首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MiRNA是真核生物体内约由22个核苷酸组成的内源性非编码单链RNA,可调节基因转录。它通过其5’非翻译区(UTR)与目标mRNA的3’端非翻译区相结合,从而抑制后者的转录后翻译和降解,进而调节一系列生物学过程,包括生物体生长、发育和疾病等。研究表明,miRNA在干细胞分化、肿瘤形成、血管发生、内耳形成等过程中均发挥重要作用,已成为调节生物学过程的核心因子。伤口愈合是一个与多种类型细胞、细胞因子及细胞外基质相关的过程,它受机体多种因素紧密调控。伤口愈合过程一般被分为三个阶段:炎症反应期,肉芽生长期和组织重建期。已有大量证据证实miRNA在皮肤创伤愈合过程中发挥重要作用,并且miRNA在不同的愈合阶段发挥不同的作用。本文就miRNA在皮肤形态、胎儿无痕愈合及成人伤口愈合各环节中的作用做一综述。  相似文献   

2.
生物膜的磷脂双分子层将细胞与外界环境分开。大部分细胞会在机械损伤或化学应激下引发质膜损伤,如果不及时修复将会导致细胞死亡。胞外钙离子通过伤口进入细胞,作为损伤的最初信号,会诱发一系列的修复反应。随后,胞内细胞器也释放钙离子,并产生系列细胞行为来应对损伤,维护质膜的完整性。本文介绍了在损伤修复过程的胞吞作用、胞吐作用、胞外小泡脱落等细胞行为。综述了补丁模型、修复帽模型和大损伤修复的模型特点。补丁模型是最早的修复模型,提出后不断得到完善。细胞除了需要在损伤处聚集小泡、融合形成补丁外,还需通过胞吐、胞吞和出芽(小泡脱落)等方式参与伤口修复。本文简要介绍参与质膜修复的重要蛋白质如钙蛋白酶、dysferlin、MG53、膜联蛋白、突触结合蛋白(Syt-VⅡ)、ESCRTⅢ、酸性鞘磷脂酶、细胞骨架蛋白质等在修复过程中的作用。  相似文献   

3.
线粒体是真核生物母系遗传的多功能细胞器,不仅参与细胞能量代谢的调节,而且参与应激细胞的存活和命运决定。线粒体转移是间充质干细胞参与组织损伤修复和伤口愈合的重要机制之一。线粒体转移的途径有很多种,主要包括隧道纳米管、间隙连接通道、微泡、细胞融合以及胞吞作用等。多条信号传导通路可诱导隧道纳米管的形成,使线粒体从一个细胞转移到另一个细胞。多种应激信号,例如受损线粒体、线粒体DNA或线粒体其它产物的释放以及活性氧水平的升高等,都能引发线粒体从间充质干细胞转移到受体细胞。该文介绍线粒体从间充质干细胞转移到邻近应激细胞的现象,并讨论线粒体转移的可能机制及其在组织损伤等疾病治疗中的作用。  相似文献   

4.
病毒入胞机制研究方法及其研究进展   总被引:1,自引:0,他引:1  
多数病毒家族利用胞吞作为入侵宿主细胞的途径。胞吞既可以介导病毒内化,也可以将病毒运输到复制位点。已知的胞吞途径包括:网格蛋白依赖型内吞、小窝蛋白依赖型内吞、巨胞饮和网格蛋白、小窝蛋白非依赖型内吞。随着对胞吞过程中各组分结构和功能了解的日趋深入,研究胞吞过程以及病毒入侵过程的手段也变得更有效,特异性更高。目前,化学抑制剂的使用仍十分普遍,但该方法常非特异性地阻断细胞某些功能。一些分子抑制方法,如过表达显性负突变体和siRNA技术等,因其对单一途径的特异性阻断,使得应用分子型抑制剂逐渐取代了化学抑制剂。本文主要分析了研究病毒入侵途径时所使用的实验方法,并列举了一些实例。  相似文献   

5.
成纤维细胞生长因子8 (fibroblast growth factor 8,FGF8)是成纤维细胞生长因子家族的成员之一,是一种组织发育过程中的重要分泌性调控信号分子,参与脊椎动物的多种组织器官的发生与发育.早期胚胎细胞通过表达FGF8在组织和器官发育、血管发生、血细胞生成、附肢发生和伤口愈合等方面发挥着重要作用.FGF8不但可以在细胞外通过胞内信号通路,而且也可以进入细胞内部发挥生物学功能.本文就FGF8在脊椎动物神经系统、内脏器官、肢体发育及不对称发育等组织、器官发育中的调控作用予以阐述.  相似文献   

6.
正近日,一项刊登在国际杂志Development上的研究报告中,来自约翰霍普金斯大学的研究人员通过研究利用细胞信号化合物的混合制剂成功逆转了人类胚胎干细胞(ESCs)的生物钟,从而就能赋予细胞相同的灵活性;研究者表示,促进干细胞的发育生物钟回归至早期阶段或许就能够为我们提供机会来诱导人类干细胞成为任何一种类型的细胞,从而用作器官移植和遗传性疾病模型的开发中,最终这些细胞或许就能够被用来开发出嵌合体动物。  相似文献   

7.
皮肤是人体面积最大的器官,不同来源的损伤可使皮肤正常结构遭到破坏,皮肤创面修复过程失衡,从而导致皮肤愈合缓慢或畸形愈合,损害皮肤正常功能。骨髓间充质干细胞因其易获取、体外培养技术简单、低免疫原性、旁分泌、高度自我复制能力及多向分化潜能等特点而使其具有独特的优越性。已有研究表明骨髓间充质干细胞(BMSC)可通过多种复杂机制实现其促进皮肤创面愈合的作用,其趋化性可使BMSC向损伤部位迁移,并在局部分化为多种皮肤细胞、皮肤附属器细胞以及血管内皮细胞,促进皮肤的再生,通过抑制免疫细胞的生物学活性来发挥免疫调节作用。此外,BMSC可以分泌多种重要的生物活性因子,起到抗炎、促进新血管形成、抗纤维化及瘢痕形成、加快伤口愈合等作用。目前,BMSC已运用于多种类型皮肤损伤的临床治疗以及组织工程和再生医学中,且已取得了一定成果。本文主要就骨髓间充质干细胞的生物学特性、促进皮肤创伤愈合的作用机制及其临床应用进行了综述。  相似文献   

8.
肉芽组织增生是创伤愈合的中心环节 ,成纤维细胞不仅是这一环节的重要组成部分 ,而且还分泌一些细胞因子促进肉芽组织增生、调节伤口愈合。放射损伤使伤口愈合延迟与其抑制成纤维细胞的分化、增殖与分泌功能密切相关 ,但对其机理的深入研究的文献报道较少。近年来 ,细胞膜离子流的作用日益受到人们的重视 ,因为它与细胞的分化、增殖及细胞内大分子物质的合成与分泌等功能均有密切关系。本文研究 6Gy照射对 3T3成纤维细胞株钙依赖性钾离子通道活动的影响及促进伤口愈合药物康复新的作用 ,以期从离子通道角度探讨放射损伤后创伤愈合延迟及…  相似文献   

9.
本研究旨在观察重组人源胶原蛋白(recombinant human collagen,r-hc)对小鼠皮肤激光损伤的修复作用,初步探索其作用机制。应用458~514 nm激光照射小鼠背部皮肤制作皮肤损伤模型,将r-hc外涂于创伤皮肤,剂量为8 mg/mL(生理盐水配制),每天涂抹1次,连续给药14 d。分别于给药后1、4、7、14 d用双光子显微镜收集二次谐波(second harmonic generation,SHG)信号检测伤口真皮中的胶原纤维,并进行常规HE染色,观察伤口局部的病理学改变。体外试验检测r-hc对人皮肤角质形成细胞和成纤维细胞增殖活力的影响,计算细胞存活率。在小鼠模型上显示,与对照组相比,r-hc可明显加速伤口的愈合,缩短伤口愈合时间; SHG显示r-hc能够促进创伤局部胶原的产生;体外试验也显示它有促进人皮肤成纤维细胞和角质形成细胞增殖的能力。由此可见,r-hc(8 mg/mL)对小鼠激光损伤皮肤有修复作用,可能是通过促进表皮角质细胞和真皮成纤维细胞的增殖,促进胶原的沉积而发挥修复作用的。  相似文献   

10.
<正>近日,一项刊登在国际杂志Cancer Cell上的研究论文中,来自宾夕法尼亚大学医学院的研究人员通过研究首次揭示了大脑和神经系统中的某些细胞癌化的分子机制。这项研究由研究者Sloan-Kettering领导,他的研究团队主要对肿瘤抑制子Merlin研究;这项研究中研究者就揭示了Merlin如何抑制肿瘤的发生,而且在细胞核内该机制也可以发生。研究者表示,未被抑制的肿瘤细胞可以通过一种核心的信号系统来增加细胞数量,这种核心系统就是  相似文献   

11.
本文以C3H小鼠胚胎正常成纤维细胞株C3H10T1/2C18(简称NC3H10)及其由氚标记脱氧胸苷(~3H-TdR)恶性转化的细胞株(简称TC 3H 10)为对象,研究了表皮生长因子(EGF)在受体介导下的胞吞和向细胞核转移现象。~(125)I-EGF 与细胞膜上的EGF 受体结合后,胞吞和向细胞核转移呈时间依赖性。两种细胞的EGF 的胞吞和向细胞核转移率接近。但是NC 3 H 10细胞~(125)I-EGF 胞知和向细胞核转移的绝对量明显高于TC 3 H 1 0细胞(p<0.05)。SDS-PAGE 电泳表明向细胞核转移的~(125)I-EGF 是未被降解的完整分子,溶酶体抑制剂NH_4Cl 对~(125)I-EGF 向细胞核转移有明显促进作用(p<0.05)。这些结果表明受体介导下的EGF 胞吞和向细胞核转移可能与EGF 的细胞核内凋节作用密切相关。  相似文献   

12.
间隙连接(gap junction,GJ)是细胞膜上的通道结构,其介导的细胞间间隙连接通讯(gap junction intercellular communication,GJIC)对内环境的稳定、细胞生长调控及新陈代谢等起到重要的作用。间隙连接蛋白43(connexin43,Cx43)是哺乳动物细胞中分布最为广泛的间隙连接蛋白,越来越多的研究发现皮肤创伤后Cx43的表达会随着伤口愈合的过程发生动态变化,并影响伤口愈合的速率和质量,人为调控Cx43的表达水平会改善伤口愈合的速率和质量。主要就Cx43结构与功能、Cx43的水平对伤口愈合各阶段的影响及Cx43与慢性伤口的关系进行总结,以期为探索皮肤创伤,尤其是慢性伤口治疗新途径提供参考价值。  相似文献   

13.
低功率激光(632.8 nm)照射(Low-power laser irradiation,LPLI)生物组织作为一种无损伤的物理疗法,可以加速细胞生长、血管再生及伤口愈合等过程。一氧化氮(Nitric oxide,NO)是伤口愈合的关键因素之一,其促进炎性细胞的趋化,增强胶原的合成和沉积,刺激细胞增殖和新生血管生成。我们研究发现LPLI可以促进NO的产生,并且抑制细胞外调节蛋白激酶(Extracellular signal-regulated protein kinases,ERK)的活性阻碍了NO的产生,证明LPLI通过活化ERK调控NO的生成。这一研究将为低功率激光照射加速伤口愈合在临床上的应用奠定基础。  相似文献   

14.
皮肤损伤修复是一个复杂而又高度协同的生物学过程,多种生长因子及白介素、趋化因子等细胞因子参与该过程,并调控皮肤愈合过程中创面的再上皮化、新血管生成以及细胞外基质沉积与重塑3个重要环节。人羊膜上皮细胞是一种类胚胎干细胞,广泛应用于创面损伤修复研究中。许多研究表明,人羊膜上皮细胞能够通过旁分泌作用促进皮肤创面的愈合。这些旁分泌因子不仅能够抑制创面微环境中细胞的凋亡,还能促进新血管生成和上皮再生。在此,本文综述人羊膜上皮细胞旁分泌特点,探讨人羊膜上皮细胞来源的旁分泌因子在创面愈合中的作用机制,并针对人羊膜上皮细胞或人羊膜上皮细胞来源细胞因子溶液应用于皮肤损伤治疗的未来可行性进行详细阐述。  相似文献   

15.
就荔枝环剥伤口进行不同促进愈合措施处理 ,结果表明 :不同促进愈合措施对伤口愈合有显著作用 ,其中以伤口涂抹黄泥促进愈合的处理 ,愈伤组织发生早 ,生长速度快 ,完全愈合历时短 ;其它促进愈合措施间无显著差异。  相似文献   

16.
肝细胞生长因子(HGF)是一种细胞素,它能引发损伤肝脏的再生。首次发现已二年多了。它不仅能愈合损伤的组织,对肝细胞癌和其它癌症还有防护作用。目前,一研究小组又鉴定了一种调节HGF基因表达的分子,他们称之为“injurin”。该分子有可能应用于HGF疗法。此发现也使科学家们重新评价HGF在活体内的作用。九州大学(Fukuoka,Japan)的研究者损伤了大鼠的肝脏或肾脏,并将受伤大鼠的血清注入正常的、非损伤大鼠体内,结果正常大鼠产生明显增多的HGF。此外,这种血清还能诱导离体人肺成纤维细  相似文献   

17.
有2个独立的研究组设计了几种方法来分离小鼠的胚胎干细胞,而不破坏活的胚胎.这些方法打算满足人们的伦理关切,因为有些人反对破坏人的胚胎来进行科研或治疗疾病.与成人干细胞不同的是,胚胎干细胞可以在形态结构上形成任何体细胞类型,诸如神经、肌肉或是心脏.许多研究者建议,利用胚胎干细胞的独特性能来制造新细胞,用以治疗损伤或是疾病,诸如帕金森病.然而,为了分离出新的胚胎干细胞系,科学家已经首次破坏了早期胚胎.为了既要拯救生命又要关注生命被破坏,研究者注意到,通常用来诊断胚胎遗传病的一项技术.该技术称为基因诊断前移植,即从8个细…  相似文献   

18.
干细胞 (stemcells)是机体组织保留的一部分未分化的原始细胞 ,有“万能细胞”之称。按其分化潜能可分为胚胎干细胞和非胚胎干细胞 ,前者表现其全能性 (细胞能发育成任何类型细胞或组织的特性 ,最终能分化形成独立个体 ) ,后者表现其多能性和专能性 ,但不具全能性。这二者在临床医学上均有着潜在的应用前景。加拿大多伦多大学研究人员发现人视网膜中有干细胞的存在。过去认为人的眼球发育在胚胎阶段完成 ,在人的视网膜中不再有干细胞存在 ,人眼球一旦受损伤 ,不能自行修复。后来研究者发现 ,人、牛、鼠的视网膜中都有干细胞的存在 …  相似文献   

19.
由于传统方法在脑疾病治疗方面的局限性,低照度光疗法越来越受到重视。低照度光疗法利用波长在600 nm-1 100 nm的低功率激光或者准单色光以非破坏和非热行为来调制生物过程,用于促进伤口愈合,抑制感染、水肿以及减轻疼痛等。近来,研究者进行了大量低照度光治疗脑损伤疾病方面的实验,研究对象从细胞、动物模型到人类,病症从卒中,急性脑创伤到慢性脑损伤以及神经退行性病变等。研究结果表明,低照度光疗法有可能应用于脑部损伤疾病的治疗。介绍了低照度光疗法的机理、应用,并对低照度光疗法的治疗参数,包括治疗窗口、波长以及剂量等进行了回顾。  相似文献   

20.
成肌纤维细胞在纤维化过程中的作用及其调控   总被引:3,自引:0,他引:3  
成肌纤维细胞(myofibroblast)是伤口愈合和各种组织纤维化中起主要作用的细胞,成肌纤维细胞不能及时从病变处退出,使细胞外基质持续过量分泌,并发生重塑是组织纤维化的主要特征,这一病理过程受诸多因素的调控,研究成肌纤维细胞的分化增殖及凋亡的调控机制有助于寻找干预组织纤维化过程的关键环节,从而为延缓或逆转组织纤维化提供理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号