首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

Although oxygen is essential for the wound healing process, tissue hypoxia is known to stimulate angiogenesis. To explore these inconsistent findings, we estimated the influence of the oxygen environment on wound healing with our original model.

Methods

Experiment 1 (Establishment of the model): To modify the topical oxygen tension, oxygen impermeable (polyvinylidene chloride) and permeable (polymethylpentene) membranes were applied to symmetrical excisional wounds in ddy mice (n = 6). Oxygen tension under the membrane was quantified with a device using photo-quenching technique. Experiment 2 (Influence of oxygen environment on wound healing): The wound area, granulation thickness and vascular density were analyzed under different oxygen environments (n = 24).

Results

Experiment 1: The permeable group maintained equivalent oxygen level to atmosphere (114.1±29.8 mmHg on day 7), while the impermeable group showed extremely low oxygen tension (5.72±2.99 mmHg on day 7). Accordingly, each group was defined as the normoxia group and the hypoxia group. Experiment 2: Percent decrease in wound size was significantly enhanced in the normoxia group (11.1±1.66% on day 7) in comparison with the hypoxia group (27.6±3.47% on day 7). The normoxia group showed significantly thicker granulation tissue than the hypoxia group (491.8±243.2 vs. 295.3±180.9 µm). Contrarily, the vascular density of the hypoxia group significantly increased on day 7 (0.046±0.025 vs. 0.011±0.008 mm2/mm2).

Conclusions

Our original model successfully controlled local oxygen concentration around the wound, and the hypoxic wounds showed increased angiogenesis but with a smaller amount of granulation tissue and delayed wound closure. Enhanced neovascularization in the hypoxic group likely implies compensative response to an insufficient ambient oxygen supply.  相似文献   

2.
When ascending to a higher altitude, changes in air density and oxygen levels affect the way in which explosive actions are executed. This study was designed to compare the effects of acute exposure to real or simulated moderate hypoxia on the dynamics of the force-velocity relationship observed in bench press exercise. Twenty-eight combat sports athletes were assigned to two groups and assessed on two separate occasions: G1 (n = 17) in conditions of normoxia (N1) and hypobaric hypoxia (HH) and G2 (n = 11) in conditions of normoxia (N2) and normobaric hypoxia (NH). Individual and complete force-velocity relationships in bench press were determined on each assessment day. For each exercise repetition, we obtained the mean and peak velocity and power shown by the athletes. Maximum power (Pmax) was recorded as the highest Pmean obtained across the complete force-velocity curve. Our findings indicate a significantly higher absolute load linked to Pmax (∼3%) and maximal strength (1RM) (∼6%) in G1 attributable to the climb to altitude (P<0.05). We also observed a stimulating effect of natural hypoxia on Pmean and Ppeak in the middle-high part of the curve (≥60 kg; P<0.01) and a 7.8% mean increase in barbell displacement velocity (P<0.001). No changes in any of the variables examined were observed in G2. According to these data, we can state that acute exposure to natural moderate altitude as opposed to simulated normobaric hypoxia leads to gains in 1RM, movement velocity and power during the execution of a force-velocity curve in bench press.  相似文献   

3.
It is classically thought that increases in hemoglobin mass (Hbmass) take several weeks to develop upon ascent to high altitude and are lost gradually following descent. However, the early time course of these erythropoietic adaptations has not been thoroughly investigated and data are lacking at elevations greater than 5000 m, where the hypoxic stimulus is dramatically increased. As part of the AltitudeOmics project, we examined Hbmass in healthy men and women at sea level (SL) and 5260 m following 1, 7, and 16 days of high altitude exposure (ALT1/ALT7/ALT16). Subjects were also studied upon return to 5260 m following descent to 1525 m for either 7 or 21 days. Compared to SL, absolute Hbmass was not different at ALT1 but increased by 3.7±5.8% (mean ± SD; n = 20; p<0.01) at ALT7 and 7.6±6.6% (n = 21; p<0.001) at ALT16. Following descent to 1525 m, Hbmass was reduced compared to ALT16 (−6.0±3.7%; n = 20; p = 0.001) and not different compared to SL, with no difference in the loss in Hbmass between groups that descended for 7 (−6.3±3.0%; n = 13) versus 21 days (−5.7±5.0; n = 7). The loss in Hbmass following 7 days at 1525 m was correlated with an increase in serum ferritin (r = −0.64; n = 13; p<0.05), suggesting increased red blood cell destruction. Our novel findings demonstrate that Hbmass increases within 7 days of ascent to 5260 m but that the altitude-induced Hbmass adaptation is lost within 7 days of descent to 1525 m. The rapid time course of these adaptations contrasts with the classical dogma, suggesting the need to further examine mechanisms responsible for Hbmass adaptations in response to severe hypoxia.  相似文献   

4.
It was investigated if high-intensity interval training (HIT) at the expense of total training volume improves performance, maximal oxygen uptake and swimming economy. 41 elite swimmers were randomly allocated to a control (CON) or HIT group. For 12 weeks both groups trained ∼12 h per week. HIT comprised ∼5 h vs. 1 h and total distance was ∼17 km vs. 35 km per week for HIT and CON, respectively. HIT was performed as 6-10×10-30 s maximal effort interspersed by 2–4 minutes of rest. Performance of 100 m all-out freestyle and 200 m freestyle was similar before and after the intervention in both HIT (60.4±4.0 vs. 60.3±4.0 s; n = 13 and 133.2±6.4 vs. 132.6±7.7 s; n = 14) and CON (60.2±3.7 vs. 60.6±3.8 s; n = 15 and 133.5±7.0 vs. 133.3±7.6 s; n = 15). Maximal oxygen uptake during swimming was similar before and after the intervention in both the HIT (4.0±0.9 vs. 3.8±1.0 l O2×min−1; n = 14) and CON (3.8±0.7 vs. 3.8±0.7 l O2×min−1; n = 11) group. Oxygen uptake determined at fixed submaximal speed was not significantly affected in either group by the intervention. Body fat % tended to increase (P = 0.09) in the HIT group (15.4±1.6% vs. 16.3±1.6%; P = 0.09; n = 16) and increased (P<0.05) in the CON group (13.9±1.5% vs. 14.9±1.5%; n = 17). A distance reduction of 50% and a more than doubled HIT amount for 12 weeks did neither improve nor compromise performance or physiological capacity in elite swimmers.  相似文献   

5.
Bar-headed geese migrate over the Himalayas at up to 9000 m elevation, but it is unclear how they sustain the high metabolic rates needed for flight in the severe hypoxia at these altitudes. To better understand the basis for this physiological feat, we compared the flight muscle phenotype of bar-headed geese with that of low altitude birds (barnacle geese, pink-footed geese, greylag geese and mallard ducks). Bar-headed goose muscle had a higher proportion of oxidative fibres. This increased muscle aerobic capacity, because the mitochondrial volume densities of each fibre type were similar between species. However, bar-headed geese had more capillaries per muscle fibre than expected from this increase in aerobic capacity, as well as higher capillary densities and more homogeneous capillary spacing. Their mitochondria were also redistributed towards the subsarcolemma (cell membrane) and adjacent to capillaries. These alterations should improve O2 diffusion capacity from the blood and reduce intracellular O2 diffusion distances, respectively. The unique differences in bar-headed geese were much greater than the minor variation between low altitude species and existed without prior exercise or hypoxia exposure, and the correlation of these traits to flight altitude was independent of phylogeny. In contrast, isolated mitochondria had similar respiratory capacities, O2 kinetics and phosphorylation efficiencies across species. Bar-headed geese have therefore evolved for exercise in hypoxia by enhancing the O2 supply to flight muscle.  相似文献   

6.
The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of the lead single nucleotide polymorphisms (SNPs) in 5 additional cohorts (n = 6,202). Five SNPs were genome-wide significant in their relationship with adiponectin (P≤5×10−8). We then tested whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P≤0.011 to declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated the strongest associations with adiponectin levels (P-combined = 9.2×10−19 for lead SNP, rs266717, n = 14,733). A novel variant in the ARL15 (ADP-ribosylation factor-like 15) gene was associated with lower circulating levels of adiponectin (rs4311394-G, P-combined = 2.9×10−8, n = 14,733). This same risk allele at ARL15 was also associated with a higher risk of CHD (odds ratio [OR] = 1.12, P = 8.5×10−6, n = 22,421) more nominally, an increased risk of T2D (OR = 1.11, P = 3.2×10−3, n = 10,128), and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon CHD risk.  相似文献   

7.

Background

To evaluate a potential correlation of the maximum standard uptake value (SUVmax) and the minimum apparent diffusion coefficient (ADCmin) in primary and recurrent cervical cancer based on integrated PET/MRI examinations.

Methods

19 consecutive patients (mean age 51.6 years; range 30–72 years) with histopathologically confirmed primary cervical cancer (n = 9) or suspected tumor recurrence (n = 10) were prospectively enrolled for an integrated PET/MRI examination. Two radiologists performed a consensus reading in random order, using a dedicated post-processing software. Polygonal regions of interest (ROI) covering the entire tumor lesions were drawn into PET/MR images to assess SUVmax and into ADC parameter maps to determine ADCmin values. Pearson’s correlation coefficients were calculated to assess a potential correlation between the mean values of ADCmin and SUVmax.

Results

In 15 out of 19 patients cervical cancer lesions (n = 12) or lymph node metastases (n = 42) were detected. Mean SUVmax (12.5±6.5) and ADCmin (644.5±179.7×10−5 mm2/s) values for all assessed tumor lesions showed a significant but weak inverse correlation (R = −0.342, p<0.05). When subdivided in primary and recurrent tumors, primary tumors and associated primary lymph node metastases revealed a significant and strong inverse correlation between SUVmax and ADCmin (R = −0.692, p<0.001), whereas recurrent cancer lesions did not show a significant correlation.

Conclusions

These initial results of this emerging hybrid imaging technique demonstrate the high diagnostic potential of simultaneous PET/MR imaging for the assessment of functional biomarkers, revealing a significant and strong correlation of tumor metabolism and higher cellularity in cervical cancer lesions.  相似文献   

8.
Intermittent hypoxic exposure (IHE) has been shown to induce aspects of altitude acclimatization which affect ventilatory, cardiovascular and metabolic responses during exercise in normoxia and hypoxia. However, knowledge on altitude-dependent effects and possible interactions remains scarce. Therefore, we determined the effects of IHE on cardiorespiratory and metabolic responses at different simulated altitudes in the same healthy subjects. Eight healthy male volunteers participated in the study and were tested before and 1 to 2 days after IHE (7×1 hour at 4500 m). The participants cycled at 2 submaximal workloads (corresponding to 40% and 60% of peak oxygen uptake at low altitude) at simulated altitudes of 2000 m, 3000 m, and 4000 m in a randomized order. Gas analysis was performed and arterial oxygen saturation, blood lactate concentrations, and blood gases were determined during exercise. Additionally baroreflex sensitivity, hypoxic and hypercapnic ventilatory response were determined before and after IHE. Hypoxic ventilatory response was increased after IHE (p<0.05). There were no altitude-dependent changes by IHE in any of the determined parameters. However, blood lactate concentrations and carbon dioxide output were reduced; minute ventilation and arterial oxygen saturation were unchanged, and ventilatory equivalent for carbon dioxide was increased after IHE irrespective of altitude. Changes in hypoxic ventilatory response were associated with changes in blood lactate (r = −0.72, p<0.05). Changes in blood lactate correlated with changes in carbon dioxide output (r = 0.61, p<0.01) and minute ventilation (r = 0.54, p<0.01). Based on the present results it seems that the reductions in blood lactate and carbon dioxide output have counteracted the increased hypoxic ventilatory response. As a result minute ventilation and arterial oxygen saturation did not increase during submaximal exercise at simulated altitudes between 2000 m and 4000 m.  相似文献   

9.
The COL5A1 rs12722 polymorphism is considered to be a novel genetic marker for endurance running performance. It has been postulated that COL5A1 rs12722 may influence the elasticity of tendons and the energetic cost of running. To date, there are no experimental data in the literature supporting the relationship between range of motion, running economy, and the COL5A1 rs12722 gene polymorphism. Therefore, the main purpose of the current study was to analyze the influence of the COL5A1rs12722 polymorphism on running economy and range of motion. One hundred and fifty (n = 150) physically active young men performed the following tests: a) a maximal incremental treadmill test, b) two constant-speed running tests (10 km•h−1 and 12 km•h−1) to determine the running economy, and c) a sit-and-reach test to determine the range of motion. All of the subjects were genotyped for the COL5A1 rs12722 single-nucleotide polymorphism. The genotype frequencies were TT = 27.9%, CT = 55.8%, and CC = 16.3%. There were no significant differences between COL5A1 genotypes for running economy measured at 10 km•h−1 (p = 0.232) and 12 km•h−1 (p = 0.259). Similarly, there were no significant differences between COL5A1 genotypes for range of motion (p = 0.337). These findings suggest that the previous relationship reported between COL5A1 rs12722 genotypes and running endurance performance might not be mediated by the energetic cost of running.  相似文献   

10.
We investigated the changes in both performance and selected physiological parameters following a Live High-Train Low (LHTL) altitude camp in either normobaric hypoxia (NH) or hypobaric hypoxia (HH) replicating current “real” practices of endurance athletes. Well-trained triathletes were split into two groups (NH, n = 14 and HH, n = 13) and completed an 18-d LHTL camp during which they trained at 1100–1200 m and resided at an altitude of 2250 m (PiO2  = 121.7±1.2 vs. 121.4±0.9 mmHg) under either NH (hypoxic chamber; FiO2 15.8±0.8%) or HH (real altitude; barometric pressure 580±23 mmHg) conditions. Oxygen saturations (SpO2) were recorded continuously daily overnight. PiO2 and training loads were matched daily. Before (Pre-) and 1 day after (Post-) LHTL, blood samples, VO2max, and total haemoglobin mass (Hbmass) were measured. A 3-km running test was performed near sea level twice before, and 1, 7, and 21 days following LHTL. During LHTL, hypoxic exposure was lower for the NH group than for the HH group (220 vs. 300 h; P<0.001). Night SpO2 was higher (92.1±0.3 vs. 90.9±0.3%, P<0.001), and breathing frequency was lower in the NH group compared with the HH group (13.9±2.1 vs. 15.5±1.5 breath.min−1, P<0.05). Immediately following LHTL, similar increases in VO2max (6.1±6.8 vs. 5.2±4.8%) and Hbmass (2.6±1.9 vs. 3.4±2.1%) were observed in NH and HH groups, respectively, while 3-km performance was not improved. However, 21 days following the LHTL intervention, 3-km run time was significantly faster in the HH (3.3±3.6%; P<0.05) versus the NH (1.2±2.9%; ns) group. In conclusion, the greater degree of race performance enhancement by day 21 after an 18-d LHTL camp in the HH group was likely induced by a larger hypoxic dose. However, one cannot rule out other factors including differences in sleeping desaturations and breathing patterns, thus suggesting higher hypoxic stimuli in the HH group.  相似文献   

11.

Background

Obese, non-acromegalic persons show lower growth hormone (GH) concentrations at fasting and reduced GH nadir during an oral glucose tolerance test (OGTT). However, this finding has never been studied with regard to whole-body insulin-sensitivity as a possible regulator.

Methods

In this retrospective analysis, non-acromegalic (NonACRO, n = 161) and acromegalic (ACRO, n = 35), non-diabetic subjects were subdivided into insulin-sensitive (IS) and –resistant (IR) groups according to the Clamp-like Index (CLIX)-threshold of 5 mg·kg−1·min−1 from the OGTT.

Results

Non-acromegalic IS (CLIX: 8.8±0.4 mg·kg−1·min−1) persons with similar age and sex distribution, but lower (p<0.001) body-mass-index (BMI = 25±0 kg/m2, 84% females, 56±1 years) had 59% and 70%, respectively, higher (p<0.03) fasting GH and OGTT GH area under the curve concentrations than IR (CLIX: 3.5±0.1 mg·kg−1·min−1, p<0.001) subjects (BMI = 29±1 kg/m2, 73% females, 58±1 years). When comparing on average overweight non-acromegalic IS and IR with similar anthropometry (IS: BMI: 27±0 kg/m2, 82% females, 58±2 years; IR: BMI: 27±0 kg/m2, 71% females, 60±1 years), but different CLIX (IS: 8.7±0.9 vs. IR: 3.8±0.1 mg·kg−1·min−1, p<0.001), the results remained almost the same. In addition, when adjusted for OGTT-mediated glucose rise, GH fall was less pronounced in IR. In contrast, in acromegalic subjects, no difference was found between IS and IR patients with regard to fasting and post-glucose-load GH concentrations.

Conclusions

Circulating GH concentrations at fasting and during the OGTT are lower in non-acromegalic insulin-resistant subjects. This study seems the first to demonstrate that insulin sensitivity rather than body-mass modulates fasting and post-glucose-load GH concentrations in non-diabetic non–acromegalic subjects.  相似文献   

12.
Seaweed has attracted considerable attention as a potential biofuel feedstock. The pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa were studied and compared using heating rates of 10, 30 and 50°C min−1 under an inert atmosphere. The activation energy, and pre-exponential factors were calculated by the Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Popescu methods. The kinetic mechanism was deduced by the Popescu method. The results indicate that there are three stages to the pyrolysis; dehydration, primary devolatilization and residual decomposition. There were significant differences in average activation energy, thermal stability, final residuals and reaction rates between the two materials. The primary devolatilization stage of U. pertusa can be described by the Avramic-Erofeev equation (n = 3), whereas that of maize straw can be described by the Mampel Power Law (n = 2). The average activation energy of maize straw and U. pertusa were 153.0 and 148.7 KJ mol−1, respectively. The pyrolysis process of U.pertusa would be easier than maize straw. And co-firing of the two biomass may be require less external heat input and improve process stability. There were minor kinetic compensation effects between the pre-exponential factors and the activation energy.  相似文献   

13.
A recent study showed that ergometry increased circulating hematopoietic stem and progenitor cell (CPC) numbers, but reduced hematopoietic colony forming capacity/functionality under normoxia and normobaric hypoxia. Herein we investigated whether an exercise-induced elevated plasma free/bound norepinephrine (NE) concentration could be responsible for directly influencing CPC functionality. Venous blood was taken from ten healthy male subjects (25.3+/−4.4 yrs) before and 4 times after ergometry under normoxia and normobaric hypoxia (FiO2<0.15). The circulating hematopoietic stem and progenitor cell numbers were correlated with free/bound NE, free/bound epinephrine (EPI), cortisol (Co) and interleukin-6 (IL-6). Additionally, the influence of exercise-induced NE and blood lactate (La) on CPC functionality was analyzed in a randomly selected group of subjects (n = 6) in vitro under normoxia by secondary colony-forming unit granulocyte macrophage assays. Concentrations of free NE, EPI, Co and IL-6 were significantly increased post-exercise under normoxia/hypoxia. Ergometry-induced free NE concentrations found in vivo showed a significant impairment of CPC functionality in vitro under normoxia. Thus, ergometry-induced free NE was thought to trigger CPC mobilization 10 minutes post-exercise, but as previously shown impairs CPC proliferative capacity/functionality at the same time. The obtained results suggest that an ergometry-induced free NE concentration has a direct negative effect on CPC functionality. Cortisol may further influence CPC dynamics and functionality.  相似文献   

14.

Background

In the United Kingdom, patients with locally advanced rectal cancer routinely receive neoadjuvant chemoradiotherapy. However, the effects of this on physical fitness are unclear. This pilot study is aimed to investigate the effect of neoadjuvant chemoradiotherapy on objectively measured in vivo muscle mitochondrial function and whole-body physical fitness.

Methods

We prospectively studied 12 patients with rectal cancer who completed standardized neoadjuvant chemoradiotherapy, recruited from a large tertiary cancer centre, between October 2012 and July 2013. All patients underwent a cardiopulmonary exercise test and a phosphorus magnetic resonance spectroscopy quadriceps muscle exercise-recovery study before and after neoadjuvant chemoradiotherapy. Data were analysed and reported blind to patient identity and clinical course. Primary variables of interest were the two physical fitness measures; oxygen uptake at estimated anaerobic threshold and oxygen uptake at Peak exercise (ml.kg−1.min−1), and the post-exercise phosphocreatine recovery rate constant (min−1), a measure of muscle mitochondrial capacity in vivo.

Results

Median age was 67 years (IQR 64–75). Differences (95%CI) in all three primary variables were significantly negative post-NACRT: Oxygen uptake at estimated anaerobic threshold −2.4 ml.kg−1.min−1 (−3.8, −0.9), p = 0.004; Oxygen uptake at Peak −4.0 ml.kg−1.min−1 (−6.8, −1.1), p = 0.011; and post-exercise phosphocreatine recovery rate constant −0.34 min−1 (−0.51, −0.17), p<0.001.

Conclusion

The significant decrease in both whole-body physical fitness and in vivo muscle mitochondrial function raises the possibility that muscle mitochondrial mechanisms, no doubt multifactorial, may be important in deterioration of physical fitness following neoadjuvant chemoradiotherapy. This may have implications for targeted interventions to improve physical fitness pre-surgery.

Trial Registration

Clinicaltrials.gov registration NCT01859442  相似文献   

15.
Bar-headed geese (Anser indicus) migrate over the Himalayan mountains, at altitudes up to 9000 m above sea level, where air density and oxygen availability are extremely low. This study determined whether alterations in wing morphology or wingbeat frequency during free flight have evolved in this species to facilitate extreme high altitude migration, by comparing it to several closely related goose species. Wingspan and wing loading scaled near isometrically with body mass across all species (with power scaling exponents of 0.22 and 0.47, respectively), and wingbeat frequency scaled negatively to mass (scaling exponent of -0.167). Bar-headed geese had the largest wingspan residual and smallest wing loading residual from these allometric relationships, suggesting that they are at the top end of the wing size distribution. These morphological characters of bar-headed geese were not outside the normal variation exhibited by low altitude species, however, being within the prediction intervals of the regression. This was particularly true after the data were corrected for phylogeny using the independent contrasts method. Wingbeat frequencies of bar-headed geese during steady flight were the same as low altitude geese, both with and without correcting for phylogeny. Without adjusting other kinematic features (e.g., wing motion and generated wake structure) to supplement lift generation in low air densities, the metabolic costs of flight in bar-headed geese at high altitude could exceed the already high costs at sea level. The apparent lack of morphological and kinematic adaptation emphasizes the importance of physiological adaptations for enhancing oxygen transport and utilization in this species.  相似文献   

16.
ObjectiveActivated platelets release serotonin at sites of inflammation where it acts as inflammatory mediator and enhances recruitment of neutrophils. Chronic treatment with selective serotonin reuptake inhibitors (SSRI) depletes the serotonin storage pool in platelets, leading to reduced leukocyte recruitment in murine experiments. Here, we examined the direct and acute effects of SSRI on leukocyte recruitment in murine peritonitis.MethodsC57Bl/6 and Tph1−/− (Tryptophan hydroxylase1) mice underwent acute treatment with the SSRI fluoxetine or vehicle. Serotonin concentrations were measured by ELISA. Leukocyte rolling and adhesion on endothelium was analyzed by intravital microscopy in mesentery venules with and without lipopolysaccharide challenge. Leukocyte extravasation in sterile peritonitis was measured by flow cytometry of abdominal lavage fluid.ResultsPlasma serotonin levels were elevated 2 hours after fluoxetine treatment (0.70±0.1 µg/ml versus 0.27±0.1, p = 0.03, n = 14), while serum serotonin did not change. Without further stimulation, acute fluoxetine treatment increased the number of rolling leukocytes (63±8 versus 165±17/0.04 mm2min−1) and decreased their velocity (61±6 versus 28±1 µm/s, both p<0.0001, n = 10). In Tph1−/− mice leukocyte rolling was not significantly influenced by acute fluoxetine treatment. Stimulation with lipopolysaccharide decreased rolling velocity and induced leukocyte adhesion, which was enhanced after fluoxetine pretreatment (27±3 versus 36±2/0.04 mm2, p = 0.008, n = 10). Leukocyte extravasation in sterile peritonitis, however, was not affected by acute fluoxetine treatment.ConclusionsAcute fluoxetine treatment increased plasma serotonin concentrations and promoted leukocyte-endothelial interactions in-vivo, suggesting that serotonin is a promoter of acute inflammation. E-selectin was upregulated on endothelial cells in the presence of serotonin, possibly explaining the observed increase in leukocyte-endothelial interactions. However transmigration of neutrophils in sterile peritonitis was not affected by higher serotonin concentrations, indicating that the effect of fluoxetine was restricted to early steps in the leukocyte recruitment. Whether SSRI use in humans alters leukocyte recruitment remains to be investigated.  相似文献   

17.
Animal and human studies have indicated that fatty acids such as the conjugated linoleic acids (CLA) found in milk could potentially alter the risk of developing metabolic disorders including diabetes and cardiovascular disease (CVD). Using susceptible rodent models (apoE−/− and LDLr−/− mice) we investigated the interrelationship between mouse strain, dietary conjugated linoleic acids and metabolic markers of CVD. Despite an adverse metabolic risk profile, atherosclerosis (measured directly by lesion area), was significantly reduced with t-10, c-12 CLA and mixed isomer CLA (Mix) supplementation in both apoE−/− (p<0.05, n = 11) and LDLr−/− mice (p<0.01, n = 10). Principal component analysis was utilized to delineate the influence of multiple plasma and tissue metabolites on the development of atherosclerosis. Group clustering by dietary supplementation was evident, with the t-10, c-12 CLA supplemented animals having distinct patterns, suggestive of hepatic insulin resistance, regardless of mouse strain. The effect of CLA supplementation on hepatic lipid and fatty acid composition was explored in the LDLr−/− strain. Dietary supplementation with t-10, c-12 CLA significantly increased liver weight (p<0.05, n = 10), triglyceride (p<0.01, n = 10) and cholesterol ester content (p<0.01, n = 10). Furthermore, t-10, c-12 CLA also increased the ratio of 18∶1 to 18∶0 fatty acid in the liver suggesting an increase in the activity of stearoyl-CoA desaturase. Changes in plasma adiponectin and liver weight with t-10, c-12 CLA supplementation were evident within 3 weeks of initiation of the diet. These observations provide evidence that the individual CLA isomers have divergent mechanisms of action and that t-10, c-12 CLA rapidly changes plasma and liver markers of metabolic syndrome, despite evidence of reduction in atherosclerosis.  相似文献   

18.
Ventilation frequency (FV) in motionless common sole Solea solea was measured before and after a startling stimulus in normoxia and in hypoxia (15% air saturation). Startling reduced FV in normoxia (from mean ±s.e. 41 ± 3·3 beats min?1 to near zero, i.e. 2·0 ± 1·8 beats min?1) and in hypoxia (from mean ±s.e. 80 ± 4·4 to 58·8 ± 12·9 beats min?1). It is suggested that the maintenance of high FV in hypoxia may increase the probability of detection by predators compared to normoxia.  相似文献   

19.

Purpose

The purpose of our study was to investigate alterations in the meibomian gland (MG) in Cu, Zn-Superoxide Dismutase-1 knockout (Sod1 −/−) mouse.

Methods

Tear function tests [Break up time (BUT) and cotton thread] and ocular vital staining test were performed on Sod1 −/− male mice (n = 24) aged 10 and 50 weeks, and age and sex matched wild–type (+/+) mice (n = 25). Tear and serum samples were collected at sacrifice for inflammatory cytokine assays. MG specimens underwent Hematoxylin and Eosin staining, Mallory staining for fibrosis, Oil Red O lipid staining, TUNEL staining, immunohistochemistry stainings for 4HNE, 8-OHdG and CD45. Transmission electron microscopic examination (TEM) was also performed.

Results

Corneal vital staining scores in the Sod1 −/− mice were significantly higher compared with the wild type mice throughout the follow-up. Tear and serum IL-6 and TNF-α levels also showed significant elevations in the 10 to 50 week Sod1 −/− mice. Oil Red O staining showed an accumulation of large lipid droplets in the Sod1 −/− mice at 50 weeks. Immunohistochemistry revealed both increased TUNEL and oxidative stress marker stainings of the MG acinar epithelium in the Sod1 −/− mice compared to the wild type mice. Immunohistochemistry staining for CD45 showed increasing inflammatory cell infiltrates from 10 to 50 weeks in the Sod1 −/− mice compared to the wild type mice. TEM revealed prominent mitochondrial changes in 50 week Sod1 −/− mice.

Conclusions

Our results suggest that reactive oxygen species might play a vital role in the pathogensis of meibomian gland dysfunction. The Sod1 −/− mouse appears to be a promising model for the study of reactive oxygen species associated MG alterations.  相似文献   

20.
Epigenetic regulation of gene expression has been shown to change over time and may be associated with environmental exposures in common complex traits. Age-related hearing impairment is a complex disorder, known to be heritable, with heritability estimates of 57–70%. Epigenetic regulation might explain the observed difference in age of onset and magnitude of hearing impairment with age. Epigenetic epidemiology studies using unrelated samples can be limited in their ability to detect small effects, and recent epigenetic findings in twins underscore the power of this well matched study design. We investigated the association between venous blood DNA methylation epigenome-wide and hearing ability. Pure-tone audiometry (PTA) and Illumina HumanMethylation array data were obtained from female twin volunteers enrolled in the TwinsUK register. Two study groups were explored: first, an epigenome-wide association scan (EWAS) was performed in a discovery sample (n = 115 subjects, age range: 47–83 years, Illumina 27 k array), then replication of the top ten associated probes from the discovery EWAS was attempted in a second unrelated sample (n = 203, age range: 41–86 years, Illumina 450 k array). Finally, a set of monozygotic (MZ) twin pairs (n = 21 pairs) within the discovery sample (Illumina 27 k array) was investigated in more detail in an MZ discordance analysis. Hearing ability was strongly associated with DNA methylation levels in the promoter regions of several genes, including TCF25 (cg01161216, p = 6.6×10−6), FGFR1 (cg15791248, p = 5.7×10−5) and POLE (cg18877514, p = 6.3×10−5). Replication of these results in a second sample confirmed the presence of differential methylation at TCF25 (p(replication) = 6×10−5) and POLE (p(replication) = 0.016). In the MZ discordance analysis, twins'' intrapair difference in hearing ability correlated with DNA methylation differences at ACP6 (cg01377755, r = −0.75, p = 1.2×10−4) and MEF2D (cg08156349, r = −0.75, p = 1.4×10−4). Examination of gene expression in skin, suggests an influence of differential methylation on expression, which may account for the variation in hearing ability with age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号