首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Twelve years'' experience in providing summer employment for students in official health agencies in British Columbia is reviewed and a two-week orientation course given prior to employment in 1964 is described. In the program, which provides experience in teaching, research and community service, a total of 43 students have been employed. Students seeking this type of employment and accepted for it tend to have high academic standing. They prefer employment in or near Vancouver irrespective of their original home location. Two main employers have been available: specialized agencies in metropolitan Vancouver, or “rural” health units. Students serving in health units showed a strong tendency to enter general practice after graduation. Urban experience tended to lead to specialization.  相似文献   

2.
Many years of training are required to obtain a job as an academic scientist. Is this investment of time and effort worthwhile? My answer is a resounding “yes.” Academic scientists enjoy tremendous freedom in choosing their research and career path, experience unusual camaraderie in their lab, school, and international community, and can contribute to and enjoy being part of this historical era of biological discovery. In this essay, I further elaborate by listing my top ten reasons why an academic job is a desirable career for young people who are interested in the life sciences.Students are attracted to careers in academic science because of their interest in the subject rather than for financial reward. But then they hear messages that make them think twice about this career choice. It is difficult to find a job: “Hear about Joe? Three publications as a postdoc and still no job offers.” The NIH pay line is low: “Poor Patricia, she is now on her third submission of her first NIH grant.” Publishing is painful: “Felix''s grad school thesis work has been rejected by three journals!” Academic jobs are demanding: “Cathy has spent her last three weekends writing grants rather than being with her family.”Such scenarios do take place, but if you think that this is what a career in academic science is about, then you need to hear the other side of the story. And this is the purpose of this article—a chance to reflect on the many good things about the academic profession. In the classic movie It''s a Wonderful Life, George Bailey is at the point of despair but regains his confidence through the wisdom and perspective of a guardian angel, Clarence. Doubt and setbacks also are bound to happen in science (as is true of other careers), but pessimism should not rule the day. It is a great profession and there are many happy endings. I would like to share my top ten reasons of why being an academic professor is a “wonderful life,” one that bright and motivated young people should continue to aspire to pursue.  相似文献   

3.
The growth of Brazilian scientific production in recent years is remarkable, which motivates an investigation on the factors, inside and outside the country, that helped shape this wealthy research environment. This article provides a thorough analysis of the education of researchers that constitute the main Brazilian research groups, using data on about 6,000 researchers involved in the country’s National Institutes of Science and Technology (INCT) initiative. Data on the steps taken by each researcher in her education, from the bachelor’s degree to doctorate, including a possible postdoctoral experience, and employment, are extracted from an official curriculum vitae repository. The location and the time at which each career step occurred define spatiotemporal career trajectories. We then analyze such trajectories considering additional data, including the area of knowledge of the INCTs to which each researcher is associated. We found an increasing prevalence of Brazilian institutions in the education of Brazilian scientists, as the number of doctorates earned abroad is decreasing over time. Postdoctoral stages, on the other hand, often take place in Europe or in the United States. Taking an international postdoctoral position after a full education in Brazil suggests a drive towards seeking higher-level exchange and cooperation with foreign groups in a more advanced career stage. Results also show that Brazilian researchers tend to seek employment in regions that are close to the institutions at which they received their bachelor’s degrees, suggesting low mobility within the country. This study can be instrumental in defining public policies for correcting distortions, and can help other developing countries that aim to improve their national science systems.  相似文献   

4.
Participants completed a questionnaire priming them to perceive themselves as either objective or biased, either before or after evaluating a young or old job applicant for a position linked to youthful stereotypes. Participants agreed that they were objective and tended to disagree that they were biased. Extending past research, both the objective and bias priming conditions led to an increase in age discrimination compared to the control condition. We also investigated whether equity norms reduced age discrimination, by manipulating the presence or absence of an equity statement reminding decision-makers of the legal prohibitions against discrimination “on the basis of age, disability, national or ethnic origin, race, religion, or sex.” The presence of equity norms increased enthusiasm for both young and old applicants when participants were not already primed to think of themselves as objective, but did not reduce age-based hiring discrimination. Equity norms had no effect when individuals thought of themselves as objective – they preferred the younger more than the older job applicant. However, the presence of equity norms did affect individuals’ perceptions of which factors were important to their hiring decisions, increasing the perceived importance of applicants’ expertise and decreasing the perceived importance of the applicants’ age. The results suggest that interventions that rely exclusively on decision-makers'' intentions to behave equitably may be ineffective.  相似文献   

5.
Comparative research on food web structure has revealed generalities in trophic organization, produced simple models, and allowed assessment of robustness to species loss. These studies have mostly focused on free-living species. Recent research has suggested that inclusion of parasites alters structure. We assess whether such changes in network structure result from unique roles and traits of parasites or from changes to diversity and complexity. We analyzed seven highly resolved food webs that include metazoan parasite data. Our analyses show that adding parasites usually increases link density and connectance (simple measures of complexity), particularly when including concomitant links (links from predators to parasites of their prey). However, we clarify prior claims that parasites “dominate” food web links. Although parasites can be involved in a majority of links, in most cases classic predation links outnumber classic parasitism links. Regarding network structure, observed changes in degree distributions, 14 commonly studied metrics, and link probabilities are consistent with scale-dependent changes in structure associated with changes in diversity and complexity. Parasite and free-living species thus have similar effects on these aspects of structure. However, two changes point to unique roles of parasites. First, adding parasites and concomitant links strongly alters the frequency of most motifs of interactions among three taxa, reflecting parasites'' roles as resources for predators of their hosts, driven by trophic intimacy with their hosts. Second, compared to free-living consumers, many parasites'' feeding niches appear broader and less contiguous, which may reflect complex life cycles and small body sizes. This study provides new insights about generic versus unique impacts of parasites on food web structure, extends the generality of food web theory, gives a more rigorous framework for assessing the impact of any species on trophic organization, identifies limitations of current food web models, and provides direction for future structural and dynamical models.  相似文献   

6.
Domestic public debate continues over the economic impacts of environmental regulations that require environmental restoration. This debate has occurred in the absence of broad-scale empirical research on economic output and employment resulting from environmental restoration, restoration-related conservation, and mitigation actions — the activities that are part of what we term the “restoration economy.” In this article, we provide a high-level accounting of the size and scope of the restoration economy in terms of employment, value added, and overall economic output on a national scale. We conducted a national survey of businesses that participate in restoration work in order to estimate the total sales and number of jobs directly associated with the restoration economy, and to provide a profile of this nascent sector in terms of type of restoration work, industrial classification, workforce needs, and growth potential. We use survey results as inputs into a national input-output model (IMPLAN 3.1) in order to estimate the indirect and induced economic impacts of restoration activities. Based on this analysis we conclude that the domestic ecological restoration sector directly employs ~ 126,000 workers and generates ~ $9.5 billion in economic output (sales) annually. This activity supports an additional 95,000 jobs and $15 billion in economic output through indirect (business-to-business) linkages and increased household spending.  相似文献   

7.
There is no perfect recipe to balance work and life in academic research. Everyone has to find their own optimal balance to derive fulfilment from life and work. Subject Categories: S&S: Careers & Training

A few years ago, a colleague came into my office, looking a little irate, and said, “I just interviewed a prospective student, and the first question was, ‘how is work‐life balance here?’”. Said colleague then explained how this question was one of his triggers. Actually, this sentiment isn''t unusual among many PIs. And, yet, asking about one''s expected workload is a fair question. While some applicants are actually coached to ask it at interviews, I think that many younger scientists have genuine concerns about whether or not they will have enough time away from the bench in order to have a life outside of work.In a nutshell, I believe there is no one‐size‐fits‐all definition of work–life balance (WLB). I also think WLB takes different forms depending on one''s career stage. As a new graduate student, I didn''t exactly burn the midnight oil; it took me a couple of years to get my bench groove on, but once I did, I worked a lot and hard. I also worked on weekends and holidays, because I wanted answers to the questions I had, whether it was the outcome of a bacterial transformation or the result from a big animal experiment. As a post‐doc, I worked similarly hard although I may have actually spent fewer hours at the bench because I just got more efficient and because I read a lot at home and on the six train. But I also knew that I had to do as much as I could to get a job in NYC where my husband was already a faculty member. The pressure was high, and the stress was intense. If you ask people who knew me at the time, they can confirm I was also about 30 pounds lighter than I am now (for what it''s worth, I was far from emaciated!).As an assistant professor, I still worked a lot at the bench in addition to training students and writing grant applications (it took me three‐plus years and many tears to get my first grant). As science started to progress, work got even busier, but in a good way. By no means did I necessarily work harder than those around me—in fact, I know I could have worked even more. And I’m not going to lie, there can be a lot of guilt associated with not working as much as your neighbor.My example is only one of millions, and there is no general manual on how to handle WLB. Everyone has their own optimal balance they have to figure out. People with children or other dependents are particularly challenged; as someone without kids, I cannot even fathom how tough it must be. Even with some institutions providing child care or for those lucky enough to have family take care of children, juggling home life with “lab life” can create exceptional levels of stress. What I have observed over the years is that trainees and colleagues with children become ridiculously efficient; they are truly remarkable. One of my most accomplished trainees had two children, while she was a post‐doc and she is a force to be reckoned with—although no longer in my laboratory, she still is a tour de force at work, no less with child number three just delivered! I think recruiters should view candidates with families as well—if not better—equipped to multi‐task and get the job done.There are so many paths one can take in life, and there is no single, “correct” choice. If I had to define WLB, I would say it is whatever one needs to do in order to get the work done to one''s satisfaction. For some people, putting in long days and nights might be what is needed. Does someone who puts in more hours necessarily do better than one who doesn''t, or does a childless scientist produce more results than one with kids? Absolutely not. People also have different goals in life: Some are literally “wedded” to their work, while others put much more emphasis on spending time with their families and see their children grow up. Importantly, these goals are not set in stone and can fluctuate throughout one''s life. Someone recently said to me that there can be periods of intense vertical growth where “balance” is not called for, and other times in life where it is important and needed. I believe this sentiment eloquently sums up most of our lives.Now that I''m a graying, privileged professor, I have started to prioritize other areas of life, in particular, my health. I go running regularly (well, maybe jog very slowly), which takes a lot of time but it is important for me to stay healthy. Pre‐pandemic, I made plans to visit more people in person as life is too short not to see family and friends. In many ways, having acquired the skills to work more efficiently after many years in the laboratory and office, along with giving myself more time for my health, has freed up my mind to think of science differently, perhaps more creatively. It seems no matter how much I think I’m tipping the balance toward life, work still creeps in, and that’s perfectly OK. At the end of the day, my work is my life, gladly, so I no longer worry about how much I work, nor do I worry about how much time I spend away from it. If you, too, accomplish your goals and derive fulfillment from your work and your life, neither should you.  相似文献   

8.
There are many nonmedical factors that contribute to employee absenteeism in industry. An employee''s total life situation or total environment may be a causative factor in excessive “sick absenteeism.” In many instances the cure for “abnormal” sickness absenteeism is within the province of supervisory personnel, who should look upon abuse of sick leave benefits among employees as morale problems and as evidence of possible maladjustment to the demands of the job or the industry. There are, however, many problems in mental and physical health affecting absence rates in which preventive psychiatry and medicine can make greater contributions. Even truancy and malingering may sometimes be conditions requiring professional medical care.The role of a private physician in determining and certifying the true state of a patient''s health is a most important one economically to industry and the community. The total problem of absenteeism for sickness, as it exists in industry today, points up the need for the most effective cooperation and communication possible between industrial and private physicians. Since no more than 25 per cent of the total work force is employed in industries having in-plant medical programs, the burden of responsibility for the control of absenteeism for sickness rests mainly with private practitioners.  相似文献   

9.
Classical theories on interpersonal relations have long suggested that social interactions are influenced by sensation, such as the experience of warmth. Past empirical work now confirms that perceived differences in temperature impact how people form thoughts about relationships. The present work first integrates our knowledge database on brand research with this idea of “grounded social cognition”. It then leverages a large sample (total N = 2,552) toward elucidating links between estimates of temperature and positive versus negative evaluations of communal brands. In five studies, the authors have found that thinking about positively (vs. negatively) perceived communal brands leads to heightened temperature estimates. A meta-analysis of the five studies shows a small but consistent effect in this noisy environment, r = .11, 95% CI, .05, .18. Exploratory analyses in Studies 1a and b further suggest that temperature perceptions mediate the (significant) relationship between perceived communality and willingness to purchase from the brand. The authors discuss implications for theory and practice and consider the effects from a Social Baseline Perspective.  相似文献   

10.
There is a common misconception that the United States is suffering from a “STEM shortage,” a dearth of graduates with scientific, technological, engineering, and mathematical backgrounds. In biomedical science, however, we are likely suffering from the opposite problem and could certainly better tailor training to actual career outcomes. At the Future of Research Symposium, various workshops identified this as a key issue in a pipeline traditionally geared toward academia. Proposals for reform all ultimately come up against the same problem: there is a shocking lack of data at institutional and national levels on the size, shape, and successful careers of participants in the research workforce. In this paper, we call for improved institutional reporting of the number of graduate students and postdocs and their training and career outcomes.We and our fellow postdocs across the Boston area (from institutions including Tufts, Harvard Medical School, MIT, Brandeis, and Boston University) organized the Future of Research Symposium (http://futureofresearch.org). In so doing, we sought to give young scientists in Boston a voice in discussions of fundamental challenges facing the research enterprise, such as hypercompetition, skewed incentives, and an unsustainable workforce model (Alberts et al., 2014 ). During the symposium, attendees (largely postdocs and graduate students) participated in workshops designed to identify the most pressing concerns for trainees and to solicit their thoughts on possible solutions. While the complete outcomes of those sessions are listed in our meeting report (McDowell et al., 2015 ) and the supporting data (McDowell et al., 2015 , Data set 1), the organizing committee identified three principles crucial to building a more sustainable scientific enterprise, among them transparency in collecting and sharing information on the research workforce.Our culture is affected by a deeply ingrained notion that there is a “STEM shortage”—a dearth of graduates with scientific, technological, engineering, and mathematical backgrounds— an assertion that has been repeated too many times to count (Teitelbaum, 2014 ). For example, the President''s Council of Advisors on Science and Technology called for an additional one million science, technology, engineering, and mathematics (STEM) trainees in 2012 (PCAST, 2012 ). Yet a recent report by the Center for Immigration Studies using U.S. census data is one of a chorus of recent publications asserting that STEM graduates are actually struggling to get relevant jobs (Camarota and Zeigler, 2014 ). For example, only 11% of those who hold a bachelor''s degree in science actually work in a science field (table 2 in Camarota and Zeigler, 2014 ). This rhetoric is also blatantly misleading for PhD holders in biomedical science and probably lulls students interested in this path into a false sense of job security. The number of graduate students has roughly doubled from 1990 to 2012 along with a comparable increase in the number of postdocs (figures 1 and 5 in National Institutes of Health [NIH], 2012 ). Yet there is little evidence to suggest that permanent research positions, whether in academia or industry, have increased concomitantly. The problem has been eloquently summed up by Henry Bourne, referring to the swelling postdoc pool (Bourne, 2013a ) that becomes a “holding tank” (Bourne, 2013b ) from which PhD holders find great difficulty transitioning into permanent positions. Tellingly, in the National Science Foundation''s (NSF) Science and Engineering Indicators 2014 report, the most rapidly growing reason cited for starting a postdoc is “other employment not available” (table 5-19 in National Science Board, 2014, p. 5-34 ). Recent efforts to make PhD programs broadly applicable outside academia (through the NIH BEST grants and other efforts) have bolstered the argument that a PhD in biomedical sciences is broadly applicable for many careers, but a culture still exists in academia that graduate students should be training only for academic tracks. While there may be some argument for maintaining current levels of graduate student numbers, on the condition that they receive training relevant to their own career goals, the benefits of a large postdoctoral workforce are still being called sharply into question.Despite this, many leading officials have yet to take a position on the issue of the size of the workforce. For example, Sally Rockey and Francis Collins have written that “there is no definitive evidence that PhD production exceeds current employment opportunities” (Rockey and Collins, 2013 ).Technically, this is correct, but only because there are no definitive data at all. Take, for example, a very basic metric: How many postdocs are there in the U.S. research system? This is clearly a statistic that the NIH should have on hand to make the bold assertion that PhD numbers do not exceed employment opportunities: after all, many PhDs simply transition into becoming postdoctoral researchers. Except, the NIH does not know how many postdocs there are. The Boston Globe recently reported that, “The National Institutes of Health estimates there are somewhere between 37,000 and 68,000 postdocs in the country,” a tolerance of 15,500 (Johnson, 2014 ). The NIH''s Biomedical Research Workforce Working Group Report gives no concrete numbers, and it qualifies data it does show with “the number of postdoctoral researchers … may be underestimated by as much as a factor of 2” (National Institutes of Health, 2012, p. 2 ) One estimate puts the number at a little more than 50,000 (National Research Council, 2011 ), while the NSF, using data from the Survey of Graduate Students and Postdoctorates in Science and Engineering, estimates 63,000 postdocs, 44,000 of whom are in science and engineering (National Science Board, 2014 ). From data from Boston-area postdoctoral offices, we are certain the number of postdocs in the Boston area alone approaches 9000, and so we agree with the National Postdoctoral Association that all these estimates are too low and that the number of postdoctoral researchers in the United States is close to 90,000 (www.nationalpostdoc.org/policy-22/what-is-a-postdoc). But the fact that this number is up for debate at all speaks to a need for better accounting practices, especially since alarms have sounded at the pyramidal nature of the workforce for more than a decade (National Research Council, 1998 ; Kennedy et al., 2004 ).While data on the biomedical research workforce are still incomplete, anecdotal evidence suggests graduate students are finally becoming savvier about their professional futures. We conducted an informal poll of a dozen students from across the United States, asking them what they thought of the job market for PhDs at the time they accepted the offer to go to graduate school (Figure 1). Those who entered graduate school earlier reported not considering the job market before starting their PhD; by contrast, those who matriculated more recently reported low expectations, especially for academic careers. While our extremely small survey would suggest that some students are entering graduate school with no expectation of staying in academia whatsoever, their choices are by necessity based on hearsay rather than concrete information.Open in a separate windowFIGURE 1:Excerpted quotes from survey respondents. The question posed was “What did you think of the job market for PhDs at the time you accepted the offer to go to graduate school?” The year of matriculation is listed below each quote. Full responses are listed in Supplemental Table 1.Therefore we believe that graduate programs and postdoc offices have a moral imperative to inform students and fellows of what they are getting into. We call for increased efforts in collecting and sharing data on student and fellow demographics and career outcomes, such as by conducting thorough exit and alumni surveys. We also encourage our recently graduated peers to cooperate fully with such requests from our alma maters. In biomedical science, some institutions are leading the way on this front, with the University of California–San Francisco and Duke University''s Program in Cell and Molecular Biology posting some statistics online (UCSF Graduate Division, 2013 ; Duke University, 2015 ). We believe that there is an obligation for other institutions to follow their lead. In addition, we believe that a culture supporting transparency will ultimately strengthen the scientific enterprise.First, clear communication of career information may increase student and postdoc productivity down the road. While research shows that postdocs are able to accurately estimate their chances of attaining a faculty position (Sauermann, 2013 ), our experience suggests that many current graduate students do not gain this awareness until later in their careers. When rosy illusions are shattered only after an investment of many years, the ensuing disgruntlement can negatively impact trainees themselves, others in the lab, and even entire communities at particular institutions. Instead, making student outcomes more readily available is likely to select for students with realistic expectations of their training. Much like Orion Weiner''s finding that students with prior research experience subjectively perform better in graduate school, trainees who “know what they are getting into” may be more likely to display sustained motivation (Weiner, 2014 ).Second, disclosure of these data will act as a catalyst for change. Increased transparency of program outcomes will help hold institutions and programs accountable for the quality of training they provide. Also, increased awareness of the actual career paths chosen by trainees will encourage programs to offer training in skills apart from those required to conduct academic research. Increased instruction in writing, management, and leadership will benefit all trainees, including those who do stay in academic research.Students'' motivations for entering graduate school are already changing; academic institutions must now discard old rhetoric about the purpose of graduate school and confront this new landscape. It can no longer be acceptable to drive graduate programs purely toward academic career paths. While critics may worry that honesty could discourage some trainees from applying, it will also encourage those whose goals are better in line with their likely outcome. While the research enterprise is changing shape, students and postdocs deserve to enter it with their eyes open.  相似文献   

11.
Altogether few protein oligomers undergo a conformational transition to a state that impairs their function and leads to diseases. But when it happens, the consequences are not harmless and the so-called conformational diseases pose serious public health problems. Notorious examples are the Alzheimer''s disease and some cancers associated with a conformational change of the amyloid precursor protein (APP) and of the p53 tumor suppressor, respectively. The transition is linked with the propensity of β-strands to aggregate into amyloid fibers. Nevertheless, a huge number of protein oligomers associate chains via β-strand interactions (intermolecular β-strand interface) without ever evolving into fibers. We analyzed the layout of 1048 intermolecular β-strand interfaces looking for features that could provide the β-strands resistance to conformational transitions. The interfaces were reconstructed as networks with the residues as the nodes and the interactions between residues as the links. The networks followed an exponential decay degree distribution, implying an absence of hubs and nodes with few links. Such layout provides robustness to changes. Few links per nodes do not restrict the choices of amino acids capable of making an interface and maintain high sequence plasticity. Few links reduce the “bonding” cost of making an interface. Finally, few links moderate the vulnerability to amino acid mutation because it entails limited communication between the nodes. This confines the effects of a mutation to few residues instead of propagating them to many residues via hubs. We propose that intermolecular β-strand interfaces are organized in networks that tolerate amino acid mutation to avoid chain dissociation, the first step towards fiber formation. This is tested by looking at the intermolecular β-strand network of the p53 tetramer.  相似文献   

12.
The purpose of this study was to examine the career paths of alumni from the National Cancer Institute (NCI) Cancer Prevention Fellowship Program (CPFP), a structured in-house postdoctoral training program of 3–4 years duration, and specifically what proportion of the alumni were currently performing cancer prevention-related activities. The analyses here included 119 CPFP alumni and 85 unsuccessful CPFP applicants, all of whom completed postdoctoral training between 1987–2011 and are currently employed. Postdoctoral training experiences and current career outcomes data were collected via online surveys. Differences between groups were assessed using chi-square and Fisher’s exact test p-values and subsequent regression analyses adjusted for differences between the groups. Compared to 15.3% of unsuccessful CPFP applicants, 52.1% of CPFP alumni (odds ratio [OR] = 4.99, 95% confidence interval [95% CI): 1.91–13.0) were currently spending the majority of their time working in cancer prevention. Among those doing any cancer prevention-focused work, 54.3% of CPFP alumni spent the majority of their time performing cancer prevention research activities when compared to 25.5% of unsuccessful applicants (OR = 4.26, 95% CI: 1.38–13.2). In addition to the independent effect of the NCI CPFP, scientific discipline, and employment sector were also associated with currently working in cancer prevention and involvement in cancer prevention research-related activities. These results from a structured postdoctoral training program are relevant not only to the cancer prevention community but also to those interested in evaluating alignment of postdoctoral training programs with available and desired career paths more broadly.  相似文献   

13.

Objective

Although people with disabilities have great potential to provide advantages to work environments, many encounter barriers in finding employment, especially youth who are looking for their first job. A job interview is an essential component of obtaining employment. The objective of this study is to explore the content of the answers given in job interviews among youth with disabilities compared to typically developing youth.

Methods

A purposive sample of 31 youth (16 with typical development and 15 with disability) completed a mock job interview as part of an employment readiness study. The interview questions focused on skills and experiences, areas for improvement, and actions taken during problem-based scenarios. Transcribed interviews were analyzed using a content analysis of themes that emerged from the interviews.

Results

We found several similarities and differences between youth with disabilities and typically developing youth. Similarities included giving examples from school, emphasizing their “soft skills” (i.e., people and communication skills) and giving examples of relevant experience for the position. Both groups of youth gave similar examples for something they were proud of but fewer youth with disabilities provided examples. Differences in the content of job interview answers between the two groups included youth with disabilities: (1) disclosing their condition; (2) giving fewer examples related to customer service and teamwork skills; (3) experiencing greater challenges in providing feedback to team members and responding to scenario-based problem solving questions; and (4) drawing on examples from past work, volunteer and extra curricular activities.

Conclusions

Clinicians and educators should help youth to understand what their marketable skills are and how to highlight them in an interview. Employers need to understand that the experiences of youth with disabilities may be different than typically developing youth. Our findings also help to inform employment readiness programs by highlighting the areas where youth with disabilities may need extra help as compared to typically developing youth.  相似文献   

14.
Freelancer     
What long‐term changes can we expect, in how academic work is conducted and remunerated, in the post‐pandemic world? Subject Categories: S&S: Economics & Business, S&S: History & Philosophy of Science, S&S: Ethics

Although still two years away, my looming “retirement” from university employment is inevitably going to herald a major change of life. “Of course, you''ll become ‘Emeritus’”, most colleagues have opined. My answer to all of them has been a firm “No. I''ll become a freelancer”. The concept of a freelance scientist is obviously so alien to most of them that they invariably change the subject immediately. However, my gut feeling is that in 20 years or less, almost all of us will be freelancers of some kind.The COVID‐19 pandemic has altered the world of work in very obvious ways. There has been much talk of how the changes are likely to carry over to the future, even if more traditional patterns will probably reassert themselves in the short to medium term. Working from home, conducting meetings remotely, not wasting days travelling between continents for a few precious hours of face‐time and being free to structure workdays around our own priorities: these are the most obvious novelties that many believe will continue long after the effects of the pandemic on health and wealth have faded. But I have a slightly different take.Major disruptive events of worldwide import—world wars, global economic slumps, cataclysmic volcanic eruptions and pandemics—have often been harbingers of profound social change. This is not only due to their direct and immediate effects, but more so because the disruption accelerates and facilitates changes that were already happening. In the case of COVID‐19, one may place in this category the demise of cash, the rise of streaming services in place of live entertainment, online grocery shopping and even virtual dating. Another is paying people to stay home and do nothing, otherwise known as the universal basic income (or, in the USA, “stimulus cheques”).Inefficient practices in academia are equally ripe for change. Why bother with classes for 500 first‐year students when a much better edition of the lecture by an expert communicator is available on the internet? What’s the use of an ageing PhD advisor 20 years away from bench science, who struggles to guide the next generation of experimentalists in the lab, when the expertise of a plethora of specialists can easily be accessed online? What’s the value in published papers that are read by fewer people than wrote them? Or in seminars delivered to a roomful of attentive postdocs and PhD students who lack the courage or the time to address even a single question to the speaker?Yes, there is still great value in small‐group teaching and mentorship, in the creative verve of a close‐knit laboratory team, and in good writing and oratory: but the required skills are already different from those in which we were schooled. Thus, even if I do not hold in my palm the crystal ball to predict exactly which changes will happen and how fast, I believe that our traditional jobs are going to melt away very fast in the post‐pandemic world. Universities and research institutes may still exist, but I expect that their practices will be different, reshaped by rational need more than by tradition. Today’s academic science is already quite unlike that of 1920, but it has evolved so slowly during that century—spanning a much longer time period than the lifetime of a scientific career—that we barely perceive the changes that have occurred. In contrast, the changes now afoot will certainly happen much faster, especially since the funds to support the current “inefficient” model are likely to diminish rapidly.So, I predict that university teaching and science communication in general will be the first to evolve into freelance activities, where universities will invite bids from individuals or their agents and award commissions on a fee‐paying basis rather than using salaried employees. But these are not the only component parts of academia facing such a shake‐up. The practices of laboratory science are also likely to be rebuilt. When discussing with colleagues how research might be undertaken on a freelance basis, they usually raise issues such as bricks and mortar and the complex infrastructure that is needed to sustain cutting‐edge research, especially in the life sciences: how, they ask, could a freelancer access state‐of‐the‐art imaging, mass spectrometry or DNA sequencing? How could their acquisition of such expensive hardware possibly be financed, especially if they had to somehow acquire it personally and set it up in the garage or carry it around with them?But the answers to these questions are already evident in the practices of some major research agencies, most notably in Europe’s pioneering funder of single‐investigator grants for blue‐skies science, the European Research Council (ERC). The ERC already treats its awardees as freelancers, in the sense that it encourages them to shop around for the most attractive venue in which to embed and implement their research project. The quest for the best host institution takes place not only at the preparatory step of an ERC application: it also happens after the grant is awarded, since the grant money is considered inherently portable and can even be moved later on from one institution to another. This encourages potential host universities to compete for providing the best research environment, in which many factors come into play, not just but not least, the quality of its research infrastructure. How well it supports, rather than burdens its staff with administrative tasks, the nature of its recruitment and personnel policies, how it handles relocation issues for incoming researchers and their families, what opportunities it provides for further training in relevant skills and career development: these are just some of the factors in play.In recent years, universities have seen their primary role in this process as encouraging their own tenured or tenure‐track staff to apply for ERC grants. But I foresee the emphasis shifting increasingly to investigators who seek out universities that can make the most appealing offer, whilst universities and government agencies standing behind them will shape their policies so as to remain competitive. Moreover, in such a landscape there is no reason why a scientist cannot operate research projects on multiple sites if this offers the most convenient arrangement. The tools for remote meetings and cloud computing to which we have all become accustomed mean that there is no longer any need for a research group to be located in one building or even in one country, to operate efficiently as a team.At the same time, many of the tasks involved in running a research institute or department can be efficiently outsourced to the most competitive bidder—to be assessed on the basis of value‐for‐money, not just minimum cost. As a society, we should be asking ourselves why we continue to waste the talents of highly specialized scientists on performing admin tasks for which they are neither properly trained nor motivated, instead of just engaging a smart‐software developer. Why should we fund creative thinkers to undertake laboratory projects in host institutions that do not have the required state‐of‐the‐art facilities to perform them? Or allocate budgets that are so pared down that grantholders cannot even afford to purchase such services elsewhere? Why should we expect them to make do with poorly paid trainees instead of a team of professionals? And why should we continue to organize research in pyramid structures where everything depends on commands from the top, where all findings are announced using an institutional slide template, where colleagues elsewhere are considered as untrustworthy “competitors”, and where credit for individual creativity is usurped by seniors who barely know the contents of the papers they “write”?In the “old system”, we have all gotten used to making do with sub‐optimal working arrangements and grumbling about them, whilst considering them an immutable fact of life. But I envisage a time coming soon where we scientists will have the edge in reshaping the market for teaching and research in a way that is much more to our liking and properly aligned with our skills. At the same time, our individual success in accomplishing our professional goals will have a direct effect on our income and job satisfaction, and steer us towards activities where our talents are most effectively deployed. In short, I believe that we, as freelance scientists, will be much more firmly in control of science in the future and that time is not far off.  相似文献   

15.
The growing competition and “publish or perish” culture in academia might conflict with the objectivity and integrity of research, because it forces scientists to produce “publishable” results at all costs. Papers are less likely to be published and to be cited if they report “negative” results (results that fail to support the tested hypothesis). Therefore, if publication pressures increase scientific bias, the frequency of “positive” results in the literature should be higher in the more competitive and “productive” academic environments. This study verified this hypothesis by measuring the frequency of positive results in a large random sample of papers with a corresponding author based in the US. Across all disciplines, papers were more likely to support a tested hypothesis if their corresponding authors were working in states that, according to NSF data, produced more academic papers per capita. The size of this effect increased when controlling for state''s per capita R&D expenditure and for study characteristics that previous research showed to correlate with the frequency of positive results, including discipline and methodology. Although the confounding effect of institutions'' prestige could not be excluded (researchers in the more productive universities could be the most clever and successful in their experiments), these results support the hypothesis that competitive academic environments increase not only scientists'' productivity but also their bias. The same phenomenon might be observed in other countries where academic competition and pressures to publish are high.  相似文献   

16.

Background

Surveys of doctors suggest that they use placebos and placebo effects clinically to help patients. However, patients'' views are not well-understood. We aimed to identify when and why placebo-prescribing in primary care might be acceptable and unacceptable to patients.

Methods

A purposive diverse sample of 58 English-speaking adults (18 men; aged 19–80 years) participated in 11 focus groups. Vignettes describing doctors prescribing placebos in primary care were used to initiate discussions. Data were analyzed inductively.

Results

Participants discussed diverse harms and benefits of placebo-prescribing for individual patients, carers, healthcare providers, and society. Two perspectives on placebo-prescribing were identified. First, the “consequentialist” perspective focused on the potential for beneficial outcomes of placebo-prescribing. Here, some participants thought placebos are beneficial and should be used clinically; they often invoked the power of the mind or mind-body interactions. Others saw placebos as ineffective and therefore a waste of time and money. Second, the “respecting autonomy” perspective emphasized the harms caused by the deceptive processes thought necessary for placebo-prescribing. Here, participants judged placebo-prescribing unacceptable because placebo-prescribers deceive patients, thus a doctor who prescribes placebos cannot be trusted and patients'' autonomy is compromised. They also saw placebo-responders as gullible, which deterred them from trying placebos themselves. Overall, the word “placebo” was often thought to imply “ineffective”; some participants suggested alternative carefully chosen language that could enable doctors to prescribe placebos without directly lying to patients.

Conclusions

Negative views of placebos derive from beliefs that placebos do not work and/or that they require deception by the doctor. Positive views are pragmatic in that if placebos work then any associated processes (e.g. mechanisms, deception) are deemed unimportant. Public education about placebos and their effects is warranted and research to identify optimal ways of harnessing placebo effects in clinical practice is needed.  相似文献   

17.
“Hidden alcoholics”—those who drink surreptitiously to keep their addiction secret—far out-number the overt habitues of skid rows. The former rather than the latter should be considered “typical” alcoholics. Even though they have severe problems, they maintain fairly good employment stability and stability in marriage. Yet they steadily deteriorate.Often “hidden” alcoholics go to physicians because of symptoms referable to alcoholism but contrive to conceal their addiction and so make diagnosis difficult. Hence, physicians observing certain kinds of symptoms that cannot be attributed to a readily observable or demonstrable pathologic change should make searching inquiry as to the patient''s drinking habits. For not until the proper diagnosis is made in such cases can there be hope of effective treatment.  相似文献   

18.
Objective To assess whether UK and US health care professionals share the views of medical ethicists about medical futility, withdrawing or withholding treatment, ordinary or extraordinary interventions, and the doctrine of double effect. Design, subjects, and setting Answers to a 138-item attitudinal questionnaire completed by 469 UK nurses studying the Open University course on “Death and Dying” were compared with those of a similar questionnaire administered to 759 US nurses and 687 US physicians taking the Hastings Center course on “Decisions Near the End of Life.” Results Practitioners accept the relevance of concepts widely disparaged by bioethicists: double effect, medical futility, and the distinctions between heroic and ordinary interventions and withholding and withdrawing treatment. Within the UK nurses'' group, the responses of a “rationalist” axis of respondents who describe themselves as having “no religion” are closer to the bioethics consensus on withholding and withdrawing treatment. Conclusions Professionals'' beliefs differ substantially from the recommendations of their professional bodies and from majority opinion in bioethics. Bioethicists should be cautious about assuming that their opinions will be readily accepted by practitioners.  相似文献   

19.
A large external inguinal ring is often reported by a medical examiner as a “potential hernia.” This finding may cause the subject to be denied job opportunities and may make him apprehensive about many normal activities.The author believes that unless a sac is present and is causing symptoms that necessitate surgical relief, the term hernia should not be used, regardless of how it is qualified. The ordinary intraabdominal stresses due to coughing, sneezing, etc. increase intraabdominal tension more than heavy lifting, except with loads of nearly the body''s own weight. The lifetime effect of such stresses can contribute to the development of a direct hernia, but most of these cannot be eliminated.  相似文献   

20.

Background

‘Learning disabilities’ (LD) refer to a wide group of neurological disorders caused by deficits in the central nervous system which influence the individual''s ability to maintain-, process or convey information to others in an efficient way. A worldwide discussion about the definitions of LD continues while a conceptual framework for studying the diverse life outcomes of adults with LD is still missing.

Objective

The aim was to review the literature on the activity and participation of adults with LD based on the International Classification of Functioning, Disability and Health (ICF) concepts.

Methods

“PsychInfo”, “Eric” and “PubMed” were searched for relevant literature according to the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). After a three-stage process, 62 articles relevant for domains of activity and participation of adults with LD were included in the review.

Results

Thirty-two articles focused on the domain of major life areas of education, work and employment and twelve articles focused on the domain of learning and applying knowledge. Limitations in activity and participation of the population with LD in these domains are recognized and discussed. Eighteen additional articles demonstrated that adults with LD confront difficulties in various life domains (e.g., communication, interpersonal interactions, mobility, and domestic life), however literature concerning these domains is scarce.

Conclusions

The ICF can be useful for further exploration of activity and participation characteristics of adults with LD in various life domains. Such exploration is required in order to gain a wider perspective of their functional characteristics and daily needs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号