首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Introduction

Nerve growth factor (NGF) level is increased in osteoarthritis (OA) joints and is involved in pain associated with OA. Stimuli responsible for NGF stimulation in chondrocytes are unknown. We investigated whether mechanical stress and proinflammatory cytokines may influence NGF synthesis by chondrocytes.

Methods

Primary cultures of human OA chondrocytes, newborn mouse articular chondrocytes or cartilage explants were stimulated by increasing amounts of IL-1β, prostaglandin E2 (PGE2), visfatin/nicotinamide phosphoribosyltransferase (NAMPT) or by cyclic mechanical compression (0.5 Hz, 1 MPa). Before stimulation, chondrocytes were pretreated with indomethacin, Apo866, a specific inhibitor of NAMPT enzymatic activity, or transfected by siRNA targeting visfatin/NAMPT. mRNA NGF levels were assessed by real-time quantitative PCR and NGF released into media was determined by ELISA.

Results

Unstimulated human and mouse articular chondrocytes expressed low levels of NGF (19.2 ± 8.7 pg/mL, 13.5 ± 1.0 pg/mL and 4.4 ± 0.8 pg/mL/mg tissue for human and mouse articular chondrocytes and costal explants, respectively). Mechanical stress induced NGF release in conditioned media. When stimulated by IL-1β or visfatin/NAMPT, a proinflammatory adipokine produced by chondocytes in response to IL-1β, a dose-dependent increase in NGF mRNA expression and NGF release in both human and mouse chondrocyte conditioned media was observed. Visfatin/NAMPT is also an intracellular enzyme acting as the rate-limiting enzyme of the generation of NAD. The expression of NGF induced by visfatin/NAMPT was inhibited by Apo866, whereas IL-1β-mediated NGF expression was not modified by siRNA targeting visfatin/NAMPT. Interestingly, PGE2, which is produced by chondrocytes in response to IL-1β and visfatin/NAMPT, did not stimulate NGF production. Consistently, indomethacin, a cyclooxygenase inhibitor, did not counteract IL-1β-induced NGF production.

Conclusions

These results show that mechanical stress, IL-1β and extracellular visfatin/NAMPT, all stimulated the expression and release of NGF by chondrocytes and thus suggest that the overexpression of visfatin/NAMPT and IL-1β in the OA joint and the increased mechanical loading of cartilage may mediate OA pain via the stimulation of NGF expression and release by chondrocytes.  相似文献   

2.

Introduction

Although IL-1β is believed to be crucial in the pathogenesis of osteoarthritis (OA), the IL-1β blockade brings no therapeutic benefit in human OA and results in OA aggravation in several animal models. We explored the role of a cytokine signaling 1 (SOCS1) suppressor as a regulatory modulator of IL-1β signaling in chondrocytes.

Methods

Cartilage samples were obtained from patients with knee OA and those without OA who underwent surgery for femur-neck fracture. SOCS1 expression in cartilage was assessed with immunohistochemistry. IL-1β-induced SOCS1 expression in chondrocytes was analyzed with quantitative polymerase chain reaction and immunoblot. The effect of SOCS1 on IL-1β signaling pathways and the synthesis of matrix metalloproteinases (MMPs) and aggrecanase-1 was investigated in SOCS1-overexpressing or -knockdown chondrocytes.

Results

SOCS1 expression was significantly increased in OA cartilage, especially in areas of severe damage (P < 0.01). IL-1β stimulated SOCS1 mRNA expression in a dose-dependent pattern (P < 0.01). The IL-1β-induced production of MMP-1, MMP-3, MMP-13, and ADAMTS-4 (aggrecanase-1, a disintegrin and metalloproteinase with thrombospondin motifs 4) was affected by SOCS1 overexpression or knockdown in both SW1353 cells and primary human articular chondrocytes (all P values < 0.05). The inhibitory effects of SOCS1 were mediated by blocking p38, c-Jun N-terminal kinase (JNK), and nuclear factor κB (NF-κB) activation, and by downregulating transforming growth factor-β-activated kinase 1 (TAK1) expression.

Conclusions

Our results show that SOCS1 is induced by IL1-β in OA chondrocytes and suppresses the IL-1β-induced synthesis of matrix-degrading enzymes by inhibiting IL-1β signaling at multiple levels. It suggests that the IL-1β-inducible SOCS1 acts as a negative regulator of the IL-1β response in OA cartilage.  相似文献   

3.
4.

Introduction

The development of effective treatments for osteoarthritis (OA) has been hampered by a poor understanding of OA at the cellular and molecular levels. Emerging as a disease of the ''whole joint’, the importance of the biochemical contribution of various tissues, including synovium, bone and articular cartilage, has become increasingly significant. Bathing the entire joint structure, the proteomic analysis of synovial fluid (SF) from osteoarthritic shoulders offers a valuable ''snapshot’ of the biologic environment throughout disease progression. The purpose of this study was to identify differentially expressed proteins in early and late shoulder osteoarthritic SF in comparison to healthy SF.

Methods

A quantitative 18O labeling proteomic approach was employed to identify the dysregulated SF proteins in early (n = 5) and late (n = 4) OA patients compared to control individuals (n = 5). In addition, ELISA was used to quantify six pro-inflammatory and two anti-inflammatory cytokines.

Results

Key results include a greater relative abundance of proteins related to the complement system and the extracellular matrix in SF from both early and late OA. Pathway analyses suggests dysregulation of the acute phase response, liver x receptor/retinoid x receptor (LXR/RXR), complement system and coagulation pathways in both early and late OA. The network related to lipid metabolism was down-regulated in both early and late OA. Inflammatory cytokines including interleukin (IL) 6, IL 8 and IL 18 were up-regulated in early and late OA.

Conclusions

The results suggest a dysregulation of wound repair pathways in shoulder OA contributing to the presence of a ''chronic wound’ that progresses irreversibly from early to later stages of OA. Protease inhibitors were downregulated in late OA suggesting uncontrolled proteolytic activity occurring in late OA. These results contribute to the theory that protease inhibitors represent promising therapeutic agents which could limit proteolytic activity that ultimately leads to cartilage destruction.  相似文献   

5.

Introduction

Our objective was to investigate whether a lack of frizzled-related protein B (FrzB), an extracellular antagonist of the Wnt signaling pathways, could enhance cartilage degradation by facilitating the expression, release and activation of matrix metalloproteinases (MMPs) by chondrocytes in response to tissue-damaging stimuli.

Methods

Cartilage explants from FrzB−/− and wild-type mice were challenged by excessive dynamic compression (0.5 Hz and 1 MPa for 6 hours). Load-induced glycosaminoglycan (GAG) release and MMP enzymatic activity were assessed. Interleukin-1β (IL-1β) (10, 100 and 1000 pg/mL for 24 hours) was used to stimulate primary cultures of articular chondrocytes from FrzB−/− and wild-type mice. The expression and release of MMP-3 and −13 were determined by RT-PCR, western blot and ELISA. The accumulation of β-catenin was assessed by RT-PCR and western blot.

Results

Cartilage degradation, as revealed by a significant increase in GAG release (2.8-fold, P = 0.014) and MMP activity (4.5-fold, P = 0.014) by explants, was induced by an excessive load. Load-induced MMP activity appeared to be enhanced in FrzB−/− cartilage explants compared to wild-type (P = 0.17). IL-1β dose-dependently induced Mmp-13 and −3 gene expression and protein release by cultured chondrocytes. IL-1β-mediated increase in MMP-13 and −3 was slightly enhanced in FrzB−/− chondrocytes compared to wild-type (P = 0.05 and P = 0.10 at gene level, P = 0.17 and P = 0.10 at protein level, respectively). Analysis of Ctnn1b and Lef1 gene expression and β-catenin accumulation at protein level suggests that the enhanced catabolic response of FrzB−/− chondrocytes to IL-1β and load may be associated with an over-stimulation of the canonical Wnt/β-catenin pathway.

Conclusions

Our results suggest that FrzB may have a protective role on cartilage degradation and MMP induction in mouse chondrocytes by attenuating deleterious effects of the activation of the canonical Wnt/β-catenin pathway.  相似文献   

6.
Park BS  Jin SH  Park JJ  Park JW  Namgoong IS  Kim YI  Lee BJ  Kim JG 《PloS one》2011,6(1):e15981

Background/Objective

Visfatin, also known as nicotiamide phosphoribosyltransferase or pre-B cell colony enhancing factor, is a pro-inflammatory cytokine whose serum level is increased in sepsis and cancer as well as in obesity. Here we report a pro-inflammatory role of visfatin in the brain, to mediate sickness responses including anorexia, hyperthermia and hypoactivity.

Methodology

Rats were intracerebroventricularly (ICV) injected with visfatin, and changes in food intake, body weight, body temperature and locomotor activity were monitored. Real-time PCR was applied to determine the expressions of pro-inflammatory cytokines, proopiomelanocortin (POMC) and prostaglandin-synthesizing enzymes in their brain. To determine the roles of cyclooxygenase (COX) and melanocortin in the visfatin action, rats were ICV-injected with visfatin with or without SHU9119, a melanocortin receptor antagonist, or indomethacin, a COX inhibitor, and their sickness behaviors were evaluated.

Principal Findings

Administration of visfatin decreased food intake, body weight and locomotor activity and increased body temperature. Visfatin evoked significant increases in the levels of pro-inflammatory cytokines, prostaglandin-synthesizing enzymes and POMC, an anorexigenic neuropeptide. Indomethacin attenuated the effects of visfatin on hyperthermia and hypoactivity, but not anorexia. Further, SHU9119 blocked visfatin-induced anorexia but did not affect hyperthermia or hypoactivity.

Conclusions

Visfatin induced sickness responses via regulation of COX and the melanocortin pathway in the brain.  相似文献   

7.
Visfatin (also termed pre-B-cell colony-enhancing factor (PBEF) or nicotinamide phosphoribosyltransferase (Nampt)) is a pleiotropic mediator acting on many inflammatory processes including osteoarthritis. Visfatin exhibits both an intracellular enzymatic activity (nicotinamide phosphoribosyltransferase, Nampt) leading to NAD synthesis and a cytokine function via the binding to its hypothetical receptor. We recently reported the role of visfatin in prostaglandin E(2) (PGE(2)) synthesis in chondrocytes. Here, our aim was to characterize the signaling pathways involved in this response in exploring both the insulin receptor (IR) signaling pathway and Nampt activity. IR was expressed in human and murine chondrocytes, and visfatin triggered Akt phosphorylation in murine chondrocytes. Blocking IR expression with siRNA or activity using the hydroxy-2-naphthalenyl methyl phosphonic acid tris acetoxymethyl ester (HNMPA-(AM)(3)) inhibitor diminished visfatin-induced PGE(2) release in chondrocytes. Moreover, visfatin-induced IGF-1R(-/-) chondrocytes released higher concentration of PGE(2) than IGF-1R(+/+) cells, a finding confirmed with an antibody that blocked IGF-1R. Using RT-PCR, we found that visfatin did not regulate IR expression and that an increased insulin release was also unlikely to be involved because insulin was unable to increase PGE(2) release. Inhibition of Nampt activity using the APO866 inhibitor gradually decreased PGE(2) release, whereas the addition of exogenous nicotinamide increased it. We conclude that the proinflammatory actions of visfatin in chondrocytes involve regulation of IR signaling pathways, possibly through the control of Nampt enzymatic activity.  相似文献   

8.

Introduction

AMP-activated protein kinase (AMPK) maintains cultured chondrocyte matrix homeostasis in response to inflammatory cytokines. AMPK activity is decreased in human knee osteoarthritis (OA) chondrocytes. Liver kinase B1 (LKB1) is one of the upstream activators of AMPK. Hence, we examined the relationship between LKB1 and AMPK activity in OA and aging cartilages, and in chondrocytes subjected to inflammatory cytokine treatment and biomechanical compression injury, and performed translational studies of AMPK pharmacologic activation.

Methods

We assessed activity (phosphorylation) of LKB1 and AMPKα in mouse knee OA cartilage, in aging mouse cartilage (6 to 24 months), and in chondrocytes after mechanical injury by dynamic compression, via immunohistochemistry or western blot. We knocked down LKB1 by siRNA transfection. Nitric oxide, matrix metalloproteinase (MMP)-3, and MMP-13 release were measured by Griess reaction and ELISA, respectively.

Results

Knockdown of LKB1 attenuated chondrocyte AMPK activity, and increased nitric oxide, MMP-3 and MMP-13 release (P <0.05) in response to IL-1β and TNFα. Both LKB1 and AMPK activity were decreased in mouse knee OA and aged knee cartilage, and in bovine chondrocytes after biomechanical injury. Pretreatment of bovine chondrocytes with AMPK activators AICAR and A-769662 inhibited both AMPKα dephosphorylation and catabolic responses after biomechanical injury.

Conclusion

LKB1 is required for chondrocyte AMPK activity, thereby inhibiting matrix catabolic responses to inflammatory cytokines. Concurrent loss of LKB1 and AMPK activity in articular chondrocytes is associated with OA, aging and biomechanical injury. Conversely, pharmacologic AMPK activation attenuates catabolic responses to biomechanical injury, suggesting a potentially novel approach to inhibit OA development and progression.  相似文献   

9.

Introduction

High joint loading, knee muscle weakness, and poor proprioceptive acuity are important factors that have been linked to knee osteoarthritis (OA). We previously reported that those with unilateral hip OA and bilateral asymptomatic knees are more predisposed to develop progressive OA in the contralateral knee relative to the ipsilateral knee. In the present study, we evaluate asymmetries in muscle strength and proprioception between the limbs and also evaluate relationships between these factors and joint loading that may be associated with the asymmetric evolution of OA in this group.

Methods

Sixty-two participants with symptomatic unilateral hip OA and asymptomatic knees were evaluated for muscle strength, joint position sense and dynamic joint loads at the knees. Muscle strength and proprioception were compared between limbs and correlations between these factors and dynamic joint loading were evaluated. Subgroup analyses were also performed in only those participants that fulfilled criteria for severe hip OA.

Results

Quadriceps muscle strength was 15% greater, and in the severe subgroup, proprioceptive acuity was 25% worse at the contralateral compared to ipsilateral knee of participants with unilateral hip OA (P <0.05). In addition, at the affected limb, there was an association between decreased proprioceptive acuity and higher knee loading (Spearman’s rho = 0.377, P = 0.007) and between decreased proprioceptive acuity and decreased muscle strength (Spearman’s rho = −0.328, P = 0.016).

Conclusions

This study demonstrated asymmetries in muscle strength and proprioception between the limbs in a unilateral hip OA population. Early alterations in these factors suggest their possible role in the future development of OA at the contralateral ‘OA-predisposed knee’ in this group. Furthermore, the significant association observed between proprioception, loading, and muscle strength at the affected hip limb suggests that these factors may be interrelated.  相似文献   

10.

Introduction

Excess C/EBP homologous protein (CHOP) expression is one feature of the unfolded protein response (UPR) to endoplasmic reticulum (ER) stress. Here, we focused on CHOP expression and function in chondrocytes.

Methods

We studied human knee osteoarthritis (OA) cartilage, bovine chondrocytes cultured in alginate and subjected to sub-lethal biomechanical injury, and knee chondrocytes of human autopsy donors. We performed siRNA knockdown and transfection.

Results

UPR activation was increased in human knee OA cartilage in situ, and in biomechanically injured cultured chondrocytes in vitro. In normal human chondrocytes, CHOP “gain of function” sensitized chondrocytes to IL-1β induced nitric oxide (NO) and matrix metalloproteinase (MMP)-3 release without inducing these responses by itself. Excess CHOP expression, by itself, induced superoxide production and apoptosis. Conversely, siRNA knockdown of CHOP and the UPR-specific mediator X-box binding protein (XBP1) inhibited NO release by >80% (P <0.0005) in response to IL-1β, and blunted MMP-3 release, whereas there were only minimal effects of the UPR mediator GRP78 on these responses. The anti-inflammatory metabolic “super-regulator” AMP kinase (AMPK) is known to limit UPR activation in vascular muscle cells. Here, CHOP supported the capacity of IL-1β to suppress AMPK activity in chondrocytes. We also observed that inhibition of AMPK activity promoted an increase in chondrocyte CHOP expression. Conversely, pharmacologic activation of AMPK by 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) blunted chondrocyte CHOP expression in response to biomechanical injury.

Conclusions

Biomechanical injury and IL-1 signaling stimulate UPR activation in chondrocytes. CHOP mediates chondrocyte catabolic and apoptotic responses to IL-1β, and does so partly by inhibiting AMPK activity. Conversely, development of excess CHOP activity is limited by AMPK activity in chondrocytes. Our findings suggest a mechanism for potential chondroprotection by AICAR and other AMPK activators. The work is of translational relevance for OA, since several drugs that activate AMPK are already in the clinic for arthritis (for example, allosteric AMPK activators sodium salicylate and high dose aspirin, and methotrexate, which activates AMPK by generating AICAR).  相似文献   

11.

Introduction

The aim of this study was to examine the associations of elevated serum C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) with change in muscle strength in patients with established knee osteoarthritis (OA), at 2 years.

Methods

Data from 186 patients with knee OA were gathered at baseline and at 2-year follow-up. CRP (in milligrams per liter) and ESR (in millimeters per hour) were measured in serum from patients’ blood. Strength of quadriceps and hamstrings muscles was assessed by using an isokinetic dynamometer. The association of inflammatory markers with change in knee muscle strength was analyzed by using uni- and multi-variate linear regression models.

Results

Patients with elevated CRP values at both baseline and 2-year follow-up exhibited a lower increase in knee muscle strength for a period of 2 years (β = -0.22; P = 0.01) compared with the group with non-elevated levels at both times of assessment. The association persisted after adjustment for relevant confounders. Elevated ESR values at both times of assessment were not significantly associated with change in knee muscle strength (β = -0.05; P = 0.49).

Conclusions

Our results indicate that elevated CRP values are related to a lower gain in muscle strength over time in patients with established knee OA. Although the mechanism to explain this relationship is not fully elucidated, these results suggest inflammation as a relevant factor influencing muscle strength in this group of patients.  相似文献   

12.

Background

Among a variety of inflammatory mediators, visfatin is a proinflammatory adipocytokine associated with inflammatory reactions in obesity, metabolic syndrome, chronic inflammatory disease, and autoimmune disease. However, the biological role of visfatin in secretion of major mucins in human airway epithelial cells has not been reported. Therefore, this study was conducted in order to investigate the effect and the brief signaling pathway of visfatin on MUC8 and MUC5B expression in human airway epithelial cells.

Results

Visfatin significantly induced MUC8 and MUC5B expression. Visfatin significantly activated phosphorylation of p38 MAPK. Treatment with SB203580 (p38 MAPK inhibitor) and knockdown of p38 MAPK by siRNA significantly blocked visfatin-induced MUC8 and MUC5B expression.Visfatin significantly increased ROS formation. Treatment with SB203580 significantly attenuated visfatin-induced ROS formation. Treatment with NAC (ROS scavenger) and DPI (NADPH oxidase inhibitor) significantly attenuated visfatin-induced MUC8 and MUC5B expression. However, treatment with NAC and DPI did not attenuate visfatin-activated phosphorylation of p38 MAPK. Visfatin significantly activated the phosphorylation of NF-κB. Treatment with PDTC (NF-κB inhibitor) significantly attenuated visfatin-induced MUC8 and MUC5B expression.

Conclusions

These results suggest that visfatin induces MUC8 and MUC5B expression through p38 MAPK/ROS/NF-κB signaling pathway in human airway epithelial cells.  相似文献   

13.

Introduction

Pain in osteoarthritis (OA) has been classically attributed to joint structural damage. Disparity between the degree of radiographic structural damage and the severity of symptoms implies that factors other than the joint pathology itself contribute to the pain. Peripheral and central sensitization have been suggested as two of the underlying mechanisms that contribute to pain in OA. The aim of this study was to explore in symptomatic knee OA patients, the structural changes assessed by magnetic resonance imaging (MRI) that could be used as markers of neuropathic pain (NP).

Methods

This cross-sectional observational pilot study included 50 knee OA patients with moderate to severe pain (VAS ≥40) in the target knee. The presence of NP was determined based on the PainDETECT questionnaire. Among the 50 patients included, 25 had PainDETECT score ≤12 (unlikely NP), 9 had PainDETECT score between 13 and 18 (uncertain NP) and 16 had PainDETECT score ≥19 (likely NP). WOMAC, PainDETECT, and VAS pain scores as well as knee MRI were assessed.

Results

Data showed no significant difference in demographic characteristics between the three groups. However, a positive and statistically significant association was found between the WOMAC pain (P <0.001), function (P <0.001), stiffness (P = 0.007) and total (P <0.001) scores as well as higher VAS pain score (P = 0.023), and PainDETECT scores. Although no difference was found in the cartilage volume between groups, the presence of meniscal extrusion in both medial (P = 0.006) and lateral (P = 0.023) compartments, and presence of meniscal tears in the lateral compartment (P = 0.011), were significantly associated with increasing PainDETECT score. Moreover, the presence of bone marrow lesions in the lateral plateau and the extent of the synovial membrane thickness in the lateral recess were associated with increasing PainDETECT scores (P = 0.032, P = 0.027, respectively).

Conclusions

In this study, meniscal lesions, particularly extrusion, were found to be among the strongest risk factors for NP in knee OA patients.

Trial registration

ClinicalTrials.gov NCT01733277. Registered 16 November 2012.  相似文献   

14.

Introduction

Increased expression of aggrecanase-1 (ADAMTS-4) has emerged as an important factor in osteoarthritis (OA) and other joint diseases. This study aimed to determine whether the expression of ADAMTS-4 in human chondrocytes is regulated by miRNA.

Methods

MiRNA targets were identified using bioinformatics. Chondrocytes were isolated from knee cartilage and treated with interleukin-1 beta (IL-1β). Gene expression was quantified using TaqMan assays and protein production was determined by immunoblotting. Luciferase reporter assay was used to verify interaction between miRNA and target messenger RNA (mRNA).

Results

In silico analysis predicted putative target sequence of miR-125b on ADAMTS-4. MiR-125b was expressed in both normal and OA chondrocytes, with significantly lower expression in OA chondrocytes than in normal chondrocytes. Furthermore, IL-1β-induced upregulation of ADAMTS-4 was suppressed by overexpression of miR-125b in human OA chondrocytes. In the luciferase reporter assay, mutation of the putative miR-125b binding site in the ADAMTS-4 3''UTR abrogated the suppressive effect of miR125.

Conclusions

Our results indicate that miR-125b plays an important role in regulating the expression of ADAMTS-4 in human chondrocytes and this identifies miR-125b as a novel therapeutic target in OA.  相似文献   

15.

Introduction

Adipokines such as adiponectin, leptin, and visfatin/nicotinamide phosphoribosyltransferase (NAMPT) have recently emerged as pro-inflammatory mediators involved in the pathophysiology of rheumatoid arthritis (RA). We aimed to determine whether serum adipokine levels independently predicted early radiographic disease progression in early RA.

Methods

In total, 791 patients were included from the prospective Etude et Suivi des POlyarthrites Indifférenciées Récentes (ESPOIR) cohort who met the American College of Rheumatology-European League Against Rheumatism criteria for RA (n = 632) or had undifferentiated arthritis (UA) (n = 159). Enzyme-linked immunosorbent assay (ELISA) was used to assess baseline serum levels of adiponectin, leptin, and visfatin/NAMPT. In the RA group, we tested the association of serum adipokine levels and (a) baseline radiographic damage and (b) radiographic disease progression, defined as a change >0 or ≥5 in total Sharp-van der Heijde Score (∆SHS) between inclusion and 1 year (∆SHS ≥1 or rapid radiographic progression: ∆SHS ≥5), adjusting for confounders (age, sex, body-mass index, insulin resistance, C-reactive protein level, Disease Activity Score in 28 joints, Health Assessment Questionnaire score, autoantibody status, steroid use, and radiographic evidence of RA damage at inclusion).

Results

Adiponectin level was independently associated with baseline total SHS (adjusted β = 0.12; P = 0.006). It was also associated with ∆SHS ≥1 (adjusted odds ratio (aOR) = 1.84 (1.25 to 2.72)) involving erosive as well as narrowing disease progression (aOR = 1.73 (1.17 to 2.55) and 1.93 (1.04 to 3.57), respectively). Serum adiponectin level predicted ∆SHS ≥5 (aOR = 2.0 (1.14 to 3.52)). Serum leptin level was independently associated only with ∆SHS >0 (aOR = 1.59 (1.05 to 2.42)). Conversely, serum visfatin/NAMPT level and radiographic disease progression were unrelated. Considering the receiver-operated characteristic curves, the best adiponectin cut-offs were 4.14 μg/ml for ∆SHS ≥1 and 6.04 μg/ml for ∆SHS ≥5, with a good specificity (58% and 75% for ∆SHS ≥1 and ∆SHS ≥5, respectively) and high negative predictive values (75% and 92% for ∆SHS ≥1 or ∆SHS ≥5, respectively).

Conclusion

Serum adiponectin level is a simple useful biomarker associated with early radiographic disease progression in early RA, independent of RA-confounding factors and metabolic status.  相似文献   

16.
17.

Introduction

Hypoxia is considered to be a positive influence on the healthy chondrocyte phenotype and cartilage matrix formation. However, hypoxia-inducible factors (HIFs) have been implicated in the pathogenesis of osteoarthritis (OA). Thus, we assessed whether healthy and OA chondrocytes have distinct responses to oxygen, particularly with regard to hypertrophy and degradation during redifferentiation.

Methods

Monolayer-expanded healthy and OA chondrocytes were redifferentiated for 14 days in pellet cultures under standard (20% oxygen) or hypoxic (2% oxygen) conditions. Cartilage matrix gene expression, matrix quality and quantity, degradative enzyme expression and HIF expression were measured.

Results

In hypoxia, both healthy and OA chondrocytes had higher human collagen type II, α1 gene (COL2A1), and aggrecan (ACAN) expression and sulfated glycosaminoglycan (sGAG) accumulation, concomitant with lower human collagen type X, α1 gene (COL10A1), and human collagen type I, α1 gene (COL1A1), expression and collagen I extracellular accumulation. OA chondrocytes had significantly lower sGAGs/DNA than healthy chondrocytes, but only in high oxygen conditions. Hypoxia also caused significantly greater sGAG retention and hyaluronic acid synthase 2 (HAS2) expression by OA chondrocytes. Both healthy and OA chondrocytes had significantly lower expression of matrix metalloproteinases (MMPs) MMP1, MMP2, MMP3 and MMP13 in hypoxia and less active MMP2 enzyme, consistent with lower MMP14 expression. However, aggrecanase (ADAMTS4 and ADAMTS5) expression was significantly lowered by hypoxia only in healthy cells, and COL10A1 and MMP13 remained significantly higher in OA chondrocytes than in healthy chondrocytes in hypoxic conditions. HIF-1α and HIF-2α had similar expression profiles in healthy and OA cells, increasing to maximal levels early in hypoxia and decreasing over time.

Conclusions

Hypoxic culture of human chondrocytes has long been acknowledged to result in increased matrix accumulation, but still little is known of its effects on catabolism. We show herein that the increased expression of matrix proteins, combined with decreased expression of numerous degradative enzymes by hypoxia, minimizes but does not abolish differences between redifferentiated healthy and OA chondrocytes. Hypoxia-induced HIF expression is associated with hypertrophic marker and degradative enzyme downregulation and increased measures of redifferentiation in both healthy and OA chondrocytes. Therefore, though HIFs may be involved in the pathogenesis of OA, conditions that promote HIF expression in vitro promote matrix accumulation and decrease degradation and hypertrophy, even in cells from OA joints.  相似文献   

18.

Introduction

CD4+CD25+/highCD127low/- regulatory T cells (Tregs) play a crucial role in maintaining peripheral tolerance. Data about the frequency of Tregs in rheumatoid arthritis (RA) are contradictory and based on the analysis of peripheral blood (PB) and synovial fluid (SF). Because Tregs exert their anti-inflammatory activity in a contact-dependent manner, the analysis of synovial membrane (SM) is crucial. Published reports regarding this matter are lacking, so we investigated the distribution and phenotype of Tregs in concurrent samples of SM, SF and PB of RA patients in comparison to those of osteoarthritis (OA) patients.

Methods

Treg frequency in a total of 40 patients (18 RA and 22 OA) matched for age and sex was assessed by flow cytometry. Functional status was assessed by analysis of cell surface markers representative of activation, memory and regulation.

Results

CD4+ T cells infiltrate the SM to higher frequencies in RA joints than in OA joints (P = 0.0336). In both groups, Tregs accumulate more within the SF and SM than concurrently in PB (P < 0.0001). Relative Treg frequencies were comparable in all compartments of RA and OA, but Treg concentration was significantly higher in the SM of RA patients (P = 0.025). Both PB and SM Tregs displayed a memory phenotype (CD45RO+RA-), but significantly differed in activation status (CD69 and CD62L) and markers associated with Treg function (CD152, CD154, CD274, CD279 and GITR) with only minor differences between RA and OA.

Conclusions

Treg enrichment into the joint compartment is not specific to inflammatory arthritis, as we found that it was similarly enriched in OA. RA pathophysiology might not be due to a Treg deficiency, because Treg concentration in SM was significantly higher in RA. Synovial Tregs represent a distinct phenotype and are activated effector memory cells (CD62L-CD69+), whereas peripheral Tregs are resting central memory cells (CD62L+CD69-).  相似文献   

19.

Background

Even though osteoarthritis (OA) is the most common musculoskeletal dysfunction, there are no effective pharmacological treatments to treat OA due to lack of understanding in OA pathology. To better understand the mechanism in OA pathogenesis and investigate its effective target, we analyzed miRNA profiles during OA pathogenesis and verify the role and its functional targets of miR-488.

Results

Human articular chondrocytes were obtained from cartilage of OA patients undergoing knee replacement surgery and biopsy samples of normal cartilage and the expression profile of miRNA was analyzed. From expression profile, most potent miR was selected and its target and functional role in OA pathogenesis were investigated using target validation system and OA animal model system. Among miRNAs tested, miR-488 was significantly decreased in OA chondrocytes Furthermore, we found that exposure of IL-1β was also suppressed whereas exposure of TGF-β3 induced the induction of miR-488 in human articular chondrocytes isolated from biopsy samples of normal cartilages. Target validation study showed that miR-488 targets ZIP8 and suppression of ZIP8 in OA animal model showed the reduced cartilage degradation. Target validation study showed that miR-488 targets ZIP8 and suppression of ZIP8 in OA animal model showed the reduced cartilage degradation.

Conclusions

miR-488 acts as a positive role for chondrocyte differentiation/cartilage development by inhibiting MMP-13 activity through targeting ZIP-8.  相似文献   

20.

Rationale

Information concerning how climate and atmospheric pollutants affects physical activity in COPD patients is lacking and might be valuable in determining when physical activity should be encouraged.

Methods

Seventy-three stable COPD patients recorded on daily diary cards worsening of respiratory symptoms, peak expiratory flow rate, hours spent outside the home and the number of steps taken per day. Pedometry data was recorded on 16,478 days, an average of 267 days per patient (range 29-658). Daily data for atmospheric PM10 and ozone (O3) were obtained for Bloomsbury Square, Central London from the Air Quality Information Archive databases. Daily weather data were obtained for London Heathrow from the British Atmospheric Data Archive.

Results

Colder weather below 22.5 °C, reduced daily step count by 43.3 steps day per°C (95 % CI 2.14 to 84.4; p = 0.039) and activity was lower on rainy than dry days (p = 0.002) and on overcast compared to sunny days (p < 0.001). Daily step count was 434 steps per day lower on Sunday than Saturday (p < 0.001) and 353 steps per day lower on Saturday than Friday (p < 0.001). After allowance for these effects, higher O3 levels decreased activity during the whole week (-8 steps/ug/m3; p = 0.005) and at weekends (-7.8 steps/ug/m3; p = 0.032). Whilst, during the week PM10 reduced activity (p = 0.018) but not during the weekend.

Conclusions

Inactivity of COPD patients is greatest on cold, wet and overcast days and at the weekends. This study also provides evidence of an independent effect of atmospheric pollution at high levels.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0229-z) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号