首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Pancreatic cancer is one of the most lethal cancers. Increasing incidence and mortality indicates that there is still much lacking in detection and management of the disease. This is partly due to a lack of specific symptoms during early stages of the disease. Several growth factor receptors have been associated with pancreatic cancer. Here, we have investigated if an RNA interference approach targeted to IGF-IR could be effective and efficient against pancreatic cancer growth and metastasis. For that, we evaluated the effects of IGF-1R inhibition using small interfering RNA (siRNAs) on tumor growth and metastasis in HPAC and PANC-1 pancreatic cancer cell lines. We found that silencing IGF-1R inhibits pancreatic cancer growth and metastasis by blocking key signaling pathways such AKT/PI3K, MAPK, JAK/STAT and EMT. Silencing IGF-1R resulted in an anti-proliferative effect in PANC-1 and HPAC pancreatic cancer cell lines. Matrigel invasion, transwell migration and wound healing assays also revealed a role for IGF-1R in metastatic properties of pancreatic cancer. These results were further confirmed using Western blotting analysis of key intermediates involved in proliferation, epithelial mesenchymal transition, migration, and invasion. In addition, soft agar assays showed that silencing IGF-1R also blocks the colony forming capabilities of pancreatic cancer cells in vitro. Western blots, as well as, flow cytometric analysis revealed the induction of apoptosis in IGF-1R silenced cells. Interestingly, silencing IGF-1R also suppressed the expression of insulin receptor β. All these effects together significantly control pancreatic cancer cell growth and metastasis. To conclude, our results demonstrate the significance of IGF-1R in pancreatic cancer.  相似文献   

2.
Growth factor receptor-bound protein 10 (Grb10) is an adaptor protein that can negatively regulate the insulin-like growth factor 1 receptor (IGF-1R). The IGF1-1R pathway is critical for cell growth and apoptosis and has been implicated in kidney diseases; however, it is still unknown whether Grb10 expression is up-regulated and plays a role in diabetic nephropathy. Catalpol, a major active ingredient of a traditional Chinese medicine, Rehmannia, has been reported to possess anti-inflammatory and anti-aging activities and then used to treat diabetes. Herein, we aimed to assess the therapeutic effect of catalpol on a mouse model diabetic nephropathy and the potential role of Grb10 in the pathogenesis of this diabetes-associated complication. Our results showed that catalpol treatment improved diabetes-associated impaired renal functions and ameliorated pathological changes in kidneys of diabetic mice. We also found that Grb10 expression was significantly elevated in kidneys of diabetic mice as compared with that in non-diabetic mice, while treatment with catalpol significantly abrogated the elevated Grb10 expression in diabetic kidneys. On the contrary, IGF-1 mRNA levels and IGF-1R phosphorylation were significantly higher in kidneys of catalpol-treated diabetic mice than those in non-treated diabetic mice. Our results suggest that elevated Grb10 expression may play an important role in the pathogenesis of diabetic nephropathy through suppressing IGF-1/IGF-1R signaling pathway, which might be a potential molecular target of catalpol for the treatment of this diabetic complication.  相似文献   

3.
The insulin-like growth factor (IGF) system in ubiquitous and plays a role in every tissue of the body. It is comprised of ligands, receptors and binding proteins, each with specific functions. While it plays an essential role in embryonic and post-natal development, the IGF system is also important in normal adult physiology. There are now numerous examples of diseases such as diabetes, cancer, and malnutrition in which the IGF system is a major player and, not surprisingly, there are attempts to affect these disorders by manipulating the system.  相似文献   

4.
The interaction between the tumor cells in classical Hodgkin lymphoma (cHL) and the microenvironment includes aberrant activity of receptor tyrosine kinases. In this study we evaluated the expression, functionality and prognostic significance of Insulin-like growth factor-1 receptor (IGF-1R) in cHL. IGF-1R was overexpressed in 55% (44/80) of cHL patients. Phosphorylated IGF-1R was detectable in a minority of the IGF-1R positive tumor cells. The overall survival (OS, 98%) and 5-year progression-free survival (PFS, 93%) was significantly higher in IGF-1R positive cHL patients compared to IGF-1R negative patients (OS 83%, p = .029 and PFS 77%, p = .047, respectively). Three cHL cell lines showed expression of IGF-1R, with strong staining especially in the mitotic cells and expression of IGF-1. IGF-1 treatment had a prominent effect on the cell growth of L428 and L1236 cells and resulted in an increased phosphorylation of IGF1R, Akt and ERK. Inhibition of IGF-1R with cyclolignan picropodophyllin (PPP) decreased cell growth and induced a G2/M cell cycle arrest in all three cell lines. Moreover, a decrease in pCcd2 and an increase in CyclinB1 levels were observed which is consistent with the G2/M cell cycle arrest. In conclusion, IGF-1R expression in HRS cells predicts a favorable outcome, despite the oncogenic effect of IGF-1R in cHL cell lines.  相似文献   

5.

Background

Survival outcomes for patients with osteosarcoma (OS) have remained stagnant over the past three decades. Insulin-like growth factor 1 receptor (IGF1R) is over-expressed in a number of malignancies, and anti-IGF1R antibodies have and are currently being studied in clinical trials. Understanding the molecular aberrations which result in increased tumor response to anti-IGF1R therapy could allow for the selection of patients most likely to benefit from IGF1R targeted therapy.

Methods

IGF1R mRNA expression was assessed by RT PCR in OS patient primary tumors, cell lines, and xenograft tumors. IGF1R copy number was assessed by 3 approaches: PCR, FISH, and dot blot analysis. Exons 1–20 of IGF1R were sequenced in xenograft tumors and 87 primary OS tumors, and surface expression of IGF1R was assessed by flow cytometry. Levels of mRNA and protein expression, copy number, and mutation status were compared with tumor response to anti-IGF1R antibody therapy in 4 OS xenograft models.

Results

IGF1R mRNA is expressed in OS. Primary patient samples and xenograft samples had higher mRNA expression and copy number compared with corresponding cell lines. IGF1R mRNA expression, cell surface expression, copy number, and mutation status were not associated with tumor responsiveness to anti-IGF1R antibody therapy.

Conclusions

IGF1R is expressed in OS, however, no clear molecular markers predict response to IGF1R antibody-mediated therapy. Additional pre-clinical studies assessing potential predictive biomarkers and investigating targetable molecular pathways critical to the proliferation of OS cells are needed.  相似文献   

6.

Objective

Myostatin and insulin-like growth factor 1 (IGF-1) are serum markers for muscle growth and regeneration. However, their value in the clinical monitoring of Pompe disease – a muscle glycogen storage disease – is not known. In order to evaluate their possible utility for disease monitoring, we assessed the levels of these serum markers in Pompe disease patients receiving enzyme replacement therapy (ERT).

Design

A case-control study that included 10 patients with Pompe disease and 10 gender- and age-matched non-Pompe disease control subjects was performed in a referral medical center. Average follow-up duration after ERT for Pompe disease patients was 11.7 months (range: 6–23 months). Measurements of serum myostatin, IGF-1, and creatine kinase levels were obtained, and examinations of muscle pathology were undertaken before and after ERT in the patient group.

Results

Compared with control subjects, Pompe disease patients prior to undergoing ERT had significantly lower serum IGF-1 levels (98.6 ng/ml vs. 307.9 ng/ml, p = 0.010) and lower myostatin levels that bordered on significance (1.38 ng/ml vs. 3.32 ng/ml, p = 0.075). After ERT, respective myostatin and IGF-1 levels in Pompe disease patients increased significantly by 129% (from 1.38 ng/ml to 3.16 ng/ml, p = 0.047) and 74% (from 98.6 ng/ml to 171.1 ng/ml, p = 0.013); these values fall within age-matched normal ranges. In contrast, myostatin and IGF-1 serum markers did not increase in age-matched controls. Follistatin, a control marker unrelated to muscle, increased in both Pompe disease patients and control subjects. At the same time, the percentage of muscle fibers containing intracytoplasmic vacuoles decreased from 80.0±26.4% to 31.6±45.3%.

Conclusion

The increase in myostatin and IGF-1 levels in Pompe disease patients may reflect muscle regeneration after ERT. The role of these molecules as potential therapeutic biomarkers in Pompe disease and other neuromuscular diseases warrants further study.  相似文献   

7.
胰岛素样生长因子 (Insulin LikeGrowthFactor,IGF 1)重组菌株 pCST/IGF/W310 0 ,在含Tet 5mg/L的LB培养基平板上划线传代培养 10 0代 ,经对其表达水平、质粒性状及遗传稳定性、染色体特性等一系列检定后 ,其结果表明均与原始菌种一致 ,且无支原体及其他微生物污染 ,为其规模化生产奠定了基础。  相似文献   

8.
Low levels of insulin-like growth factor 1 (IGF-1) have been observed in the serum of cystic fibrosis (CF) patients. However, the effects of low serum IGF-1 on the cystic fibrosis transmembrane conductance regulator (CFTR), whose defective function is the primary cause of cystic fibrosis, have not been studied. Here, we show in human cells that IGF-1 increases the steady-state levels of mature wildtype CFTR in a CFTR-associated ligand (CAL)- and TC10-dependent manner; moreover, IGF-1 increases CFTR-mediated chloride transport. Using an acceptor photobleaching fluorescence resonance energy transfer (FRET) assay, we have confirmed the binding of CAL and CFTR in the Golgi. We also show that CAL overexpression inhibits forskolin-induced increases in the cell-surface expression of CFTR. We found that IGF-1 activates TC10, and active TC10 alters the functional association between CAL and CFTR. Furthermore, IGF-1 and active TC10 can reverse the CAL-mediated reduction in the cell-surface expression of CFTR. IGF-1 does not increase the expression of ΔF508 CFTR, whose processing is arrested in the ER. This finding is consistent with our observation that IGF-1 alters the functional interaction of CAL and CFTR in the Golgi. However, when ΔF508 CFTR is rescued with low temperature or the corrector VRT-325 and proceeds to the Golgi, IGF-1 can increase the expression of the rescued ΔF508 CFTR. Our data support a model indicating that CAL-CFTR binding in the Golgi inhibits CFTR trafficking to the cell surface, leading CFTR to the degradation pathway instead. IGF-1-activated TC10 changes the interaction of CFTR and CAL, allowing CFTR to progress to the plasma membrane. These findings offer a potential strategy using a combinational treatment of IGF-1 and correctors to increase the post-Golgi expression of CFTR in cystic fibrosis patients bearing the ΔF508 mutation.  相似文献   

9.
To identify insulin-like receptors in the mollusc Anodonta cygnea, specific binding of 125I-insulin and 125I-IGF-1 by WGA-purified glycoprotein fractions of foot muscles and neural ganglia is studied. The binding sites for IGF-1 are detected for the first time in invertebrates, both in the muscles, and in the neural tissue of the mollusc. The level of 125I-IGF-1 binding in the muscle tissue was equal to 2.8 ± 0.1, in the neural tissue, to 4.0 ± 0.2% per 5 µg of protein. The equilibrium dissociation constant (K d) was equal to 4.8 ± 0.3 and 4.3 ± 0.2 nM, respectively. The relative affinity of the binding sites to insulin did not exceed 1% of their affinity to IGF-1. Binding of 125I-insulin in the muscle tissue was not detected; the level of labeled insulin binding in the neural tissue was equal to 0.5% per 5 µg of protein. In the sarcolemmal fraction of the mollusc foot, IGF-1 and, to a lesser degree, insulin at a dose of 100 nM initiated phosphorylation of tyrosine in a protein with mol. mass of 70 kDa. The minor band of the phosphorylation was also detected in the zone of protein of 80 kDa. The conclusion is made about the existence in molluscan tissues of high-conserved receptors-tyrosine kinases identical by functional parameters to the mammalian receptor of IGF-1. From this, it is suggested that the peptides close by structure to vertebrate IGF-1 may be involved in physiological processes in A. cygnea. The problem of the nature of the insulin-binding sites in the molluscan neural tissue is discussed.  相似文献   

10.
Although the etiology of multiple sclerosis (MS) is not known, several factors play a role in this disease: genetic contributions, immunologic elements, and environmental factors. Viruses and virus infections have been associated with the initiation and/or enhancement of exacerbations in MS. Theiler’s murine encephalomyelitis virus (TMEV) infection of mice is one of the animal models used to mimic MS. In other animal model systems, DNA vaccination has been used to protect animals against a variety of virus infections. To explore the utility of DNA vaccination, we have constructed eukaryotic expression vectors encoding the TMEV capsid proteins VP1, VP2, and VP3. SJL/J mice were vaccinated intramuscularly once, twice, or three times with the different capsid protein cDNAs. This was followed by intracerebral TMEV infection to determine the effects of DNA vaccination on the course of TMEV-induced central nervous system (CNS) demyelinating disease. We found that vaccination of mice three times with cDNA encoding VP2 led to partial protection of mice from CNS demyelinating disease as determined by a decrease in clinical symptoms and histopathology. Vaccination of mice with cDNA encoding VP3 also led to a decrease in clinical symptoms. In contrast, mice vaccinated with cDNA encoding VP1 experienced a more severe disease with an earlier onset of clinical signs and enhanced histopathology compared with control mice. There was no correlation between anti-TMEV antibody titers and disease course. These results indicate that DNA immunization can modify chronic virus-induced demyelinating disease and may eventually lead to potential treatments for illnesses such as MS.  相似文献   

11.
IGFs系统包含3个配体(IGF-1、IGF-2、IGF-3)、2个受体(IGF-1R、IGF-2R)和6个IGF结合蛋白(IGFBP).生殖和生长是生物体最基本的特征,两者既密切相关又相互区别,胰岛素样生长因子(IGFs)是生长轴和生殖轴相交联的关键因子.最近研究表明:鱼类性腺的发育及成熟伴随着细胞分化和组织生长,传统的生长因子IGF-1、IGF-2和最近发现的IGF-3,对鱼类性腺发挥着重要作用.本文重点介绍鱼类特有的配体IGF-3的结构,鱼类IGFs系统的信号通路及其与鱼类性腺的相关性研究进展.  相似文献   

12.
IGF signaling is involved in cell proliferation, differentiation and apoptosis in a wide range of tissues, both normal and diseased, and so IGF-IR has been the focus of intense interest as a promising drug target. In this computational study on cartilage, we focus on two questions: (i) what are the key factors influencing IGF-IR complex formation, and (ii) how might cells regulate IGF-IR complex formation? We develop a reaction-diffusion computational model of the IGF system involving twenty three parameters. A series of parametric and sensitivity studies are used to identify the key factors influencing IGF signaling. From the model we predict the free IGF and IGF-IR complex concentrations throughout the tissue. We estimate the degradation half-lives of free IGF-I and IGFBPs in normal cartilage to be 20 and 100 mins respectively, and conclude that regulation of the IGF half-life, either directly or indirectly via extracellular matrix IGF-BP protease concentrations, are two critical factors governing the IGF-IR complex formation in the cartilage. Further we find that cellular regulation of IGF-II production, the IGF-IIR concentration and its clearance rate, all significantly influence IGF signaling. It is likely that negative feedback processes via regulation of these factors tune IGF signaling within a tissue, which may help explain the recent failures of single target drug therapies aimed at modifying IGF signaling.  相似文献   

13.
The type 1 insulin-like growth factor receptor (IGF-1R), activated by its ligands, protects several cell types from a variety of apoptotic injuries. The main signaling pathway for IGF-1R-mediated protection from apoptosis has been previously elucidated and rests on the activation of phosphatidylinositol 3-kinase, Akt/protein kinase B, and the phosphorylation and inactivation of BAD, a member of the Bcl-2 family of proteins. In 32D cells (a murine hemopoietic cell line devoid of insulin receptor substrate 1 [IRS-1]), the IGF-1R activates alternative pathways for protection from apoptosis induced by withdrawal of interleukin-3. One of these pathways leads to the activation of mitogen-activated protein kinase, while a third pathway results in the mitochondrial translocation of Raf and depends on the integrity of a group of serines in the C terminus of the receptor that are known to interact with 14.3.3 proteins. All three pathways, however, result in BAD phosphorylation. The presence of multiple antiapoptotic pathways may explain the remarkable efficacy of the IGF-1R in protecting cells from apoptosis.  相似文献   

14.
We studied the secretion of recombinant human insulin-like growth factor 1 (rhIGF-1) from transformed yeast cells. The hIGF-1 gene was fused to the mating factor α prepro- leader sequence under the control of the constitutive ACT1 promoter. We found that the inactivation of the GAS1 gene in the host strain led to a supersecretory phenotype yielding a considerable increase, from 8 to 55 mg/liter, in rhIGF-1 production.  相似文献   

15.
Abstract: The ability of ethanol to interfere with insulin-like growth factor 1 (IGF-1)-mediated cell survival was examined in primary cultured cerebellar granule neurons. Cells underwent apoptosis when switched from medium containing 25 m M K+ to one containing 5 m M K+. IGF-1 protected granule neurons from apoptosis in medium containing 5 m M K+. Ethanol inhibited IGF-1-mediated neuronal survival but did not inhibit IGF-1 receptor binding or the neurotrophic action of elevated K+, and failed to potentiate cell death in the presence of 5 m M K+. Inhibition of neuronal survival by ethanol was not reversed by increasing the concentration of IGF-1. Significant inhibition by ethanol (15–20%) was observed at 1 m M and was half-maximal at 45 m M . The inhibition of IGF-1 protection by ethanol corresponded to a marked reduction in the phosphorylation of insulin receptor substrate 1, the binding of phosphatidylinositol 3-kinase (PI 3-kinase), and a block of IGF-1-stimulated PI 3-kinase activity. The neurotrophic response of IGF-1 was also inhibited by the PI 3-kinase inhibitor LY294002, the protein kinase C inhibitor chelerythrine chloride, and the protein kinase A inhibitor KT5720, but unaffected by the mitogen-activated protein kinase kinase inhibitor PD 98059. These data demonstrate that ethanol promotes cell death in cerebellar granule neurons by inhibiting the antiapoptotic action of IGF-1.  相似文献   

16.
17.
18.

Introduction

Biomarkers indicating trait, progression and prediction of pathology and symptoms in Parkinson''s disease (PD) often lack specificity or reliability. Investigating biomarker variance between individuals and over time and the effect of confounding factors is essential for the evaluation of biomarkers in PD, such as insulin-like growth factor 1 (IGF-1).

Materials and Methods

IGF-1 serum levels were investigated in up to 8 biannual visits in 37 PD patients and 22 healthy controls (HC) in the longitudinal MODEP study. IGF-1 baseline levels and annual changes in IGF-1 were compared between PD patients and HC while accounting for baseline disease duration (19 early stage: ≤3.5 years; 18 moderate stage: >4 years), age, sex, body mass index (BMI) and common medical factors putatively modulating IGF-1. In addition, associations of baseline IGF-1 with annual changes of motor, cognitive and depressive symptoms and medication dose were investigated.

Results

PD patients in moderate (130±26 ng/mL; p = .004), but not early stages (115±19, p>.1), showed significantly increased baseline IGF-1 levels compared with HC (106±24 ng/mL; p = .017). Age had a significant negative correlation with IGF-1 levels in HC (r = -.47, p = .028) and no correlation in PD patients (r = -.06, p>.1). BMI was negatively correlated in the overall group (r = -.28, p = .034). The annual changes in IGF-1 did not differ significantly between groups and were not correlated with disease duration. Baseline IGF-1 levels were not associated with annual changes of clinical parameters.

Discussion

Elevated IGF-1 in serum might differentiate between patients in moderate PD stages and HC. However, the value of serum IGF-1 as a trait-, progression- and prediction marker in PD is limited as IGF-1 showed large inter- and intraindividual variability and may be modulated by several confounders.  相似文献   

19.
20.
BackgroundInsulin-like growth factor-1 (IGF-1) promotes the survival of cardiomyocytes by activating type 1 IGF receptor (IGF-1R). Within the myocardium, IGF-1 action is modulated by IGF binding protein-3 (IGFBP-3), which sequesters IGF-1 away from IGF-1R. Since cardiomyocyte apoptosis is implicated in anthracycline cardiotoxicity, we investigated the effects of the anthracycline, doxorubicin, on the IGF-1 system in H9c2 cardiomyocytes.ConclusionsDoxorubicin down-regulates IGF-1R and up-regulates IGFBP-3 via p53 and oxidative stress in H9c2 cells. This leads to resistance to IGF-1 that may contribute to doxorubicin-initiated apoptosis. Further studies are needed to confirm these findings in human cardiomyocytes and explore the possibility of manipulating the IGF-1 axis to protect against anthracycline cardiotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号