首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Classical activation of macrophages induces a wide range of signaling and vesicle trafficking events to produce a more aggressive cellular phenotype. The microtubule (MT) cytoskeleton is crucial for the regulation of immune responses. In the current study, we used a large scale proteomics approach to analyze the change in protein composition of the MT-associated protein (MAP) network by macrophage stimulation with the inflammatory cytokine interferon-γ and the endotoxin lipopolysaccharide. Overall the analysis identified 409 proteins that bound directly or indirectly to MTs. Of these, 52 were up-regulated 2-fold or greater and 42 were down-regulated 2-fold or greater after interferon-γ/lipopolysaccharide stimulation. Bioinformatics analysis based on publicly available binary protein interaction data produced a putative interaction network of MAPs in activated macrophages. We confirmed the up-regulation of several MAPs by immunoblotting and immunofluorescence analysis. More detailed analysis of one up-regulated protein revealed a role for HSP90β in stabilization of the MT cytoskeleton during macrophage activation.Microtubules (MTs)1 are major structural components of the cytoskeleton that are intricately involved in cell morphology, motility, division, and intracellular organization and transport. The diverse roles of MTs are dependent on the polymer having the capacity to be both dynamic and static in nature. Individual MTs alternate between growing and shrinking by the rapid attachment and detachment of tubulin subunits at their ends (1, 2). Thus, MTs can continually reorganize and undergo cycles of growing, pausing, and shortening. A number of mechanisms exist to regulate this dynamic equilibrium and involve association of proteins with the MT lattice. MT-associated proteins (MAPs), such as MAP4 and tau, stabilize MTs by binding to the wall thus inhibiting MT disassembly (3, 4). Recently MT plus (+) end-binding proteins have been implicated in stabilizing MTs by associating with cortical proteins to tether the MT end to peripheral target sites (57). Stabilized MT subsets are biochemically distinct and acquire posttranslational modifications that can be used to differentiate them from dynamic subsets. For example, posttranslational modifications such as glutamylation (8), detyrosination (8, 9), and acetylation (10) occur on MTs that exhibit increased stability. Stabilized MTs have been implicated in MT transport by allowing increased binding of MT motors (11, 12). Numerous other MAPs have been shown to regulate MT form and function including control of MT nucleation and elongation, MT linkage to and movement of organelles, and modulation of MT growth to allow scaffolding of signal transduction events (13).The extensive MT network provides a large surface area to serve as a platform for the binding of a large number of proteins that is likely heavily influenced by local cellular events and cell type. Traditionally the term MAP referred to proteins that bind directly to tubulin within the MT polymer, and a lot of recent debate and controversy have surrounded the definition of a MAP (14, 15). In this and other reports the definition of MAPs is considered to also include proteins that indirectly or transiently interact with MTs, co-localize with MTs, or influence MT growth dynamics in some way (16). The advent of proteomics has allowed cytoskeleton researchers to resolve the spectrum of MAPs. To date, the MT proteome has been resolved by MS analysis in developmentally important animal and plant models including Xenopus laevis egg extracts (17), Drosophila melanogaster embryos (18), Artemia franciscana embryos (19), Arabidopsis suspension cells (20), and complex mammalian tissues such as rat brain (21). The MT proteome has also been described for specialized MT structures including mitotic spindles (2224), centrosomes (25, 26), and cilia (27, 28).Macrophages are key regulators of the immune system connecting innate and specific immune responses. Lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria, is a potent activator of monocytes and macrophages. LPS triggers the abundant secretion of many cytokines from macrophages including IL-1 (29), IL-6, (30), and tumor necrosis factor-α (31), which together contributes to the pathophysiology of septic shock. IFN-γ is a proinflammatory cytokine produced by the host in response to intracellular pathogens. IFN-γ binds to IFN-γ receptors on macrophages, and IFN-γ signaling induces the production and/or release of cytokines, like IL-1 or tumor necrosis factor-α, which enhance LPS-mediated effects (32). Thus, the synergy between LPS and inflammatory cytokines such as IFN-γ represents an important regulatory mechanism by which the host tackles a significant, ongoing infection before it activates potent effector responses (33). It has been demonstrated that LPS may cause changes in monocyte cytoskeleton and directly influence assembly of isolated MTs (34). Recently we observed that classical activation of murine resident peritoneal or RAW264.7 macrophages with a combination of IFN-γ and LPS induces an increase in stabilized cytoplasmic MTs (5). A significant effort has been made to unravel the importance of stable MTs in cellular processes over the past few years. With respect to macrophage function, stable MTs could potentially function as tracks for vesicle secretion of cytokines and matrix metalloproteinases necessary to effect the enhanced inflammatory response observed in classically activated macrophages. We recently demonstrated that stable MTs are important for cell spreading as well as the binding of large particles in activated macrophages (5). The stabilization of macrophage interphase MTs is uniquely rapid, thus serving as an ideal model for studying MAPs involved in MT modulation in mammalian cells.The focus of the present study was to identify the MT-associated proteins involved in altering and stabilizing MT structures and also to resolve the spectrum of proteins within the MT proteome of a mammalian cell. To achieve this goal, we used a proteomics approach involving a MAP purification technique based on MT co-sedimentation (35) followed by off-line fractionation and identification of MAPs using LC-MS/MS. Information provided by mass spectrometry analysis allowed us to analyze the changes in MAP abundance during activation of macrophages by IFN-γ/LPS. These studies also provided candidate proteins for selective molecular intervention for chronic inflammatory disorders.  相似文献   

2.
Non muscle myosin II (NMII) is a major motor protein present in all cell types. The three known vertebrate NMII isoforms share high sequence homology but play different cellular roles. The main difference in sequence resides in the C-terminal non-helical tailpiece (tailpiece). In this study we demonstrate that the tailpiece is crucial for proper filament size, overcoming the intrinsic properties of the coiled-coil rod. Furthermore, we show that the tailpiece by itself determines the NMII filament structure in an isoform-specific manner, thus providing a possible mechanism by which each NMII isoform carries out its unique cellular functions. We further show that the tailpiece determines the cellular localization of NMII-A and NMII-B and is important for NMII-C role in focal adhesion complexes. We mapped NMII-C sites phosphorylated by protein kinase C and casein kinase II and showed that these phosphorylations affect its solubility properties and cellular localization. Thus phosphorylation fine-tunes the tailpiece effects on the coiled-coil rod, enabling dynamic regulation of NMII-C assembly. We thus show that the small tailpiece of NMII is a distinct domain playing a role in isoform-specific filament assembly and cellular functions.Non muscle myosin II (NMII)2 is a major motor protein present in all cell types participating in crucial processes, including cytokinesis, surface attachment, and cell movement (13). NMII units are hexamers of two long heavy chains with two pairs of light chains attached. NMII heavy chain is composed of a globular head containing the actin binding and force generating ATPase domains, followed by a large coiled-coil rod that terminates with a short non-helical tailpiece (tailpiece). To carry out its cellular functions, NMII assembles into dimers and higher order filaments by interactions of the coiled-coil rod (4). The assembly process is governed by electrostatic interactions between adjacent coiled-coil rods containing alternating charged regions with specific periodicity (59) and is enhanced by activation of the motor domain through regulatory light chain phosphorylation (1012). The charge periodicity also determines the register and orientation of each NMII hexamer in the filament. Additionally the C-terminal region of the coiled-coil rod contains a distinctive positively charged region and the assembly-competence domains that are crucial for proper filament assembly (59, 13).Three isoforms of NMII (termed NMII-A, NMII-B, and NMII-C) have been identified in mammals (1416). Although NMII isoforms share somewhat overlapping roles, each isoform has distinctive tissue distribution and specific functions. NMII-A is important for neural growth cone retraction (17, 18) and is distributed to the front of migrating endothelial cells (19). While NMII-B participates in growth cone advancement (20) and was detected in the retracting tails of migrating endothelial cells (19). Furthermore NMII-A and NMII-B have an opposing effect on motility, since depletion of NMII-A leads to increased motility while NMII-B depletion hinders motility (21, 22). NMII-C plays a role in cytokinesis (23) and has distinct distribution in neuronal cells (24). Furthermore one NMII isoform only partly rescue cells in which siRNA was used to reduce the expression of another isoform (23, 25). This functional diversity is achieved despite a significant amino acid sequence identity between the isoforms (overall 64–80%), and the origin of these differential distributions and functions is not completely understood.Recent studies suggest that the C-terminal portion of NMII-A and NMII-B, particularly the last ∼170 amino acids, is responsible for the differential distribution of these NMII isoforms (26, 27). It was shown that swapping this region between NMII-A and NMII-B resulted in chimeric proteins, which adopted cellular localization according to the C-terminal part (26). This C-terminal ∼170 amino acid coiled-coil region contains the assembly-competence domains and other regions that are critical for filament assembly (59, 13) as well as the non-helical tailpiece. As the small tailpiece is also an important regulator of NMII filament assembly (27, 28) capable of changing NMII filament assembly properties; and phosphorylation of NMII tailpiece was shown to interfere with filament assembly (2933) the tailpiece may be important for allowing NMII to perform its dynamic tasks. Because the coiled-coil regions are highly conserved between NMII isoforms, while the tailpiece is the most divergent, it is therefore a good candidate for mediating NMII isoform-specific functions. However, the exact mechanism by which the tailpiece affects NMII function is not fully understood. Here we show that the tailpiece serves as an isoform-specific control mechanism modulating filament order, assembly, and cellular function.  相似文献   

3.
Matrix metalloprotease (MMP)-2 plays a key role in many biological and pathological processes related to cell migration, invasion, and mitogenesis. MMP-2 is synthesized as a zymogen that is activated through either a conformational change or proteolysis of the propeptide. Several activating enzymes for pro-MMP-2 have been proposed, including metalloproteases and serine proteases. The mechanism of pro-MMP-2 activation by metalloproteases is well established, and the most studied activation mechanism involves cleavage of the propeptide by membrane type 1-MMP (MT1-MMP). In contrast, serine protease activation has not been thoroughly studied, although studies suggest that MT1-MMP may be involved in activation by thrombin and plasmin. Here, we demonstrate that factor Xa mediates MT1-MMP-independent processing of pro-MMP-2 in vascular smooth muscle cells and endothelial cells. Factor Xa and thrombin directly cleaved the propeptide on the carboxyl terminal sides of the Arg98 and Arg101 residues, whereas plasmin only cleaved the propeptide downstream of Arg101. Moreover, processed MMP-2 showed enzymatic activity that was enhanced by intermolecular autoproteolytic processing at the Asn109-Tyr peptide bond. In addition to its role in activation, factor Xa rapidly degraded MMP-2, thereby restricting excessive MMP-2 activity. Thrombin also degraded MMP-2, but the degradation was reduced greatly under cell-associated conditions, resulting in an increase in processed MMP-2. Overall, factor Xa and thrombin regulate MMP-2 enzymatic activity through its activation and degradation. Thus, the net enzymatic activity results from a balance between MMP-2 activation and degradation.Matrix metalloprotease (MMP)3-2 is a member of the zinc-dependent endopeptidase family, which comprises 24 enzymes (1). MMP-2 plays a key role in many biological and pathological processes, including organ growth, endometrial cycling, wound healing, bone remodeling, tumor invasion, and metastasis (2). This enzyme functions through proteolysis of non-structural extracellular molecules and components of the basement membrane, including type IV collagen, fibronectin, elastin, laminin, aggrecan, and fibrillin (3).Like most MMPs, MMP-2 is synthesized as a zymogen that is activated by conformational change (4) or proteolysis within the propeptide, which may involve membrane type MMPs (MT-MMPs) (59). The most studied activation mechanism for pro-MMP-2 is cleavage of the propeptide by MT1-MMP, which requires cooperative activity between MT1-MMP and tissue inhibitor of metalloprotease (TIMP)-2 (5, 1012). Serine proteases, such as thrombin, factor Xa, activated protein C, and plasmin as well as the cysteine protease legumain are all known activators of pro-MMP-2 (1317).In addition to its role in coagulation, thrombin is involved in multiple cellular processes, including mitogenesis of fibroblasts (18), lymphocytes (19), mesenchymal cells (20), and smooth muscle cells (SMCs) (21, 22). Factor Xa acts as a potent mitogen for endothelial cells (23), fibroblasts (24), and vascular SMCs (25, 26). Both proteases can also elicit endothelial cell and SMC migration through pro-MMP-2 activation and subsequent extracellular matrix degradation (13, 27, 28). However, despite studies suggesting that MT1-MMP is involved in thrombin-mediated activation of pro-MMP-2, a detailed mechanism for MMP-2 activation has yet to be elucidated (15, 27).In this study, we investigated the roles of factor Xa and thrombin in MMP-2 regulation. Data are presented to demonstrate that factor Xa mediates MT1-MMP-independent processing of pro-MMP-2 by cleavage of specific sites within the propeptide. Furthermore, factor Xa-processed MMP-2 showed enzymatic activity that was enhanced following intermolecular autoproteolytic cleavage. Thrombin also activated pro-MMP-2 through the same cleavage reaction. Interestingly, factor Xa and thrombin were also found to be involved in MMP-2 degradation. However, this activity was reduced greatly in thrombin-treated MMP-2 by the cell surface, which resulted in an increase in processed MMP-2.  相似文献   

4.
Early onset generalized dystonia (DYT1) is an autosomal dominant neurological disorder caused by deletion of a single glutamate residue (torsinA ΔE) in the C-terminal region of the AAA+ (ATPases associated with a variety of cellular activities) protein torsinA. The pathogenic mechanism by which torsinA ΔE mutation leads to dystonia remains unknown. Here we report the identification and characterization of a 628-amino acid novel protein, printor, that interacts with torsinA. Printor co-distributes with torsinA in multiple brain regions and co-localizes with torsinA in the endoplasmic reticulum. Interestingly, printor selectively binds to the ATP-free form but not to the ATP-bound form of torsinA, supporting a role for printor as a cofactor rather than a substrate of torsinA. The interaction of printor with torsinA is completely abolished by the dystonia-associated torsinA ΔE mutation. Our findings suggest that printor is a new component of the DYT1 pathogenic pathway and provide a potential molecular target for therapeutic intervention in dystonia.Early onset generalized torsion dystonia (DYT1) is the most common and severe form of hereditary dystonia, a movement disorder characterized by involuntary movements and sustained muscle spasms (1). This autosomal dominant disease has childhood onset and its dystonic symptoms are thought to result from neuronal dysfunction rather than neurodegeneration (2, 3). Most DYT1 cases are caused by deletion of a single glutamate residue at positions 302 or 303 (torsinA ΔE) of the 332-amino acid protein torsinA (4). In addition, a different torsinA mutation that deletes amino acids Phe323–Tyr328 (torsinA Δ323–328) was identified in a single family with dystonia (5), although the pathogenic significance of this torsinA mutation is unclear because these patients contain a concomitant mutation in another dystonia-related protein, ϵ-sarcoglycan (6). Recently, genetic association studies have implicated polymorphisms in the torsinA gene as a genetic risk factor in the development of adult-onset idiopathic dystonia (7, 8).TorsinA contains an N-terminal endoplasmic reticulum (ER)3 signal sequence and a 20-amino acid hydrophobic region followed by a conserved AAA+ (ATPases associated with a variety of cellular activities) domain (9, 10). Because members of the AAA+ family are known to facilitate conformational changes in target proteins (11, 12), it has been proposed that torsinA may function as a molecular chaperone (13, 14). TorsinA is widely expressed in brain and multiple other tissues (15) and is primarily associated with the ER and nuclear envelope (NE) compartments in cells (1620). TorsinA is believed to mainly reside in the lumen of the ER and NE (1719) and has been shown to bind lamina-associated polypeptide 1 (LAP1) (21), lumenal domain-like LAP1 (LULL1) (21), and nesprins (22). In addition, recent evidence indicates that a significant pool of torsinA exhibits a topology in which the AAA+ domain faces the cytoplasm (20). In support of this topology, torsinA is found in the cytoplasm, neuronal processes, and synaptic terminals (2, 3, 15, 2326) and has been shown to bind cytosolic proteins snapin (27) and kinesin light chain 1 (20). TorsinA has been proposed to play a role in several cellular processes, including dopaminergic neurotransmission (2831), NE organization and dynamics (17, 22, 32), and protein trafficking (27, 33). However, the precise biological function of torsinA and its regulation remain unknown.To gain insights into torsinA function, we performed yeast two-hybrid screens to search for torsinA-interacting proteins in the brain. We report here the isolation and characterization of a novel protein named printor (protein interactor of torsinA) that interacts selectively with wild-type (WT) torsinA but not the dystonia-associated torsinA ΔE mutant. Our data suggest that printor may serve as a cofactor of torsinA and provide a new molecular target for understanding and treating dystonia.  相似文献   

5.
6.
Membrane-type 1 matrix metalloproteinase 1 (MT1-MMP) is a potent modulator of the pericellular microenvironment and regulates cellular functions in physiological and pathological settings in mammals. MT1-MMP mediates its biological effects through cleavage of specific substrate proteins. However, our knowledge of MT1-MMP substrates remains limited. To identify new substrates of MT1-MMP, we purified proteins associating with MT1-MMP in human epidermoid carcinoma A431 cells and analyzed them by mass spectrometry. We identified 163 proteins, including membrane proteins, cytoplasmic proteins, and functionally unknown proteins. Sixty-four membrane proteins were identified, and they included known MT1-MMP substrates. Of these, eighteen membrane proteins were selected, and we confirmed their association with MT1-MMP using an immunoprecipitation assay. Co-expression of each protein together with MT1-MMP revealed that nine proteins were cleaved by MT1-MMP. Lutheran blood group glycoprotein (Lu) is one of the proteins cleaved by MT1-MMP, and we confirmed the cleavage of the endogenous Lu protein by endogenous MT1-MMP in A431 cells. Mutation of the cleavage site of Lu abrogated processing by MT1-MMP. Lu protein expressed in A431 cells bound to laminin-511, and knockdown of MT1-MMP in these cells increased both their binding to laminin-511 and the amount of Lu protein on the cell surface. Thus, the identified membrane proteins associated with MT1-MMP are an enriched source of physiological MT1-MMP substrates.Cells in tissues are surrounded by an extracellular cellular matrix that interacts with cells to regulate their activity (1, 2). Matrix metalloproteinases (MMPs)3 are endopeptidases responsible for extracellular matrix degradation and thereby regulate turnover of the extracellular matrix. However, recent studies have demonstrated that substrates of MMPs are expanded to a variety of pericellular proteins.MT1-MMP/MMP14 is an integral membrane proteinase that cleaves multiple proteins in the pericellular milieu and thereby regulates various cell functions. Substrates of MT1-MMP identified to date include extracellular matrix proteins (type I collagen, fibronectin, vitronectin, laminin-1 and -5, and others), cell adhesion molecules (CD44, syndecan-1, and αv integrin), cytokines (SDF-1 and transforming growth factor-β and others), and latent forms of pro-MMPs (pro-MMP-2 and pro-MMP13) (35). Processing of these proteins by MT1-MMP alters their activities and thereby regulates a variety of cellular functions, such as motility, invasion, growth, differentiation, and apoptosis. Consistent with these functions, forced expression of MT1-MMP in tumor cells enhances behavior consistent with increased malignancy, such as rapid tumor growth, invasion, and metastasis (6). However, MT1-MMP is normally expressed in various types of cell and mice deficient in MT1-MMP expression (MT1−/−) display pleiotropic defects (710). However, we as yet have only limited knowledge of the physiological substrates of MT1-MMP that could explain such pleiotropic effects.Proteases interact with their substrates at least transiently, but in some cases such interaction is more stable. For instance, type I collagen binds MT1-MMP via a hemopexin-like domain and is cleaved (11, 12). Cleavage of collagen by MT1-MMP regulates cell growth and invasion in a collagen-rich environment (13). CD44, a hyaluronic acid receptor, also binds to the hemopexin of MT1-MMP and is cleaved (14). Expression of CD44 and MT1-MMP in tumor cells promotes cell migration, accompanied by the shedding of CD44 by MT1-MMP (14, 15). pro-MMP-2, which is cleaved by MT1-MMP for activation, forms a tri-molecular complex with MT1-MMP and TIMP-2 (3, 16). Therefore, screening of proteins that associate with MT1-MMP may provide a systematic method to identify potential substrates of MT1-MMP in cells. In addition, these proteins may also be regulatory proteins of MT1-MMP.To identify proteins associating with MT1-MMP in different types of tumor cells, we first studied conditions for cell lysis using malignant melanoma A375 cells and following purification method of the proteins as reported recently (17). Proteins purified in this manner were analyzed by high-throughput proteomic analysis (1821). Interestingly, approximately one-half of the membrane proteins identified in our previous study could be cleaved by MT1-MMP at least in vitro. Here, we applied this approach to human carcinoma cells (A431) that originate from epidermoid cells and further validated the systemic whole cell analysis method. To evaluate whether the MT1-MMP-associated membrane proteins so identified include physiological targets of MT1-MMP activity, we select one of them, Lutheran blood group glycoprotein (Lu), and evaluate its processing in A431 cells.  相似文献   

7.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

8.
Fibroblasts degrade type I collagen, the major extracellular protein found in mammals, during events ranging from bulk tissue resorption to invasion through the three-dimensional extracellular matrix. Current evidence suggests that type I collagenolysis is mediated by secreted as well as membrane-anchored members of the matrix metalloproteinase (MMP) gene family. However, the roles played by these multiple and possibly redundant, degradative systems during fibroblast-mediated matrix remodeling is undefined. Herein, we use fibroblasts isolated from Mmp13−/−, Mmp8−/−, Mmp2−/−, Mmp9−/−, Mmp14−/− and Mmp16−/− mice to define the functional roles for secreted and membrane-anchored collagenases during collagen-resorptive versus collagen-invasive events. In the presence of a functional plasminogen activator-plasminogen axis, secreted collagenases arm cells with a redundant collagenolytic potential that allows fibroblasts harboring single deficiencies for either MMP-13, MMP-8, MMP-2, or MMP-9 to continue to degrade collagen comparably to wild-type fibroblasts. Likewise, Mmp14−/− or Mmp16−/− fibroblasts retain near-normal collagenolytic activity in the presence of plasminogen via the mobilization of secreted collagenases, but only Mmp14 (MT1-MMP) plays a required role in the collagenolytic processes that support fibroblast invasive activity. Furthermore, by artificially tethering a secreted collagenase to the surface of Mmp14−/− fibroblasts, we demonstrate that localized pericellular collagenolytic activity differentiates the collagen-invasive phenotype from bulk collagen degradation. Hence, whereas secreted collagenases arm fibroblasts with potent matrix-resorptive activity, only MT1-MMP confers the focal collagenolytic activity necessary for supporting the tissue-invasive phenotype.In the postnatal state, fibroblasts are normally embedded in a self-generated three-dimensional connective tissue matrix composed largely of type I collagen, the major extracellular protein found in mammals (13). Type I collagen not only acts as a structural scaffolding for the associated mesenchymal cell populations but also regulates gene expression and cell function through its interactions with collagen binding integrins and discoidin receptors (2, 4). Consistent with the central role that type I collagen plays in defining the structure and function of the extracellular matrix, the triple-helical molecule is resistant to almost all forms of proteolytic attack and can display a decades-long half-life in vivo (46). Nonetheless, fibroblasts actively remodel type I collagen during wound healing, inflammation, or neoplastic states (2, 713).To date type I collagenolytic activity is largely confined to a small subset of fewer than 10 proteases belonging to either the cysteine proteinase or matrix metalloproteinase (MMP)2 gene families (4, 1418). As all collagenases are synthesized as inactive zymogens, complex proteolytic cascades involving serine, cysteine, metallo, and aspartyl proteinases have also been linked to collagen turnover by virtue of their ability to mediate the processing of the pro-collagenases to their active forms (13, 15, 19). After activation, each collagenase can then cleave native collagen within its triple-helical domain, thus precipitating the unwinding or “melting” of the resulting collagen fragments at physiologic temperatures (4, 15). In turn, the denatured products (termed gelatin) are susceptible to further proteolysis by a broader class of “gelatinases” (4, 15). Collagen fragments are then either internalized after binding to specific receptors on the cell surface or degraded to smaller peptides with potent biological activity (2024).Previous studies by our group as well as others have identified MMPs as the primary effectors of fibroblast-mediated collagenolysis (20, 25, 26). Interestingly, adult mouse fibroblasts express at least six MMPs that can potentially degrade type I collagen, raising the possibility of multiple compensatory networks that are designed to preserve collagenolytic activity (25). Four of these collagenases belong to the family of secreted MMPs, i.e. MMP-13, MMP-8, MMP-2, and MMP-9, whereas the other two enzymes are members of the membrane-type MMP subgroup, i.e. MMP-14 (MT1-MMP) and MMP-16 (MT3-MMP) (13, 2729). From a functional perspective, the specific roles that can be assigned to secreted versus membrane-anchored collagenases remain undefined. As such, fibroblasts were isolated from either wild-type mice or mice harboring loss-of-function deletions in each of the major secreted and membrane-anchored collagenolytic genes, and the ability of the cells to degrade type I collagen was assessed. Herein, we demonstrate that fibroblasts mobilize either secreted or membrane-anchored MMPs to effectively degrade type I collagen in qualitatively and quantitatively distinct fashions. However, under conditions where fibroblasts use either secreted and membrane-anchored MMPs to exert quantitatively equivalent collagenolytic activity, only MT1-MMP plays a required role in supporting a collagen-invasive phenotype. These data establish a new paradigm wherein secreted collagenases are functionally limited to bulk collagenolytic processes, whereas MT1-MMP uniquely arms the fibroblast with a focalized degradative activity that mediates subjacent collagenolysis as well as invasion.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1) uses a variety of chemokine receptors as coreceptors for virus entry, and the ability of the virus to be neutralized by antibody may depend on which coreceptors are used. In particular, laboratory-adapted variants of the virus that use CXCR4 as a coreceptor are highly sensitive to neutralization by sera from HIV-1-infected individuals, whereas primary isolates that use CCR5 instead of, or in addition to, CXCR4 are neutralized poorly. To determine whether this dichotomy in neutralization sensitivity could be explained by differential coreceptor usage, virus neutralization by serum samples from HIV-1-infected individuals was assessed in MT-2 cells, which express CXCR4 but not CCR5, and in mitogen-stimulated human peripheral blood mononuclear cells (PBMC), where multiple coreceptors including CXCR4 and CCR5 are available for use. Our results showed that three of four primary isolates with a syncytium-inducing (SI) phenotype and that use CXCR4 and CCR5 were neutralized poorly in both MT-2 cells and PBMC. The fourth isolate, designated 89.6, was more sensitive to neutralization in MT-2 cells than in PBMC. We showed that the neutralization of 89.6 in PBMC was not improved when CCR5 was blocked by having RANTES, MIP-1α, and MIP-1β in the culture medium, indicating that CCR5 usage was not responsible for the decreased sensitivity to neutralization in PBMC. Consistent with this finding, a laboratory-adapted strain of virus (IIIB) was significantly more sensitive to neutralization in CCR5-deficient PBMC (homozygous Δ32-CCR5 allele) than were two of two SI primary isolates tested. The results indicate that the ability of HIV-1 to be neutralized by sera from infected individuals depends on factors other than coreceptor usage.Human immunodeficiency virus type 1 (HIV-1), the etiologic agent of AIDS, utilizes the HLA class II receptor, CD4, as its primary receptor to gain entry into cells (17, 30). Entry is initiated by a high-affinity interaction between CD4 and the surface gp120 of the virus (32). Subsequent to this interaction, conformational changes that permit fusion of the viral membrane with cellular membranes occur within the viral transmembrane gp41 (9, 58, 59). In addition to CD4, one or more recently described viral coreceptors are needed for fusion to take place. These coreceptors belong to a family of seven-transmembrane G-protein-coupled proteins and include the CXC chemokine receptor CXCR4 (3, 4, 24, 44), the CC chemokine receptors CCR5 (1, 12, 13, 18, 21, 23, 45) and, less commonly, CCR3 and CCR2b (12, 21), and two related orphan receptors termed BONZO/STRL33 and BOB (19, 34). Coreceptor usage by HIV-1 can be blocked by naturally occurring ligands, including SDF-1 for CXCR4 (4, 44), RANTES, MIP-1α, and MIP-1β in the case of CCR5 (13, 45), and eotaxin for CCR3 (12).The selective cellular tropisms of different strains of HIV-1 may be determined in part by coreceptor usage. For example, all culturable HIV-1 variants replicate initially in mitogen-stimulated human peripheral blood mononuclear cells (PBMC), but only a minor fraction are able to infect established CD4+ T-cell lines (43). This differential tropism is explained by the expression of CXCR4 together with CCR5 and other CC chemokine coreceptors on PBMC and the lack of expression of CCR5 on most T-cell lines (5, 10, 19, 35, 39, 50, 53). Indeed, low-passage field strains (i.e., primary isolates) of HIV-1 that fail to replicate in T-cell lines use CCR5 as their major coreceptor and are unable to use CXCR4 (1, 12, 18, 21, 23, 28). Because these isolates rarely produce syncytia in PBMC and fail to infect MT-2 cells, they are often classified as having a non-syncytium-inducing (NSI) phenotype. Primary isolates with a syncytium-inducing (SI) phenotype are able to use CXCR4 alone or, more usually, in addition to CCR5 (16, 20, 51). HIV-1 variants that have been passaged multiple times in CD4+ T-cell lines, and therefore considered to be laboratory adapted, exhibit a pattern of coreceptor usage that resembles that of SI primary isolates. Most studies have shown that the laboratory-adapted strain IIIB uses CXCR4 alone (3, 13, 20, 24, 51) and that MN and SF-2 use CXCR4 primarily and CCR5 to a lesser degree (11, 13). Sequences within the V3 loop of gp120 have been shown to be important, either directly or indirectly, for the interaction of HIV-1 with both CXCR4 (52) and CCR5 (12, 14, 54, 60). This region of gp120 contains multiple determinants of cellular tropism (43) and is a major target for neutralizing antibodies to laboratory-adapted HIV-1 but not to primary isolates (29, 46, 57).It has been known for some time that the ability of sera from HIV-1-infected individuals to neutralize laboratory-adapted strains of HIV-1 does not predict their ability to neutralize primary isolates in vitro (7). In general, the former viruses are highly sensitive to neutralization whereas the latter viruses are neutralized poorly by antibodies induced in response to HIV-1 infection (7, 43). Importantly, neutralizing antibodies generated by candidate HIV-1 subunit vaccines have been highly specific for laboratory-adapted viruses (26, 37, 38). In principle, the dichotomy in neutralization sensitivity between these two categories of virus could be related to coreceptor usage. To test this, we investigated whether the use of CXCR4 in the absence of CCR5 would render SI primary isolates highly sensitive to neutralization in vitro by sera from HIV-1-infected individuals. Two similar studies using human monoclonal antibodies and soluble CD4 have been reported (31a, 55).  相似文献   

10.
11.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

12.
CLIPs (cytoplasmic linker proteins) are a class of proteins believed to mediate the initial, static interaction of organelles with microtubules. CLIP-170, the CLIP best characterized to date, is required for in vitro binding of endocytic transport vesicles to microtubules. We report here that CLIP-170 transiently associates with prometaphase chromosome kinetochores and codistributes with dynein and dynactin at kinetochores, but not polar regions, during mitosis. Like dynein and dynactin, a fraction of the total CLIP-170 pool can be detected on kinetochores of unattached chromosomes but not on those that have become aligned at the metaphase plate. The COOH-terminal domain of CLIP-170, when transiently overexpressed, localizes to kinetochores and causes endogenous full-length CLIP-170 to be lost from the kinetochores, resulting in a delay in prometaphase. Overexpression of the dynactin subunit, dynamitin, strongly reduces the amount of CLIP-170 at kinetochores suggesting that CLIP-170 targeting may involve the dynein/dynactin complex. Thus, CLIP-170 may be a linker for cargo in mitosis as well as interphase. However, dynein and dynactin staining at kinetochores are unaffected by this treatment and further overexpression studies indicate that neither CLIP-170 nor dynein and dynactin are required for the formation of kinetochore fibers. Nevertheless, these results strongly suggest that CLIP-170 contributes in some way to kinetochore function in vivo.Microtubules (MTs)1 in vertebrate somatic cells are involved in intracellular transport and distribution of membranous organelles. Fundamental to this role are their tightly controlled, polarized organization, and unusual dynamic properties (Hirokawa, 1994) and their interaction with a complex set of MT-based motor proteins (Hirokawa, 1996; Sheetz, 1996; Goodson et al., 1997). During mitosis, they contribute to the motility of centrosomes, the construction of spindle poles (Karsenti et al., 1996; Merdes and Cleveland, 1997), and the dynamic movements of kinetochores (Rieder and Salmon, 1994) and chromosome arms (Barton and Goldstein, 1996; Vernos and Karsenti, 1996). The motor protein cytoplasmic dynein, drives the transport toward MT minus-ends of a variety of subcellular organelles (Schnapp and Reese, 1989; Schroer et al., 1989; Holzbaur and Vallee, 1994). Dynactin is a molecular complex originally identified as being essential for dynein-mediated movement of salt-washed vesicles in vitro (reviewed in Schroer, 1996; Schroer and Sheetz, 1991). Genetic studies in fungi, yeast, and flies have shown that the two complexes function together to drive nuclear migration, spindle and nuclear positioning and to permit proper neuronal development (Eshel et al., 1993; Clark and Meyer, 1994; Muhua et al., 1994; Plamann et al., 1994; McGrail et al., 1995; Karsenti et al., 1996). Biochemical studies suggest a direct interaction between certain subunits of dynein and dynactin (Karki and Holzbaur, 1995; Vaughan and Vallee, 1995). In vivo, the two molecules may bind one another transiently, since they have not been isolated as a stable complex.There is good evidence indicating that the dynein/dynactin complex, together with other motors (Eg5, and a minus-end oriented kinesin-related protein) and a structural protein (NuMa), drive the focusing of free microtubule ends into mitotic spindle poles (Merdes and Cleveland, 1997; Waters and Salmon, 1997). A trimolecular complex composed of NuMa and dynein/dynactin may be crucial in this process in both acentriolar (Merdes et al., 1996), and centriolar spindles (Gaglio et al., 1997). A number of findings also indicate that the combined actions of dynein and dynactin at the kinetochore contribute to chromosome alignment in vertebrate somatic cells. First, the initial interaction between polar spindle MTs and kinetochores seems to involve a tangential capture event (Merdes and De Mey, 1990; Rieder and Alexander, 1990) which is followed by a poleward gliding along the surface lattice of the MT (Hayden et al., 1990). Both in vivo and in vitro (Hyman and Mitchison, 1991) this gliding movement appears similar to the dynein-mediated retrograde transport of vesicular organelles along MTs. Consistent with this is the finding that both dynein (Pfarr et al., 1990; Steuer et al., 1990) and its activator, dynactin (Echeverri et al., 1996), are present at prometaphase kinetochores. Overexpression of dynamitin, a 50-kD subunit of the dynactin complex, results in the partial disruption of the dynactin complex and in the loss, from kinetochores, of dynein, as well as dynactin. Therefore, it has been proposed that dynactin mediates the association of dynein with kinetochores. Abnormal spindles with poorly focused poles are observed and the cells become arrested in pseudoprometaphase (Echeverri et al., 1996). Despite these findings, rigorous proof for a role of the dynein motor complex in kinetochore motility is still lacking, and its role may differ between lower and higher eucaryotes, and between mitosis and meiosis.CLIP-170 (Rickard and Kreis, 1996) is needed for in vitro binding of endocytic transport vesicles to MTs (Pierre et al., 1992). It is a nonmotor MT-binding protein that accumulates preferentially in the vicinity of MT plus ends and on early endosomes and endocytic transport vesicles in nondividing cells (Rickard and Kreis, 1990; Pierre et al., 1992). Like many MT-binding proteins, CLIP-170 is a homodimer whose NH2-terminal head domains and COOH-terminal tail domains flank a central α-helical coiled-coil domain. The binding of CLIP-170 to MTs involves a 57–amino acid sequence present twice in the head domain (Pierre et al., 1992) and is regulated by phosphorylation (Rickard and Kreis, 1991). The COOH-terminal domain has been proposed to participate in targeting to endocytic membranes (Pierre et al., 1994). The fact that the latter move predominantly toward microtubule minus ends in a process most likely mediated by cytoplasmic dynein and dynactin (Aniento and Gruenberg, 1995), suggests that CLIP-170 may act in concert with this motor complex, and may be subject to regulated interactions with one or more dynactin or dynein subunits at the vesicle membrane.Here we report that during mitosis, CLIP-170 codistributes with dynein and dynactin at kinetochores, but not spindle poles. Evidence is presented that the COOH-terminal domain of CLIP-170 is responsible for its kinetochore targeting, and that this may be mediated by the complex of dynein and dynactin. The effects on mitotic progression of overexpression of wild type and several deletion mutants of CLIP-170 provide evidence for the involvement of CLIP-170 in kinetochore function early in mitosis. We also present in vivo evidence that neither CLIP-170 nor the complex of dynein and dynactin are required for formation of kinetochore fibers.  相似文献   

13.
14.
SLC26A7 (human)/Slc26a7 (mouse) is a recently identified chloride-base exchanger and/or chloride transporter that is expressed on the basolateral membrane of acid-secreting cells in the renal outer medullary collecting duct (OMCD) and in gastric parietal cells. Here, we show that mice with genetic deletion of Slc26a7 expression develop distal renal tubular acidosis, as manifested by metabolic acidosis and alkaline urine pH. In the kidney, basolateral Cl/HCO3 exchange activity in acid-secreting intercalated cells in the OMCD was significantly decreased in hypertonic medium (a normal milieu for the medulla) but was reduced only mildly in isotonic medium. Changing from a hypertonic to isotonic medium (relative hypotonicity) decreased the membrane abundance of Slc26a7 in kidney cells in vivo and in vitro. In the stomach, stimulated acid secretion was significantly impaired in isolated gastric mucosa and in the intact organ. We propose that SLC26A7 dysfunction should be investigated as a potential cause of unexplained distal renal tubular acidosis or decreased gastric acid secretion in humans.The collecting duct segment of the distal kidney nephron plays a major role in systemic acid base homeostasis by acid secretion and bicarbonate absorption. The acid secretion occurs via H+-ATPase and H-K-ATPase into the lumen and bicarbonate is absorbed via basolateral Cl/HCO3 exchangers (14). The tubules, which are located within the outer medullary region of the kidney collecting duct (OMCD),2 have the highest rate of acid secretion among the distal tubule segments and are therefore essential to the maintenance of acid base balance (2).The gastric parietal cell is the site of generation of acid and bicarbonate through the action of cytosolic carbonic anhydrase II (5, 6). The intracellular acid is secreted into the lumen via gastric H-K-ATPase, which works in conjunction with a chloride channel and a K+ recycling pathway (710). The intracellular bicarbonate is transported to the blood via basolateral Cl/HCO3 exchangers (1114).SLC26 (human)/Slc26 (mouse) isoforms are members of a conserved family of anion transporters that display tissue-specific patterns of expression in epithelial cells (1524). Several SLC26 members can function as chloride/bicarbonate exchangers. These include SLC26A3 (DRA), SLC26A4 (pendrin), SLC26A6 (PAT1 or CFEX), SLC26A7, and SLC26A9 (2531). SLC26A7 and SLC26A9 can also function as chloride channels (3234).SLC26A7/Slc26a7 is predominantly expressed in the kidney and stomach (28, 29). In the kidney, Slc26a7 co-localizes with AE1, a well-known Cl/HCO3 exchanger, on the basolateral membrane of (acid-secreting) A-intercalated cells in OMCD cells (29, 35, 36) (supplemental Fig. 1). In the stomach, Slc26a7 co-localizes with AE2, a major Cl/HCO3 exchanger, on the basolateral membrane of acid secreting parietal cells (28). To address the physiological function of Slc26a7 in the intact mouse, we have generated Slc26a7 ko mice. We report here that Slc26a7 ko mice exhibit distal renal tubular acidosis and impaired gastric acidification in the absence of morphological abnormalities in kidney or stomach.  相似文献   

15.
16.
We have previously reported that growth factor receptor-bound protein-7 (Grb7), an Src-homology 2 (SH2)-containing adaptor protein, enables interaction with focal adhesion kinase (FAK) to regulate cell migration in response to integrin activation. To further elucidate the signaling events mediated by FAK·Grb7 complexes in promoting cell migration and other cellular functions, we firstly examined the phos pho ryl a ted tyrosine site(s) of Grb7 by FAK using an in vivo mutagenesis. We found that FAK was capable of phos pho rylating at least 2 of 12 tyrosine residues within Grb7, Tyr-188 and Tyr-338. Moreover, mutations converting the identified Tyr to Phe inhibited integrin-dependent cell migration as well as impaired cell proliferation but not survival compared with the wild-type control. Interestingly, the above inhibitory effects caused by the tyrosine phos pho ryl a tion-deficient mutants are probably attributed to their down-regulation of phospho-Tyr-397 of FAK, thereby implying a mechanism by competing with wild-type Grb7 for binding to FAK. Consequently, these tyrosine phos pho ryl a tion-deficient mutants evidently altered the phospho-Tyr-118 of paxillin and phos pho ryl a tion of ERK1/2 but less on phospho-Ser-473 of AKT, implying their involvement in the FAK·Grb7-mediated cellular functions. Additionally, we also illustrated that the formation of FAK·Grb7 complexes and Grb7 phos pho ryl a tion by FAK in an integrin-dependent manner were essential for cell migration, proliferation and anchorage-independent growth in A431 epidermal carcinoma cells, indicating the importance of FAK·Grb7 complexes in tumorigenesis. Our data provide a better understanding on the signal transduction event for FAK·Grb7-mediated cellular functions as well as to shed light on a potential therapeutic in cancers.Growth factor receptor bound protein-7 (Grb7)2 is initially identified as a SH2 domain-containing adaptor protein bound to the activated EGF receptor (1). Grb7 is composed of an N-terminal proline-rich region, following a putative RA (Ras-associating) domain and a central PH (pleckstrin homology) domain and a BPS motif (between PH and SH2 domains), and a C-terminal SH2 domain (26). Despite the lack of enzymatic activity, the presence of multiple protein-protein interaction domains allows Grb7 family adaptor proteins to participate in versatile signal transduction pathways and, therefore, to regulate many cellular functions (46). A number of signaling molecules has been reported to interact with these featured domains, although most of the identified Grb7 binding partners are mediated through its SH2 domain. For example, the SH2 domain of Grb7 has been demonstrated to be capable of binding to the phospho-tyrosine sites of EGF receptor (1), ErbB2 (7), ErbB3 and ErbB4 (8), Ret (9), platelet-derived growth factor receptor (10), insulin receptor (11), SHPTP2 (12), Tek/Tie2 (13), caveolin (14), c-Kit (15), EphB1 (16), G6f immunoreceptor protein (17), Rnd1 (18), Shc (7), FAK (19), and so on. The proceeding α-helix of the PH domain of Grb7 is the calmodulin-binding domain responsible for recruiting Grb7 to plasma membrane in a Ca2+-dependent manner (20), and the association between the PH domain of Grb7 and phosphoinositides is required for the phosphorylation by FAK (21). Two additional proteins, NIK (nuclear factor κB-inducing kinase) and FHL2 (four and half lim domains isoform 2), in association with the GM region (Grb and Mig homology region) of Grb7 are also reported, although the physiological functions for these interactions remain unknown (22, 23). Recently, other novel roles in translational controls and stress responses through the N terminus of Grb7 are implicated for the findings of Grb7 interacting with the 5′-untranslated region of capped targeted KOR (kappa opioid receptor) mRNA and the Hu antigen R of stress granules in an FAK-mediated phosphorylation manner (24, 25).Unlike its member proteins Grb10 and Grb14, the role of Grb7 in cell migration is unambiguous and well documented. This is supported by a series of studies. Firstly, Grb7 family members share a significantly conserved molecular architecture with the Caenorhabditis elegans Mig-10 protein, which is involved in neuronal cell migration during embryonic development (4, 5, 26), suggesting that Grb7 may play a role in cell migration. Moreover, Grb7 is often co-amplified with Her2/ErbB2 in certain human cancers and tumor cell lines (7, 27, 28), and its overexpression resulted in invasive and metastatic consequences of various cancers and tumor cells (23, 2933). On the contrary, knocking down Grb7 by RNA interference conferred to an inhibitory outcome of the breast cancer motility (34). Furthermore, interaction of Grb7 with autophosphorylated FAK at Tyr-397 could promote integrin-mediated cell migration in NIH 3T3 and CHO cells, whereas overexpression of its SH2 domain, an dominant negative mutant of Grb7, inhibited cell migration (19, 35). Recruitment and phosphorylation of Grb7 by EphB1 receptors enhanced cell migration in an ephrin-dependent manner (16). Recently, G7–18NATE, a selective Grb7-SH2 domain affinity cyclic peptide, was demonstrated to efficiently block cell migration of tumor cells (32, 36). In addition to cell migration, Grb7 has been shown to play a role in a variety of physiological and pathological events, for instance, kidney development (37), tumorigenesis (7, 14, 3841), angiogenic activity (20), proliferation (34, 42, 43), anti-apoptosis (44), gene expression regulation (24), Silver-Russell syndrome (45), rheumatoid arthritis (46), atopic dermatitis (47), and T-cell activation (17, 48). Nevertheless, it remains largely unknown regarding the downstream signaling events of Grb7-mediated various functions. In particular, given the role of Grb7 as an adaptor molecule and its SH2 domain mainly interacting with upstream regulators, it will be interesting to identify potential downstream effectors through interacting with the functional GM region or N-terminal proline-rich region.In this report, we identified two tyrosine phosphorylated sites of Grb7 by FAK and deciphered the signaling targets downstream through these phosphorylated tyrosine sites to regulate various cellular functions such as cell migration, proliferation, and survival. In addition, our study sheds light on tyrosine phosphorylation of Grb7 by FAK involved in tumorigenesis.  相似文献   

17.
18.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

19.
Collapsin response mediator protein 2 (CRMP2) is an intracellular protein that mediates signaling of Semaphorin3A (Sema3A), a repulsive axon guidance molecule. Fyn, a Src-type tyrosine kinase, is involved in the Sema3A signaling. However, the relationship between CRMP2 and Fyn in this signaling pathway is still unknown. In our research, we demonstrated that Fyn phosphorylated CRMP2 at Tyr32 residues in HEK293T cells. Immunohistochemical analysis using a phospho-specific antibody at Tyr32 of CRMP showed that Tyr32-phosphorylated CRMP was abundant in the nervous system, including dorsal root ganglion neurons, the molecular and Purkinje cell layer of adult cerebellum, and hippocampal fimbria. Overexpression of a nonphosphorylated mutant (Tyr32 to Phe32) of CRMP2 in dorsal root ganglion neurons interfered with Sema3A-induced growth cone collapse response. These results suggest that Fyn-dependent phosphorylation of CRMP2 at Tyr32 is involved in Sema3A signaling.Collapsin response mediator proteins (CRMPs)4 have been identified as intracellular proteins that mediate Semaphorin3A (Sema3A) signaling in the nervous system (1). CRMP2 is one of the five members of the CRMP family. CRMPs also mediate signal transduction of NT3, Ephrin, and Reelin (24). CRMPs interact with several intracellular molecules, including tubulin, Numb, kinesin1, and Sra1 (58). CRMPs are involved in axon guidance, axonal elongation, cell migration, synapse maturation, and the generation of neuronal polarity (1, 2, 4, 5).CRMP family proteins are known to be the major phosphoproteins in the developing brain (1, 9). CRMP2 is phosphorylated by several Ser/Thr kinases, such as Rho kinase, cyclin-dependent kinase 5 (Cdk5), and glycogen synthase kinase 3β (GSK3β) (2, 1013). The phosphorylation sites of CRMP2 by these kinases are clustered in the C terminus and have already been identified. Rho kinase phosphorylates CRMP2 at Thr555 (10). Cdk5 phosphorylates CRMP2 at Ser522, and this phosphorylation is essential for sequential phosphorylations by GSK3β at Ser518, Thr514, and Thr509 (2, 1113). These phosphorylations disrupt the interaction of CRMP2 with tubulin or Numb (2, 3, 13). The sequential phosphorylation of CRMP2 by Cdk5 and GSK3β is an essential step in Sema3A signaling (11, 13). Furthermore, the neurofibrillary tangles in the brains of people with Alzheimer disease contain hyperphosphorylated CRMP2 at Thr509, Ser518, and Ser522 (14, 15).CRMPs are also substrates of several tyrosine kinases. The phosphorylation of CRMP2 by Fes/Fps and Fer has been shown to be involved in Sema3A signaling (16, 17). Phosphorylation of CRMP2 at Tyr479 by a Src family tyrosine kinase Yes regulates CXCL12-induced T lymphocyte migration (18). We reported previously that Fyn is involved in Sema3A signaling (19). Fyn associates with PlexinA2, one of the components of the Sema3A receptor complex. Fyn also activates Cdk5 through the phosphorylation at Tyr15 of Cdk5 (19). In dorsal root ganglion (DRG) neurons from fyn-deficient mice, Sema3A-induced growth cone collapse response is attenuated compared with control mice (19). Furthermore, we recently found that Fyn phosphorylates CRMP1 and that this phosphorylation is involved in Reelin signaling (4). Although it has been shown that CRMP2 is involved in Sema3A signaling (1, 11, 13), the relationship between Fyn and CRMP2 in Sema3A signaling and the tyrosine phosphorylation site(s) of CRMPs remain unknown.Here, we show that Fyn phosphorylates CRMP2 at Tyr32. Using a phospho-specific antibody against Tyr32, we determined that the residue is phosphorylated in vivo. A nonphosphorylated mutant CRMP2Y32F inhibits Sema3A-induced growth cone collapse. These results indicate that tyrosine phosphorylation by Fyn at Tyr32 is involved in Sema3A signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号