profitably used in the production of wine for vinegar manufacture.  相似文献   

5.
At present, wine is generally produced using Saccharomyces yeast followed by Oenococus bacteria to complete malolactic fermentation. This method has some unsolved problems, such as the management of highly acidic musts and the production of potentially toxic products including biogenic amines and ethyl carbamate. Here we explore the potential of the fission yeast Schizosaccharomyces pombe to solve these problems. We characterise an extensive worldwide collection of S. pombe strains according to classic biochemical parameters of oenological interest. We identify three genetically different S. pombe strains that appear suitable for winemaking. These strains compare favourably to standard Saccharomyces cerevisiae winemaking strains, in that they perform effective malic acid deacidification and significantly reduce levels of biogenic amines and ethyl carbamate precursors without the need for any secondary bacterial malolactic fermentation. These findings indicate that the use of certain S. pombe strains could be advantageous for winemaking in regions where malic acid is problematic, and these strains also show superior performance with respect to food safety.  相似文献   

6.
Pan-genome ortholog clustering tool (PanOCT) is a tool for pan-genomic analysis of closely related prokaryotic species or strains. PanOCT uses conserved gene neighborhood information to separate recently diverged paralogs into orthologous clusters where homology-only clustering methods cannot. The results from PanOCT and three commonly used graph-based ortholog-finding programs were compared using a set of four publicly available strains of the same bacterial species. All four methods agreed on ∼70% of the clusters and ∼86% of the proteins. The clusters that did not agree were inspected for evidence of correctness resulting in 85 high-confidence manually curated clusters that were used to compare all four methods.  相似文献   

7.
Saccharomyces cerevisiae strains from diverse natural habitats harbour a vast amount of phenotypic diversity, driven by interactions between yeast and the respective environment. In grape juice fermentations, strains are exposed to a wide array of biotic and abiotic stressors, which may lead to strain selection and generate naturally arising strain diversity. Certain phenotypes are of particular interest for the winemaking industry and could be identified by screening of large number of different strains. The objective of the present work was to use data mining approaches to identify those phenotypic tests that are most useful to predict a strain''s potential for winemaking. We have constituted a S. cerevisiae collection comprising 172 strains of worldwide geographical origins or technological applications. Their phenotype was screened by considering 30 physiological traits that are important from an oenological point of view. Growth in the presence of potassium bisulphite, growth at 40°C, and resistance to ethanol were mostly contributing to strain variability, as shown by the principal component analysis. In the hierarchical clustering of phenotypic profiles the strains isolated from the same wines and vineyards were scattered throughout all clusters, whereas commercial winemaking strains tended to co-cluster. Mann-Whitney test revealed significant associations between phenotypic results and strain''s technological application or origin. Naïve Bayesian classifier identified 3 of the 30 phenotypic tests of growth in iprodion (0.05 mg/mL), cycloheximide (0.1 µg/mL) and potassium bisulphite (150 mg/mL) that provided most information for the assignment of a strain to the group of commercial strains. The probability of a strain to be assigned to this group was 27% using the entire phenotypic profile and increased to 95%, when only results from the three tests were considered. Results show the usefulness of computational approaches to simplify strain selection procedures.  相似文献   

8.
Saccharomyces yeasts have been used for millennia for the production of beer, wine, bread, and other fermented products. Long-term “unconscious” selection and domestication led to the selection of hundreds of strains with desired production traits having significant phenotypic and genetic differences from their wild ancestors. This review summarizes the results of recent research in deciphering the genomes of wine Saccharomyces strains, the use of comparative genomics methods to study the mechanisms of yeast genome evolution under conditions of artificial selection, and the use of genomic and postgenomic approaches to identify the molecular nature of the important characteristics of commercial wine strains of Saccharomyces. Succinctly, data concerning metagenomics of microbial communities of grapes and wine and the dynamics of yeast and bacterial flora in the course of winemaking is provided. A separate section is devoted to an overview of the physiological, genetic, and biochemical features of sherry yeast strains used to produce biologically aged wines. The goal of the review is to convince the reader of the efficacy of new genomic and postgenomic technologies as tools for developing strategies for targeted selection and creation of new strains using “classical” and modern techniques for improving wine-making technology.  相似文献   

9.
Flocculation has primarily been studied as an important technological property of Saccharomyces cerevisiae yeast strains in fermentation processes such as brewing and winemaking. These studies have led to the identification of a group of closely related genes, referred to as the FLO gene family, which controls the flocculation phenotype. All naturally occurring S. cerevisiae strains assessed thus far possess at least four independent copies of structurally similar FLO genes, namely FLO1, FLO5, FLO9 and FLO10. The genes appear to differ primarily by the degree of flocculation induced by their expression. However, the reason for the existence of a large family of very similar genes, all involved in the same phenotype, has remained unclear. In natural ecosystems, and in wine production, S. cerevisiae growth together and competes with a large number of other Saccharomyces and many more non-Saccharomyces yeast species. Our data show that many strains of such wine-related non-Saccharomyces species, some of which have recently attracted significant biotechnological interest as they contribute positively to fermentation and wine character, were able to flocculate efficiently. The data also show that both flocculent and non-flocculent S. cerevisiae strains formed mixed species flocs (a process hereafter referred to as co-flocculation) with some of these non-Saccharomyces yeasts. This ability of yeast strains to impact flocculation behaviour of other species in mixed inocula has not been described previously. Further investigation into the genetic regulation of co-flocculation revealed that different FLO genes impact differently on such adhesion phenotypes, favouring adhesion with some species while excluding other species from such mixed flocs. The data therefore strongly suggest that FLO genes govern the selective association of S. cerevisiae with specific species of non-Saccharomyces yeasts, and may therefore be drivers of ecosystem organisational patterns. Our data provide, for the first time, insights into the role of the FLO gene family beyond intraspecies cellular association, and suggest a wider evolutionary role for the FLO genes. Such a role would explain the evolutionary persistence of a large multigene family of genes with apparently similar function.  相似文献   

10.
Three molecular typing techniques were applied to assess the molecular relationships of Saccharomyces cerevisiae strains isolated from winery equipment, grapes, and spontaneous fermentation in a cellar located in “Zona Alta del Río Mendoza” (Argentina). In addition, commercial Saccharomyces strains widely used in this region were also included. Interdelta PCR typing, mtDNA restriction analysis, and microsatellite (SSR) genotyping were applied. Dendrograms were constructed based on similarity among different patterns of bands. The combination of the three techniques discriminated 34 strains among the 35 isolates. The results of this study show the complex relationships found at molecular level among the isolates that share the same ecological environment, i.e., the winemaking process. With a few exceptions, the yeast isolates were generally clustered in different ways, depending on the typing technique employed. Three clusters were conserved independently of the molecular method applied. These groups of yeasts always clustered together and had high degree of similarity. Furthermore, the dendrograms mostly showed clusters combining strains from winery and fermentation simultaneously. Most of the commercial strains included in this study were clustered separately from the other isolates analyzed, and just a few of them grouped with the strains mainly isolated from spontaneous fermentation. Only one commercial strain was clustered repetitively with a noncommercial strain isolated from spontaneous fermentation in the three dendrograms. On the other hand, this study has demonstrated the importance of selecting an appropriate molecular method according to the main objectives of the research.  相似文献   

11.
The melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) is an agricultural pest of major significance worldwide that primarily attacks cucurbit crops. In Reunion Island, it represents the main tephritid pest on cucurbits. In this paper, we provide a genetic characterization of populations of B. cucurbitae from Reunion Island and investigate their geographical origin using ten microsatellite loci at two mitochondrial gene fragments. Microsatellites reveal the occurrence of three different genetic clusters of B. cucurbitae in Reunion Island, all clearly distinguishable from their African and Asian relatives. These three clusters are sympatric and show no signs of recent bottlenecks. Levels of gene flow among clusters are relatively high, yet gene flow also occurs with populations from the African continent and, to a lesser extent, from Asia. The B. cucurbitae clusters show distinct distributions across eastern and western locations in Reunion Island (but not at different altitudes or between wild and cultivated host plants or between sampling periods), and their abundance is also correlated with the average amount of rainfall. Microsatellite and sequence analyses suggest Africa as the most probable source area for populations of B. cucurbitae in Reunion Island.  相似文献   

12.
A cloned 2-kb EcoRI fragment (fragment f) from a 34-kb plasmid of Lactobacillus helveticus CNRZ 1094 was shown by dot blot to specifically hybridize to total DNAs of 75 L. helveticus strains. No hybridization was found with L. acidophilus, L. crispatus, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, L. gasseri, or L. intestinalis strains. When Southern blots of EcoRI digests of L. helveticus strains were probed with fragment f, these strains displayed restriction fragment length polymorphisms on the basis of which they could be grouped into several clusters.  相似文献   

13.
Ability of industrially relevant species of thermophilic lactobacilli strains to hydrolyze proteins from animal (caseins and β-lactoglobulin) and vegetable (soybean and wheat) sources, as well as influence of peptide content of growth medium on cell envelope-associated proteinase (CEP) activity, was evaluated. Lactobacillus delbrueckii subsp. lactis (CRL 581 and 654), L. delbrueckii subsp. bulgaricus (CRL 454 and 656), Lactobacillus acidophilus (CRL 636 and 1063), and Lactobacillus helveticus (CRL 1062 and 1177) were grown in a chemically defined medium supplemented or not with 1 % Casitone. All strains hydrolyzed mainly β-casein, while degradation of αs-caseins was strain dependent. Contrariwise, κ-Casein was poorly degraded by the studied lactobacilli. β-Lactoglobulin was mainly hydrolyzed by CRL 656, CRL 636, and CRL 1062 strains. The L. delbrueckii subsp. lactis strains, L. delbrueckii subsp. bulgaricus CRL 656, and L. helveticus CRL 1177 degraded gliadins in high extent, while the L. acidophilus and L. helveticus strains highly hydrolyzed soy proteins. Proteinase production was inhibited by Casitone, the most affected being the L. delbrueckii subsp. lactis species. This study highlights the importance of proteolytic diversity of lactobacilli for rational strain selection when formulating hydrolyzed dairy or vegetable food products.  相似文献   

14.
The ornate dog tick (Dermacentor reticulatus) shows a recently expanding geographic distribution. Knowledge on its intraspecific variability, population structure, rate of genetic diversity and divergence, including its evolution and geographic distribution, is crucial to understand its dispersal capacity. All such information would help to evaluate the potential risk of future spread of associated pathogens of medical and veterinary concern. A set of 865 D. reticulatus ticks was collected from 65 localities across 21 countries, from Portugal in the west to Kazakhstan and southern Russia in the east. Cluster analyses of 16 microsatellite loci were combined with nuclear (ITS2, 18S) and mitochondrial (12S, 16S, COI) sequence data to uncover the ticks’ population structures and geographical patterns. Approximate Bayesian computation was applied to model evolutionary relationships among the found clusters. Low variability and a weak phylogenetic signal showing an east–west cline were detected both for mitochondrial and nuclear sequence markers. Microsatellite analyses revealed three genetic clusters, where the eastern and western cluster gradient was supplemented by a third, northern cluster. Alternative scenarios could explain such a tripartite population structure by independent formation of clusters in separate refugia, limited gene flow connected with isolation by distance causing a “bipolar pattern”, and the northern cluster deriving from admixture between the eastern and western populations. The best supported demographic scenario of this tick species indicates that the northern cluster derived from admixture between the eastern and western populations 441 (median) to 224 (mode) generations ago, suggesting a possible link with the end of the Little Ice Age in Europe.  相似文献   

15.
The study of grape microflora is of interest when autochthonous yeasts, which are related to typical wine characteristics, are intended to be used in winemaking. The election of matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) as the first method for yeast identification was based on its accuracy and rapidity compared to alternative laboratory protocols for identification. The aims of this study are to consolidate the MALDI-TOF MS Supplementary database for environmental yeasts already constructed, to expand it through the addition of standard spectra of not included yeast species, and to discuss the grape microflora encountered in Southern Brazil. A total of 358 strains, isolated from grape berries, were submitted to protein profiling employing Biotyper and Supplementary database. Molecular biology techniques were used as alternatives to identify 6.4% of strains not promptly designated by protein profiling. These strains corresponded to the species Candida californica, Zygoascus meyerae, Candida akabanensis, Candida azyma, and Hanseniaspora vineae. The MALDI-TOF MS spectra of the identified species were added to Supplementary database. The presented results strengthen the need for further expansion of the mass spectra database to broaden its microbiological application.  相似文献   

16.
Inoculated fermentation by selected indigenous yeast strains from a specific location could provide the wine with unique regional sensory characteristics. The identification and differentiation of local yeasts are the first step to understand the function of yeasts and develop a better strain-selection program for winemaking. The indigenous yeasts in five grape varieties, Chardonnay, Cabernet Franc, Cabernet Sauvignon, Marselan, and Merlot cultivated in Xiangning, Shanxi, China were investigated. Eight species of seven genera including Aureobasidium pullulans, Candida zemplinina, Hanseniaspora uvarum, Hanseniaspora occidentalis, Issatchenkia terricola, Metschnikowia pulcherrima, Pichia kluyveri, and Saccharomyces cerevisiae were identified using Wallerstein Laboratory Nutrient medium with sequencing of the 26S rDNA D1/D2 domain. H. uvarum and S. cerevisiae were the predominant species, while most non-Saccharomyces species were present in the whole fermentation process at different levels among the grape varieties. The genotypes of S. cerevisiae from each microvinification were determined by using interdelta sequence analysis. The 102 isolates showed eight different genotypes, and genotype III was the predominant genotype found. The distribution of S. cerevisiae strains during the fermentation of Marselan was also studied. Six genotypes were observed among the 92 strains with different genotypes of competitiveness at different sampling stages. Genotype V demonstrated the potential for organizing starter strains and avoiding inefficient fermentation. In general, this study explored the yeast species in the grapes grown in Xiangning County and provided important information of relationship of local yeast diversity and its regional wine sensory characteristics.  相似文献   

17.
We investigated the yeast species associated with rotting wood samples obtained from Brazilian ecosystems, with a special focus on cellobiose-fermenting species. About 647 yeast strains were isolated from rotting wood samples collected from the areas of Atlantic rainforest, Cerrado, and Amazonian forest. Eighty-six known species and 47 novel species of yeasts were isolated. Candida boidinii, Cyberlindnera subsufficiens, Meyerozyma guilliermondii, Schwanniomyces polymorphus, Candida natalensis, and Debaryomyces hansenii were the most frequently isolated species. Among the cellobiose-fermenting yeasts, 14 known and three novel yeast species were identified. Scheffersomyces queiroziae, Sc. amazonensis, Yamadazyma sp.1, Hanseniaspora opuntiae, C. jaroonii, and Candida tammaniensis were the main ethanol-producing yeasts. These species also produced an intracellular β-glucosidase responsible for cellobiose hydrolysis. In fermentation assays using a culture medium containing 50 g L?1 cellobiose, ethanol production was observed in all cases; Sc. queiroziae and Sc. amazonensis showed the highest yield, efficiency, and productivity. Candida jaroonii and Yamadazyma sp.1 strains also showed high efficiency in cellobiose fermentation, while C. tammaniensis and H. opuntiae strains produced low amounts of ethanol. This study shows the potential of rotting wood samples from Brazilian ecosystems as a source of yeasts, including new species as well as those with promising biotechnological properties.  相似文献   

18.
19.
We analyzed 115 Saguinus leucopus, from four Colombian departments (Antioquia, Bolivar, Caldas and Tolima ), for 701 bp of the mt COII gene and at 10 microsatellite loci to estimate gene diversity levels, possible molecular subspecies and historical demographic changes in this species. This endemic Colombian species showed an elevated gene diversity in this gene, although its geographical distribution is very restrictive and extremely threatened by habitat fragmentation. The mt COII gene did not show any geographical structure in the distribution of the haplotypes within this species, but it did show a noteworthy population expansion throughout the history of this species. A Bayesian analysis showed that the haplotype diversification of this species began around 1.6 million years ago (MYA), whilst a haplotype network gave the beginning of this diversification at around 0.5–0.6 MYA. Forty-seven individuals out of the 115 were analyzed for 10 DNA microsatellites. The genetic diversity was relatively elevated for this kind of marker too, and comparable to that found in other Neotropical monkeys with a wider geographical distribution. Two gene pools were detected with the microsatellites, one in the northern distribution area (Antioquia) and the other in the southern distribution area (Tolima). No tests detected any bottleneck affecting this population; however, two procedures (k test and Kimmel et al. 1998 test) detected significant population expansion for the microsatellite markers, like that seen with the mt COII gene.  相似文献   

20.
The West Asian stripe-necked terrapin Mauremys caspica is widespread throughout the Middle East—a region for which only few phylogeographic studies are available. Due to landscape alteration, pollution and intensification of water management, M. caspica is increasingly threatened. However, genetic diversity among and within populations is poorly known, impeding the identification of management units. Using a nearly rangewide sampling, we analyzed 14 microsatellite loci and mtDNA sequences in order to gain insight into the population structure and history of M. caspica. In agreement with a previous study, we found two clusters of mitochondrial haplotypes, with one cluster distributed in the east and the other in the west of the range. However, our microsatellite data suggested a more pronounced geographical structuring. When null alleles were coded as recessive with structure 2.3.2, three clusters were revealed, with one cluster matching roughly the range of the western mitochondrial cluster, and the composite ranges of the two other microsatellite clusters correspond to the distribution of the eastern mitochondrial cluster. Naïve structure analyses without correction for null alleles were congruent with respect to the two eastern microsatellite clusters, but subdivided the western cluster into two units, with an additional geographical divide corresponding to the ‘Anatolian diagonal’—a well-known high mountain barrier impeding exchange between western and eastern taxa. In naïve analyses, the westernmost microsatellite cluster (from Central Anatolia) is quite isolated from the others, and its distinctness is also supported by fixation indices resembling the values among the other three clusters. One of the two eastern clusters is distributed in the Caucasus region plus Iran, and terrapins from Saudi Arabia and Bahrain constitute the second eastern cluster, supporting the view that these endangered populations are native. Coalescent-based analyses of our microsatellite data reveal for all four clusters bottlenecks 4,000–20,000 years ago, suggesting that climatic fluctuations of the Late Pleistocene and Holocene played an important role in shaping current genetic diversity. We propose that each of the four identified clusters, including the Central Anatolian one, should be treated as a distinct management unit. The presence of non-native terrapins in the animal trade of Bahrain highlights the danger of genetic pollution of the endangered Arabian populations. Further sampling is needed to elucidate the situation in southern and central Iran and Iraq. Our results confirm that genetic data do not support the validity of any of the three morphologically defined subspecies of M. caspica, and we propose that their usage be abandoned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号