首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

We previously showed microRNAs (miRNAs) in plasma are potential biomarkers for colorectal cancer detection. Here, we aimed to develop specific blood-based miRNA assay for breast cancer detection.

Methodology/Principal Findings

TaqMan-based miRNA profiling was performed in tumor, adjacent non-tumor, corresponding plasma from breast cancer patients, and plasma from matched healthy controls. All putative markers identified were verified in a training set of breast cancer patients. Selected markers were validated in a case-control cohort of 170 breast cancer patients, 100 controls, and 95 other types of cancers and then blindly validated in an independent set of 70 breast cancer patients and 50 healthy controls. Profiling results showed 8 miRNAs were concordantly up-regulated and 1 miRNA was concordantly down-regulated in both plasma and tumor tissue of breast cancer patients. Of the 8 up-regulated miRNAs, only 3 were significantly elevated (p<0.0001) before surgery and reduced after surgery in the training set. Results from the validation cohort showed that a combination of miR-145 and miR-451 was the best biomarker (p<0.0001) in discriminating breast cancer from healthy controls and all other types of cancers. In the blind validation, these plasma markers yielded Receiver Operating Characteristic (ROC) curve area of 0.931. The positive predictive value was 88% and the negative predictive value was 92%. Altered levels of these miRNAs in plasma have been detected not only in advanced stages but also early stages of tumors. The positive predictive value for ductal carcinoma in situ (DCIS) cases was 96%.

Conclusions

These results suggested that these circulating miRNAs could be a potential specific biomarker for breast cancer screening.  相似文献   

2.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate various biological processes. Cell-free miRNAs measured in blood plasma have emerged as specific and sensitive markers of physiological processes and disease. In this study, we investigated whether circulating miRNAs can serve as biomarkers for the detection of autologous blood transfusion, a major doping technique that is still undetectable. Plasma miRNA levels were analyzed using high-throughput quantitative real-time PCR. Plasma samples were obtained before and at several time points after autologous blood transfusion (blood bag storage time 42 days) in 10 healthy subjects and 10 controls without transfusion. Other serum markers of erythropoiesis were determined in the same samples. Our results revealed a distinct change in the pattern of circulating miRNAs. Ten miRNAs were upregulated in transfusion samples compared with control samples. Among these, miR-30b, miR-30c, and miR-26b increased significantly and showed a 3.9-, 4.0-, and 3.0-fold change, respectively. The origin of these miRNAs was related to pulmonary and liver tissues. Erythropoietin (EPO) concentration decreased after blood reinfusion. A combination of miRNAs and EPO measurement in a mathematical model enhanced the efficiency of autologous transfusion detection through miRNA analysis. Therefore, our results lay the foundation for the development of miRNAs as novel blood-based biomarkers to detect autologous transfusion.  相似文献   

3.
Systemic treatment of patients with early-stage cancers attempts to eradicate occult metastatic disease to prevent recurrence and increased morbidity. However, prediction of recurrence from an analysis of the primary tumor is limited because disseminated cancer cells only represent a small subset of the primary lesion. Here we analyze the expression of circulating microRNAs (miRs) in serum obtained pre-surgically from patients with early stage colorectal cancers. Groups of five patients with and without disease recurrence were used to identify an informative panel of circulating miRs using quantitative PCR of genome-wide miR expression as well as a set of published candidate miRs. A panel of six informative miRs (miR-15a, mir-103, miR-148a, miR-320a, miR-451, miR-596) was derived from this analysis and evaluated in a separate validation set of thirty patients. Hierarchical clustering of the expression levels of these six circulating miRs and Kaplan-Meier analysis showed that the risk of disease recurrence of early stage colon cancer can be predicted by this panel of miRs that are measurable in the circulation at the time of diagnosis (P = 0.0026; Hazard Ratio 5.4; 95% CI of 1.9 to 15).  相似文献   

4.
Detection of circulating tumor DNAs (ctDNAs) in cancer patients is an important component of cancer precision medicine ctDNAs. Compared to the traditional physical and biochemical methods, blood-based ctDNA detection offers a non-invasive and easily accessible way for cancer diagnosis, prognostic determination, and guidance for treatment. While studies on this topic are currently underway, clinical translation of ctDNA detection in various types of cancers has been attracting much attention, due to the great potential of ctDNA as blood-based biomarkers for early diagnosis and treatment of cancers. ctDNAs are detected and tracked primarily based on tumor-related genetic and epigenetic alterations. In this article, we reviewed the available studies on ctDNA detection and described the representative methods. We also discussed the current understanding of ctDNAs in cancer patients and their availability as potential biomarkers for clinical purposes. Considering the progress made and challenges involved in accurate detection of specific cell-free nucleic acids, ctDNAs hold promise to serve as biomarkers for cancer patients, and further validation is needed prior to their broad clinical use.  相似文献   

5.
The aim of the study was to develop a new diagnostic biomarker for identifying serum exosomal miRNAs specific to epithelial ovarian cancer (EOC) and to find out target gene of the miRNA for exploring the molecular mechanisms in EOC. A total of 84 cases of ovarian masses and sera were enrolled, comprising EOC (n = 71), benign ovarian neoplasms (n = 13). We detected expression of candidate miRNAs in the serum and tissue of both benign ovarian neoplasm group and EOC group using real-time polymerase chain reaction. Immunohistochemistry were constructed using formalin fixed paraffin embedded (FFPE) tissue to detect expression level of suppressor of cytokine signaling 4 (SOCS4). In the EOC group, miRNA-1290 was significantly overexpressed in serum exosomes and tissues as compared to benign ovarian neoplasm group (fold change ≥ 2, p < 0.05). We observed area under the receiver operating characteristic curve (AUC) for miR-1290, using a cut-off of 0.73, the exosomal miR-1290 from serum had AUC, sensitivity, and specificity values of 0.794, 69.2 and 87.3, respectively. In immunohistochemical study, expression of SOCS4 in EOC was lower than that in benign ovarian neoplasm. Serum exosomal miR-1290 could be considered as a biomarker for differential diagnosis of EOC from benign ovarian neoplasm and SOCS4 might be potential target gene of miR-1290 in EOC.  相似文献   

6.
BackgroundDetection of lung cancer at an early stage by sensitive screening tests could be an important strategy to improving prognosis. Our objective was to identify a panel of circulating microRNAs in plasma that will contribute to early detection of lung cancer.ResultsWe identified a panel of 24 microRNAs with optimum classification performance. The combination of these 24 microRNAs alone could discriminate lung cancer cases from non-cancer controls with an AUC of 0.92 (95% CI: 0.87-0.95). This classification improved to an AUC of 0.94 (95% CI: 0.90-0.97) following addition of sex, age and smoking status to the model. Internal validation of the model suggests that the discriminatory power of the panel will be high when applied to independent samples with a corrected AUC of 0.78 for the 24-miRNA panel alone.ConclusionOur 24-microRNA predictor improves lung cancer prediction beyond that of known risk factors.  相似文献   

7.
In patients with metastatic colon cancer, response to first line chemotherapy is a strong predictor of overall survival (OS). Currently, oncologists lack diagnostic tests to determine which chemotherapy regimen offers the greatest chance for response in an individual patient. Here we present the results of gene expression analysis for two genes, ERCC1 and TS, measured with the commercially available ResponseDX: Colon assay (Response Genetics, Los Angeles, CA) in 41 patients with de novo metastatic colon cancer diagnosed between July 2008 and August 2013 at the University of California, San Diego. In addition ERCC1 and TS expression levels as determined by RNAseq and survival data for patients in TCGA were downloaded from the TCGA data portal. We found that patients with low expression of ERCC1 (n = 33) had significantly longer median OS (36.0 vs. 10.1 mo, HR 0.29, 95% CI .095 to .84, log-rank p = 9.0x10-6) and median time to treatment to failure (TTF) following first line chemotherapy (14.1 vs. 2.4 mo, HR 0.17, 95% CI 0.048 to 0.58, log-rank p = 5.3x10-4) relative to those with high expression (n = 4). After accounting for the covariates age, sex, tumor grade and ECOG performance status in a Cox proportional hazard model the association of low ERCC1 with longer OS (HR 0.18, 95% CI 0.14 to 0.26, p = 0.0448) and TTF (HR 0.16, 95% CI 0.14 to 0.21, p = 0.0053) remained significant. Patients with low TS expression (n = 29) had significantly longer median OS (36.0 vs. 14.8 mo, HR 0.25, 95% CI 0.074 to 0.82, log-rank p = 0.022) relative to those with high expression (n = 12). The combined low expression of ERCC1/TS was predictive of response in patients treated with FOLFOX (40% vs. 91%, RR 2.3, Fisher’s exact test p = 0.03, n = 27), but not with FOLFIRI (71% vs. 71%, RR 1.0, Fisher’s exact test p = 1, n = 14). Overall, these findings suggest that measurement of ERCC1 and TS expression has potential clinical utility in managing patients with metastatic colorectal cancer.  相似文献   

8.

Background

MicroRNAs (miRNAs) are regulatory RNAs, stable in circulation, and implicated in colorectal cancer (CRC) etiology and progression. Therefore they are promising as early detection biomarkers of colorectal neoplasia. However, many circulating miRNAs are highly expressed in blood cells, and therefore may not be specific to colorectal neoplasia.

Methods

We selected 7 miRNA candidates with previously reported elevated expression in adenoma tissue but low expression in blood cells (“rare” miRNAs), 2 previously proposed as adenoma biomarkers, and 3 implicated in CRC. We conducted a colonoscopy-based case-control study including 48 polyp-free controls, 43 advanced adenomas, 73 non-advanced adenomas, and 8 CRC cases. miRNAs from plasma were quantified by qRT-PCR. Correlations between miRNA expression levels, adjusted for age and sex, were assessed. We used polytomous logistic regression to estimate odds ratios (ORs) and 95% confidence intervals quantifying the association between expression levels of miRNAs and case groups. We also conducted nonparametric receiver operating characteristic (ROC) analyses and estimated area under the curve (AUC).

Results

miRNAs with high expression levels were statistically significantly correlated with one another. No miRNAs were significantly associated with non-advanced or advanced adenomas. Strong (ORs >5) and significant associations with CRC were observed for 6 miRNA candidates, with corresponding AUCs significantly >0.5.

Conclusions

These candidate miRNAs, assayed by qRT-PCR, are probably unsuitable as blood-based adenoma biomarkers. Strong associations between miRNAs and CRC were observed, but primarily with miRNAs highly expressed in blood cells. These results suggest that rare miRNAs will require new detection methods to serve as circulating biomarkers of adenomas.  相似文献   

9.

Background

Sensitive and specific detection of liver cirrhosis is an urgent need for optimal individualized management of disease activity. Substantial studies have identified circulation miRNAs as biomarkers for diverse diseases including chronic liver diseases. In this study, we investigated the plasma miRNA signature to serve as a potential diagnostic biomarker for silent liver cirrhosis.

Methods

A genome-wide miRNA microarray was first performed in 80 plasma specimens. Six candidate miRNAs were selected and then trained in CHB-related cirrhosis and controls by qPCR. A classifier, miR-106b and miR-181b, was validated finally in two independent cohorts including CHB-related silent cirrhosis and controls, as well as non−CHB-related cirrhosis and controls as validation sets, respectively.

Results

A profile of 2 miRNAs (miR-106b and miR-181b) was identified as liver cirrhosis biomarkers irrespective of etiology. The classifier constructed by the two miRNAs provided a high diagnostic accuracy for cirrhosis (AUC = 0.882 for CHB-related cirrhosis in the training set, 0.774 for CHB-related silent cirrhosis in one validation set, and 0.915 for non−CHB-related cirrhosis in another validation set).

Conclusion

Our study demonstrated that the combined detection of miR-106b and miR-181b has a considerable clinical value to diagnose patients with liver cirrhosis, especially those at early stage.  相似文献   

10.
Urinary nucleosides are associated with many types of cancer. In this study, six targeted urinary nucleosides, namely adenosine, cytidine, 3-methylcytidine, 1-methyladenosine, inosine, and 2-deoxyguanosine, were chosen to evaluate their role as biomarkers of four different types of cancer: lung cancer, gastric cancer, colon cancer, and breast cancer. Urine samples were purified using solid-phase extraction (SPE) and then analyzed using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The Mann-Whitney U test and Principal Component Analysis (PCA) were used to compare differences in urinary nucleosides between patients with one of four types of cancer and healthy controls. The diagnostic sensitivity of single nucleosides for different types of cancer ranged from 14% to 69%. In contrast, the diagnostic sensitivity of a set of six nucleosides ranged from 37% to 69%. The false-positive identification rate associated with the set of six nucleosides in urine was less than 2% compared with that of less than 5% for a single nucleoside. Furthermore, combining the set of six urinary nucleosides with carcinoembryonic antigen improved the diagnostic sensitivity for colon cancer. In summary, the study show that a set of six targeted nucleosides is a good diagnostic marker for breast and colon cancers but not for lung and gastric cancers.  相似文献   

11.
Cancer-associated sarcopenia is a complex metabolic syndrome marked by muscle mass wasting. Muscle wasting is a serious complication that is a primary contributor to cancer-related mortality. The underlying molecular mechanisms of cancer-associated sarcopenia have not been completely described to date. In general, evidence shows that the main pathophysiological alterations in sarcopenia are associated with the degradation of cellular components, an exceptional inflammatory secretome and mitochondrial dysfunction. Importantly, we highlight the prospect that several miRNAs carried by tumor-derived exosomes that have shown the ability to promote inflammatory secretion, activate catabolism, and even participate in the regulation of cellular degradation pathways can be delivered to and exert effects on muscle cells. In this review, we aim to describe the current knowledge about the functions of exosomal miRNAs in the induction of cancer-associated muscle wasting and propose potential treatment strategies.  相似文献   

12.
Circulating microRNAs (c-miRNAs) are associated with physiological adaptation to acute and chronic aerobic exercise in humans. To investigate the potential effect of grazing movement on miRNA circulation in cattle, here we profiled miRNA expression in centrifugally prepared exosomes from the plasma of both grazing and housed Japanese Shorthorn cattle. Microarray analysis of the c-miRNAs resulted in detection of a total of 231 bovine exosomal miRNAs in the plasma, with a constant expression level of let-7g across the duration and cattle groups. Expression of muscle-specific miRNAs such as miR-1, miR-133a, miR-206, miR-208a/b, and miR-499 were undetectable, suggesting the mildness of grazing movement as exercise. According to validation by quantitative RT-PCR, the circulating miR-150 level in the grazing cattle normalized by the endogenous let-7g level was down-regulated after 2 and 4 months of grazing (P < 0.05), and then its levels in housed and grazing cattle equalized when the grazing cattle were returned to a housed situation. Likewise, the levels of miR-19b, miR-148a, miR-221, miR-223, miR-320a, miR-361, and miR-486 were temporarily lowered in the cattle at 1 and/or 2 month of grazing compared to those of the housed cattle (P < 0.05). In contrast, the miR-451 level was up-regulated in the grazing cattle at 2 months of grazing (P = 0.044). The elevation of miR-451 level in the plasma was coincident with that in the biceps femoris muscle of the grazing cattle (P = 0.008), which suggests the secretion or intake of miR-451 between skeletal muscle cells and circulation during grazing. These results revealed that exosomal c-miRNAs in cattle were affected by grazing, suggesting their usefulness as molecular grazing markers and functions in physiological adaptation of grazing cattle associated with endocytosis, focal adhesion, axon guidance, and a variety of intracellular signaling, as predicted by bioinformatic analysis.  相似文献   

13.
Accurate biomarkers of Mycobacterium tuberculosis infection activity would significantly improve early diagnosis, treatment and management of M. tuberculosis infection. We hypothesised that circulating B-lymphocytes may be useful biomarkers of tuberculosis (TB) infection status in highly TB-endemic settings. Ex-vivo and in-vitro mycobacteria-specific B-cell ELISPOT assays were used to examine the plasmablast (PB) and memory B-cell (MBC) responses in the peripheral blood of adult, healthy, community controls (n = 151) and of active TB patients (n = 48) living in Uganda. Frequencies of mycobacteria-specific PBs were markedly higher in active TB patients compared to healthy controls, and, conversely, MBCs were markedly higher in the healthy controls compared to active TB patients. In addition, the community controls with evidence of latent TB infection had higher peripheral blood PB and MBC responses than those without evidence of TB infection. These data demonstrate that peripheral blood B-cell responses are differentially modulated during latent and active M. tuberculosis infection, and suggest that the PB to MBC ratio may be a useful biomarker of TB infection activity.  相似文献   

14.
Huang Y  Dai Y  Zhang J  Wang C  Li D  Cheng J  Lu Y  Ma K  Tan L  Xue F  Qin B 《Biomarkers》2012,17(5):435-440
Numerous efforts have been made to indentify reliable and predictive biomarkers to detect the early signs of smoking-induced lung disease. Using 6-month cigarette smoking in mice, we have established smoking-related interstitial fibrosis (SRIF). Microarray analyses and cytokine/chemokine biomarker measurements were made to select circulating microRNAs (miRNAs) biomarkers. We have demonstrated that specific miRNAs species (miR-125b-5p, miR-128, miR-30e, and miR-20b) were significantly changed, both in the lung tissue and in plasma, and exhibited mainstream (MS) exposure duration-dependent pathological changes in the lung. These findings suggested a potential use of specific circulating miRNAs as sensitive and informative biomarkers for smoking-induced lung disease.  相似文献   

15.
《Biomarkers》2013,18(5):435-440
Numerous efforts have been made to indentify reliable and predictive biomarkers to detect the early signs of smoking-induced lung disease. Using 6-month cigarette smoking in mice, we have established smoking-related interstitial fibrosis (SRIF). Microarray analyses and cytokine/chemokine biomarker measurements were made to select circulating microRNAs (miRNAs) biomarkers. We have demonstrated that specific miRNAs species (miR-125b-5p, miR-128, miR-30e, and miR-20b) were significantly changed, both in the lung tissue and in plasma, and exhibited mainstream (MS) exposure duration-dependent pathological changes in the lung. These findings suggested a potential use of specific circulating miRNAs as sensitive and informative biomarkers for smoking-induced lung disease.  相似文献   

16.
17.

Background

Accurate detection of characteristic proteins secreted by colon cancer tumor cells in biological fluids could serve as a biomarker for the disease. The aim of the present study was to identify and validate new serum biomarkers and demonstrate their potential usefulness for early diagnosis of colon cancer.

Methods

The study was organized in three sequential phases: 1) biomarker discovery, 2) technical and biological validation, and 3) proof of concept to test the potential clinical use of selected biomarkers. A prioritized subset of the differentially-expressed genes between tissue types (50 colon mucosa from cancer-free individuals and 100 normal-tumor pairs from colon cancer patients) was validated and further tested in a series of serum samples from 80 colon cancer cases, 23 patients with adenoma and 77 cancer-free controls.

Results

In the discovery phase, 505 unique candidate biomarkers were identified, with highly significant results and high capacity to discriminate between the different tissue types. After a subsequent prioritization, all tested genes (N = 23) were successfully validated in tissue, and one of them, COL10A1, showed relevant differences in serum protein levels between controls, patients with adenoma (p = 0.0083) and colon cancer cases (p = 3.2e-6).

Conclusion

We present a sequential process for the identification and further validation of biomarkers for early detection of colon cancer that identifies COL10A1 protein levels in serum as a potential diagnostic candidate to detect both adenoma lesions and tumor.

Impact

The use of a cheap serum test for colon cancer screening should improve its participation rates and contribute to decrease the burden of this disease.  相似文献   

18.
MiRNAs are key regulators of tumorigenesis that are aberrantly expressed in the circulation and tissue of patients with cancer. The aim of this study was to determine whether miRNA dysregulation in the circulation reflected similar changes in tumour tissue. Athymic nude mice (n = 20) received either a mammary fat pad (n = 8, MFP), or subcutaneous (n = 7, SC) injection of MDA-MB-231 cells. Controls received no tumour cells (n = 5). Tumour volume was monitored weekly and blood sampling performed at weeks 1, 3 and 6 following tumour induction (total n = 60). Animals were sacrificed at week 6 and tumour tissue (n = 15), lungs (n = 20) and enlarged lymph nodes (n = 3) harvested. MicroRNAs were extracted from all samples (n = 98) and relative expression quantified using RQ-PCR. MiR-221 expression was significantly increased in tumour compared to healthy tissue (p<0.001). MiR-10b expression was significantly higher in MFP compared to SC tumours (p<0.05), with the highest levels detected in diseased lymph nodes (p<0.05). MiR-10b was undetectable in the circulation, with no significant change in circulating miR-221 expression detected during disease progression. MiR-195 and miR-497 were significantly decreased in tumour tissue (p<0.05), and also in the circulation of animals 3 weeks following tumour induction (p<0.05). At both tissue and circulating level, a positive correlation was observed between miR-497 and miR-195 (r = 0.61, p<0.001; r = 0.41, p<0.01 respectively). This study highlights the distinct roles of miRNAs in circulation and tissue. It also implicates miRNAs in disease dissemination and progression, which may be important in systemic therapy and biomarker development.  相似文献   

19.
Molecular Diagnosis & Therapy - Atherosclerotic plaque is considered the hallmark of atherosclerotic lesions in coronary atherosclerosis (CAS), the primary pathogenesis in coronary artery...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号