首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
β-Glucosidases I, II, and III were isolated from the culture filtrate of a Streptomyces sp. by ammonium sulfate fractionation, hydroxylapatite column chromatography, filtration on Bio-Gel P-100, and DE-52 column chromatography. β-Glucosidase III had a single active band on disc-gel electrophoresis. Its optimum pH and temperature for activity were 6.0 and 60°C, respectively. The isoelectric point and molecular weight of the enzyme were pH 4.5 and 45,000, respectively. From an experiment using 14C-labeled glucose, gentiobiose seemed to be formed from laminaribiose as isomaltose is formed from maltose by fungal α-glucosidase. The enzyme showed transglucosylation and produced gentiobiose from β-gluco-disaccharides and 4-O-β-d-glucopyranosyl-d-manno-pyranose (epicellobiose). The enzyme acted on phenolic β-d-glucosides to produce unknown transfer products.  相似文献   

2.
By selective enrichment, we isolated a bacterium that can use β-phenylalanine as a sole nitrogen source. It was identified by 16S rRNA gene sequencing as a strain of Variovorax paradoxus. Enzyme assays revealed an aminotransferase activity. Partial genome sequencing and screening of a cosmid DNA library resulted in the identification of a 1,302-bp aminotransferase gene, which encodes a 46,416-Da protein. The gene was cloned and overexpressed in Escherichia coli. The recombinant enzyme was purified and showed a specific activity of 17.5 U mg−1 for (S)-β-phenylalanine at 30°C and 33 U mg−1 at the optimum temperature of 55°C. The β-specific aminotransferase exhibits a broad substrate range, accepting ortho-, meta-, and para-substituted β-phenylalanine derivatives as amino donors and 2-oxoglutarate and pyruvate as amino acceptors. The enzyme is highly enantioselective toward (S)-β-phenylalanine (enantioselectivity [E], >100) and derivatives thereof with different substituents on the phenyl ring, allowing the kinetic resolution of various racemic β-amino acids to yield (R)-β-amino acids with >95% enantiomeric excess (ee). The crystal structures of the holoenzyme and of the enzyme in complex with the inhibitor 2-aminooxyacetate revealed structural similarity to the β-phenylalanine aminotransferase from Mesorhizobium sp. strain LUK. The crystal structure was used to rationalize the stereo- and regioselectivity of V. paradoxus aminotransferase and to define a sequence motif with which new aromatic β-amino acid-converting aminotransferases may be identified.  相似文献   

3.
4.
A β-mannanase was purified from the culture filtrate of Penicillium purpurogenum No. 618 by 1st and 2nd DEAE-cellulose column chromatographies, and subsequent Ultro-gel chromatography. The final preparation thus obtained showed a single band on polyacrylamide disc-gel and SDS-polyacrylamide gel electrophoresis. The molecular weight and isoelectric point were determined to be 57,000 and pH 4.1 by SDS-polyacrylamide gel electrophoresis and isoelectric focusing, respectively. The purified mannanase contained the following amino acids: glycine > serine >glutamic acid > alanine > aspartic acid. The mannanase exhibited maximum activity at pH 5 and 70°C, and was stable in the pH range of 4.5 to 8 and at temperatures up to 65°C. The enzyme activity was not affected considerably by either metal compounds or ethyl- enediaminetetraacetic acid. Copra galactomannan (Gal: Man =1 :14) was finally hydrolyzed to galactose, mannose and β-1,4-mannobiose through the sequential actions of the purified mannanase and the α-galactosidase purified from the same strain.  相似文献   

5.
A new β-mannosidase gene, designated as man2S27, was cloned from Streptomyces sp. S27 using the colony PCR method and expressed in Escherichia coli BL21 (DE3). The full-length gene consists of 2499 bp and encodes 832 amino acids with a calculated molecular mass of 92.6 kDa. The amino acid sequence shares highest identity of 62.6% with the mannosidase Man2A from Cellulomonas fimi which belongs to the glycoside hydrolase family 2. Purified recombinant Man2S27 showed optimal activity at pH 7.0 and 50 °C. The specific activity, Km, and kcat values for p-nitrophenyl-β-d-mannopyranoside (p-NP-β-MP) were 35.3 U mg-1, 0.23 mM, and 305 s-1, respectively. Low transglycosylation activity was observed when Man2S27 was incubated with p-NP-β-MP (glycosyl donor) and methyl-α-d-mannopyranoside (p-NP-α-MP) (acceptor) at 50 °C and pH 7.0, and a small amount of methylmannobioside was synthesized. Using locust bean gum as the substrate, more reducing sugars were liberated by the synergistic action of Man2S27 and β-mannanase (Man5S27), and the synergy degree in sequential reactions with Man5S27 firstly and Man2S27 secondly was higher than that in the simultaneous reactions.  相似文献   

6.
When mycelia of Streptomyces sp. No. 3137 were cultivated in a medium containing methyl β-xyloside, xylanases (EC 3.2.1.8) were inductively produced into the medium. Three types of enzyme from the culture filtrate have been purified by ultrafiltration with DIAFLO UM-10, chromatography on DEAE-Sephadex A-25, gel filtration on Bio Gel P-100, and isoelectric focusing with Servalyt 6~8 or 9~11. The three purified enzymes, tentatively named X-I, X-II-A, and X-II-B, were homogeneous by Polyacrylamide gel electrophoresis at pH 4.3. The molecular weight of X-I was about 50,000 by SDS-polyacrylamide gel electrophoresis or gel filtration on Bio Gel P-100. The molecular weight of X-II-A and X-II-B were both approximately 25,000 by SDS-polyacrylamide gel electrophoresis and that of X-II-B was 25,680 by the sedimentation-equilibrium method. X-I had an isoelectric point at 7.10, and X-II-A and X-II-B had different isoelectric points, 10.06 and 10.26, respectively. The three enzymes were optimally active at 60~65°C and stable to 55°C. The optimal pH of X-I, X-II-A, and X-II-B were pH 5.5~6.5, 5.0~6.0, and 5.0~6.0, respectively. The ranges of two X-I’s pH stability (pH 1.5 ~ 11.5) were wider than that of X-I’s (pH 3.0 ~ 10.5). These purified preparations hydrolyzed xylotriose, xylotetraose, and xylan but not xylobiose, cellobiose, maltose, carboxymethyl cellulose, or soluble starch. Their actions were inhibited by Hg2+ and Fe3+ ions, sodium dodecyl sulfate, and N-bromosuccinimide.  相似文献   

7.
As a constituent of polysaccharides and glycoconjugates, β-d-galactofuranose (Galf) exists in several pathogenic microorganisms. Although we recently identified a β-d-galactofuranosidase (Galf-ase) gene, ORF1110, in the Streptomyces strain JHA19, very little is known about the Galf-ase gene. Here, we characterized a strain, named JHA26, in the culture supernatant of which exhibited Galf-ase activity for 4-nitrophenyl β-d-galactofuranoside (pNP-β-d-Galf) as a substrate. Draft genome sequencing of the JHA26 strain revealed a putative gene, termed ORF0643, that encodes Galf-ase containing a PA14 domain, which is thought to function in substrate recognition. The recombinant protein expressed in Escherichia coli showed the Galf-specific Galf-ase activity and also released galactose residue of the polysaccharide galactomannan prepared from Aspergillus fumigatus, suggesting that this enzyme is an exo-type Galf-ase. BLAST searches using the amino acid sequences of ORF0643 and ORF1110 Galf-ases revealed two types of Galf-ases in Actinobacteria, suggesting that Galf-specific Galf-ases may exhibit discrete substrate specificities.  相似文献   

8.
An operon, bglABC, that encodes two sugar permeases and a β-glucosidase was cloned from a cellulolytic actinomycete, Thermobifida fusca, into Escherichia coli and sequenced. The bglC gene encoding an intracellular β-glucosidase (β-d-glucoside glucohydrolase, EC 3.2.1.21) belonging to glycosyl hydrolase family 1 was subcloned and expressed in E. coli. The purified enzyme (MW 53,407 Da; pI 4.69) hydrolyzed substrates containing both β 1 → 4 and β 1 → 2 glycosidic bonds, and was most active against cellobiose (Vmax= 29, K m = 0.34 mm), cellotriose, cellotetraose, and sophorose. The enzyme also showed aryl-β-glucosidase activity on p-nitrophenyl-β-d-glucopyranoside and p-nitrophenyl-β-d-cellobioside. BglC had a pH optimum of 7.0 and a temperature optimum of 50°C. The enzyme was stable at 60°C, but was rapidly inactivated at 65°C. BglC was inhibited by low concentrations of gluconolactone, but was insensitive to end-product inhibition by glucose and was not affected by Ca or Mg ions or EDTA. Its properties are well suited for use in a process to hydrolyze biomass cellulose to glucose. Received: 21 August 2000 / Accepted: 4 October 2000  相似文献   

9.
Marine bacterium Reinekea sp. KIT-YO10 was isolated from the seashore of Kanazawa Port in Japan as a seaweed-degrading bacterium. Homology between KIT-YO10 16S rDNA and the 16S rDNA of Reinekea blandensis and Reinekea marinisedimentorum was 96.4 and 95.4%, respectively. Endo-1,4-β-D-mannanase (β-mannanase, EC 3.2.1.78) from Reinekea sp. KIT-YO10 was purified 29.4-fold to a 21% yield using anion exchange chromatography. The purified enzyme had a molecular mass of 44.3?kDa, as estimated by SDS-PAGE. Furthermore, the purified enzyme displayed high specificity for konjac glucomannan, with no secondary agarase and arginase activity detected. Hydrolysis of konjac glucomannan and locust bean gum yielded oligosaccharides, compatible with an endo mode of substrate depolymerization. The purified enzyme possessed transglycosylation activity when mannooligosaccharides (mannotriose or mannotetraose) were used as substrates. Optimal pH and temperature were determined to be 8.0 and 70?°C, respectively. It showed thermostability at temperatures from 20 to 50?°C and alkaline stability up to pH 10.0. The current enzyme was thermostable and thermophile compared to the β-mannanase of other marine bacteria.  相似文献   

10.
-Glucosidase and -xylosidase production by a yeastlike Aureobasidium sp. was carried out during solid-state and submerged fermentation using different carbon sources and crude enzymes were characterized. -Glucosidase and -xylosidase exhibited optimum activities at pH 2.0–2.5 and 3.0, respectively. These enzymes had the maximum activities at 65°C and were stable in a wide pH range and at high temperatures.  相似文献   

11.
Two distinct forms of β-glucosidase, A and B, were found to occur in the cells of Pseudomonas fluorescens var. cellulosa : A was membrane-bound, while B cytosolic. They differed also from each other in some properties, such as molecular size, kinetic parameters, and susceptibility to various compounds. β-Glucosidase B was partially purified and studied especially of its substrate specificity. The results indicated that it may be an atypical β-glucosidase which possesses a certain character of exo-cellulase.  相似文献   

12.
β-Mannanase and β-mannosidase from Aspergillus awamori K4 was produced by solid culture with coffee waste and wheat bran. The optimum composition for enzyme production was 40% coffee waste–60% wheat bran. Two enzymes were partially purified. Optimum pH was about 5 for both enzymes, and optimum temperature was around 80°C for β-mannanase and 60–70°C for β-mannosidase. These enzymes produced some oligosaccharides from glucomannan and galactomannan by their hydrolyzing and transferring activities. β-Mannanase hydrolyzed konjak and locust bean gum 39.1% and 15.8%, respectively. Oligosaccharides of various molecular size were released from glucomannan of konjak, but on the addition of cellulase, mannobiose was released selectively. In locust bean gum, tetra-, tri-, and disaccharides (mannobiose) were mainly released by K4 β-mannanase. Tetra- and trisaccharides were heterooligosaccharides consisting of galactose and mannose residues. K4 β-mannosidase had a transglycosylation action, transferring mannose residue to alcohols and sugars like fructose. Received: 24 April 2000/Accepted: 20 October 2000  相似文献   

13.
Srome properties were examined of purified α-l,3-glucanase isolated from the culture supernatant of the soil microorganism Streptomyces KI-8.

The optimum pH and temperature were pH 5.4 and 60°C, respectively. The α-1,3-glucanase was stable up to 50°C on heating for 10 min. This enzyme hydrolyzed the substrate α-l,3-glucan into glucose and nigerose by an endo-type of action. Nigerotriose, nigerotetraose and nigeropentaose were hydrolyzed into glucose and nigerose, whereas nigerose was not attacked. The degree of hydrolysis of pseudonigeran, Lentinus α-1,3-glucan, mutan IG-1 (less soluble fraction) and IG-2 (more soluble fraction) by the α-1,3-glucanase were 28.5%, 14.3%, 8.8% and 10.0%, respectively. Km values (mg/ml) for pseudonigeran, Lentinus α-l,3-glucan, mutan IG-1 and IG-2 were 1.12, 1.98, 8.00 and 5.00. The enzyme solubilized 50 to 80% of mutan by concerted action with dextranase.  相似文献   

14.
Termites and their symbiotic protists have established a prominent dual lignocellulolytic system, which can be applied to the biorefinery process. One of the major components of lignocellulose from conifers is glucomannan, which comprises a heterogeneous combination of β-1,4-linked mannose and glucose. Mannanases are known to hydrolyze the internal linkage of the glucomannan backbone, but the specific mechanism by which they recognize and accommodate heteropolysaccharides is currently unclear. Here, we report biochemical and structural analyses of glycoside hydrolase family 26 mannanase C (RsMan26C) from a symbiotic protist of the termite Reticulitermes speratus. RsMan26C was characterized based on its catalytic efficiency toward glucomannan, compared with pure mannan. The crystal structure of RsMan26C complexed with gluco-manno-oligosaccharide(s) explained its specificities for glucose and mannose at subsites −5 and −2, respectively, in addition to accommodation of both glucose and mannose at subsites −3 and −4. RsMan26C has a long open cleft with a hydrophobic platform of Trp94 at subsite −5, facilitating enzyme binding to polysaccharides. Notably, a unique oxidized Met85 specifically interacts with the equatorial O-2 of glucose at subsite −3. Our results collectively indicate that specific recognition and accommodation of glucose at the distal negative subsites confers efficient degradation of the heteropolysaccharide by mannanase.  相似文献   

15.
Formation of transfer products from soybean arabinogalactan and glycerol by endo-1,4-β-d-galactanase from Penicillium citrinum was described. The amount of transfer products depended on the glycerol concentration. About 50% of the galactose residues which could be liberated from the polysaccharide by the enzyme were transferred to glycerol at an acceptor concentration of 2.5% (w/v). Transfer products with various polymerization degrees were accumulated at the beginning of the reaction and then those with higher polymerization degrees were degraded gradually. At a final stage of the reaction, two transfer products in addition to two hydrolysis products (galactose and galactobiose) were mainly accumulated. The two transfer products were isolated and their structures were examined. They were 2-O-β-d-galactosyl glycerol and O-β-d-galactosyl-(1 → 4)-O-β-d-galactosyl-(1 → 2)glycerol.  相似文献   

16.
A β-1,3-glucanase was detected, using laminarin as substrate, in the culture broth of Chaetomium sp. Major activity was associated with a 70 kDa protein band visualized on a polyacrylamide gel. β-1,3-Glucanase was purified by a one-step, native gel purification procedure. Optimal activity was observed at pH 6.0 and 30 °C (over 30 min). It could degrade cell walls of plant pathogens including Rhizoctonia solani, Gibberella zeae, Fusarium sp., Colletotrichum gloeosporioides and Phoma sp. The N-terminal amino acid residues of the purified β-1,3-glucanase are PYQLQTP, which do not exhibit homology to other fungal β-1,3-glucanases suggesting it may be a novel enzyme. Received 20 July 2005; Revisions requested 2 August 2005 and 27 September 2005; Revisions received 16 September 2005 and 3 November 2005; Accepted 6 November 2005  相似文献   

17.
An extracellular β-fructofuranosidase from the yeast Xanthophyllomyces dendrorhous was characterized biochemically, molecularly, and phylogenetically. This enzyme is a glycoprotein with an estimated molecular mass of 160 kDa, of which the N-linked carbohydrate accounts for 60% of the total mass. It displays optimum activity at pH 5.0 to 6.5, and its thermophilicity (with maximum activity at 65 to 70°C) and thermostability (with a T50 in the range 66 to 71°C) is higher than that exhibited by most yeast invertases. The enzyme was able to hydrolyze fructosyl-β-(2→1)-linked carbohydrates such as sucrose, 1-kestose, or nystose, although its catalytic efficiency, defined by the kcat/Km ratio, indicates that it hydrolyzes sucrose approximately 4.2 times more efficiently than 1-kestose. Unlike other microbial β-fructofuranosidases, the enzyme from X. dendrorhous produces neokestose as the main transglycosylation product, a potentially novel bifidogenic trisaccharide. Using a 41% (wt/vol) sucrose solution, the maximum fructooligosaccharide concentration reached was 65.9 g liter−1. In addition, we isolated and sequenced the X. dendrorhous β-fructofuranosidase gene (Xd-INV), showing that it encodes a putative mature polypeptide of 595 amino acids and that it shares significant identity with other fungal, yeast, and plant β-fructofuranosidases, all members of family 32 of the glycosyl-hydrolases. We demonstrate that the Xd-INV could functionally complement the suc2 mutation of Saccharomyces cerevisiae and, finally, a structural model of the new enzyme based on the homologous invertase from Arabidopsis thaliana has also been obtained.The basidiomycetous yeast Xanthophyllomyces dendrorhous (formerly Phaffia rhodozyma) produces astaxanthin (3-3′-dihydroxy-β,β-carotene-4,4 dione [17, 25]). Different industries have displayed great interest in this carotenoid pigment due to its attractive red-orange color and antioxidant properties, which has intensified the molecular and genetic study of this yeast. As a result, several genes involved in the astaxanthin biosynthetic pathway have been cloned and/or characterized, as well as some other genes such as those encoding actin (60), glyceraldehyde-3-phosphate dehydrogenase (56), endo-β-1,3-glucanase, and aspartic protease (4). In terms of the use of carbon sources, a β-amylase (9), and an α-glucosidase (33) with glucosyltransferase activity (12), as well as a yeast cell-associated invertase (41), have also been reported.Invertases or β-fructofuranosidases (EC 3.2.1.26) catalyze the release of β-fructose from the nonreducing termini of various β-d-fructofuranoside substrates. Yeast β-fructofuranosidases have been widely studied, including that of Saccharomyces cerevisiae (11, 14, 45, 46), Schizosaccharomyces pombe (36), Pichia anomala (40, 49), Candida utilis (5, 8), or Schwanniomyces occidentalis (2). They generally exhibit strong similarities where sequences are available, and they have been classified within family 32 of the glycosyl-hydrolases (GH) on the basis of their amino acid sequences. The catalytic mechanism proposed for the S. cerevisiae enzyme implies that an aspartate close to the N terminus (Asp-23) acts as a nucleophile, and a glutamate (Glu-204) acts as the acid/base catalyst (46). In addition, the three-dimensional structures of some enzymes in this family have been resolved, such as that of an exoinulinase from Aspergillus niger (var. awamori; 37) and the invertase from Arabidopsis thaliana (55).As well as hydrolyzing sucrose, β-fructofuranosidases from microorganisms may also catalyze the synthesis of short-chain fructooligosaccharides (FOS), in which one to three fructosyl moieties are linked to the sucrose skeleton by different glycosidic bonds depending on the source of the enzyme (3, 52). FOS are one of the most promising ingredients for functional foods since they act as prebiotics (44), and they exert a beneficial effect on human health, participating in the prevention of cardiovascular diseases, colon cancer, or osteoporosis (28). Currently, Aspergillus fructosyltransferase is the main industrial producer of FOS (15, 52), producing a mixture of FOS with an inulin-type structure, containing β-(2→1)-linked fructose-oligomers (1F-FOS: 1-kestose, nystose, or 1F-fructofuranosylnystose). However, there is certain interest in the development of novel molecules that may have better prebiotic and physiological properties. In this context, β-(2→6)-linked FOS, where this link exits between two fructose units (6F-FOS: 6-kestose) or between fructose and the glucosyl moiety (6G-FOS: neokestose, neonystose, and neofructofuranosylnystose), may have enhanced prebiotic properties compared to commercial FOS (29, 34, 54). The enzymatic synthesis of 6-kestose and other related β-(2→6)-linked fructosyl oligomers has already been reported in yeasts such as S. cerevisiae (11) or Schwanniomyces occidentalis (2) and in fungi such as Thermoascus aurantiacus (26) or Sporotrichum thermophile (27). However, the production of FOS included in the 6G-FOS series has not been widely reported in microorganisms, probably because they are not generally produced (2, 15) or because they represent only a minor biosynthetic product (e.g., with baker''s yeast invertase) (11). Most research into neo-FOS production has been carried out with Penicillium citrinum cells (19, 31, 32, 39). In this context, neokestose is the main transglycosylation product accumulated by whole X. dendrorhous cells from sucrose (30), although the enzyme responsible for this reaction remained uncharacterized.Here, we describe the molecular, phylogenetic, and biochemical characterization of an extracellular β-fructofuranosidase from X. dendrorhous. Kinetic studies of its hydrolytic activity were performed using different substrates, and we investigated its fructosyltransferase capacity. The functionality of the gene analyzed was verified through its heterologous expression, and a structural model of this enzyme based on the homologous invertase from A. thaliana has also been obtained.  相似文献   

18.
19.
Extracellular enzymes with glucanase activities are an important component of actinomycete-fungus antagonism. Streptomyces sp. EF-14 has been previously identified as one of the most potent antagonists of Phytophthora spp. A beta-1,6-glucanase (EC 3.2.1.75; glucan endo-1,6-beta-glucosidase) was purified by four chromatographic steps from the culture supernatant of strain EF-14 grown on a medium with lyophilized cells of Candida utilis as main nutrient source. The glucanase level in this medium followed a characteristic pattern in which the rise of beta-1,6-glucanase activity always preceded that of beta-1,3-glucanase. The molecular mass of the enzyme was estimated to be 65 kDa and the pI approximately 5.5. It hydrolyzed pustulan by an endo-mechanism generating gentiobiose and glucose as final products. Laminarin was not hydrolyzed indicating that the enzyme does not recognize beta-1,6-links flanked by beta-1,3-links. No significant clearing of yeast cell walls in liquid suspensions or in agar plates was observed indicating that this beta-1,6-glucanase is a non-lytic enzyme. This is the first beta-1,6-glucanase characterized from an actinomycete.  相似文献   

20.
Summary A -cyclodextrin glucosyltransferase was purified from alkalophilic Bacillus sp. No. 562 over 64-fold with a yield of 32%. Its molecular size was estimated to be 170 kDa by gel filtration and 82 kDa by SDS-PAGE, with a pI of 7.2. The enzyme showed optimum activity at 65 °C and pH 7.0. It was stable from 0 to70 °C and from pH 7.0 to 11.0. The enzyme was specifically inhibited by Fe2+ and Fe3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号