首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
雷帕霉素靶点蛋白(target of rapamycin,TOR)作为细胞内重要的生长和代谢调节中枢,主要通过形成两种复合物TORC1与TORC2发挥其功能。其中TORC1接收广泛的细胞内信号,如氨基酸水平、生长因子、能量以及缺氧状态等,通过调控蛋白质合成来促进细胞的增殖与生长。在这些信号当中,氨基酸不仅能够激活TORC1通路,还同时作为其他信号激活TORC1的必需条件。目前,对于生长因子和能量水平激活TORC1过程的分子机制已有较深入的认识,而对于氨基酸信号如何转导至TORC1的分子机制直到近年来才有了新的突破。该文通过梳理已发表的哺乳动物细胞中氨基酸信号调控mTORC1分子机制的相关实验结论,对该领域的研究方向进行了总结和展望。  相似文献   

2.
Current thought is that proliferating cells undergo a shift from oxidative to glycolytic metabolism, where the energy requirements of the rapidly dividing cell are provided by ATP from glycolysis. Drawing on the hexokinase–mitochondrial acceptor theory of insulin action, this article presents evidence suggesting that the increased binding of hexokinase to porin on mitochondria of cancer cells not only accelerates glycolysis by providing hexokinase with better access to ATP, but also stimulates the TCA cycle by providing the mitochondrion with ADP that acts as an acceptor for phosphoryl groups. Furthermore, this acceleration of the TCA cycle stimulates protein synthesis via two mechanisms: first, by increasing ATP production, and second, by provision of certain amino acids required for protein synthesis, since the amino acids glutamate, alanine, and aspartate are either reduction products or partially oxidized products of the intermediates of glycolysis and the TCA cycle. The utilization of oxygen in the course of the TCA cycle turnover is relatively diminished even though TCA cycle intermediates are being consumed. With partial oxidation of TCA cycle intermediates into amino acids, there is necessarily a reduction in formation of CO2 from pyruvate, seen as a relative diminution in utilization of oxygen in relation to carbon utilization. This has been assumed to be an inhibition of oxygen uptake and therefore a diminution of TCA cycle activity. Therefore a switch from oxidative metabolism to glycolytic metabolism has been assumed (the Crabtree effect). By stimulating both ATP production and protein synthesis for the rapidly dividing cell, the binding of hexokinase to mitochondrial porin lies at the core of proliferative energy metabolism. This article further reviews literature on the binding of the isozymes of hexokinase to porin, and on the evolution of insulin, proposing that intracellular insulin-like proteins directly bind hexokinase to mitochondrial porin.  相似文献   

3.
4.
Successful stem cell therapy requires the optimal proliferation, engraftment, and differentiation of stem cells into the desired cell lineage of tissues. However, stem cell therapy clinical trials to date have had limited success, suggesting that a better understanding of stem cell biology is needed. This includes a better understanding of stem cell energy metabolism because of the importance of energy metabolism in stem cell proliferation and differentiation. We report here the first direct evidence that human bone marrow mesenchymal stem cell (BMMSC) energy metabolism is highly glycolytic with low rates of mitochondrial oxidative metabolism. The contribution of glycolysis to ATP production is greater than 97% in undifferentiated BMMSCs, while glucose and fatty acid oxidation combined only contribute 3% of ATP production. We also assessed the effect of physiological levels of fatty acids on human BMMSC survival and energy metabolism. We found that the saturated fatty acid palmitate induces BMMSC apoptosis and decreases proliferation, an effect prevented by the unsaturated fatty acid oleate. Interestingly, chronic exposure of human BMMSCs to physiological levels of palmitate (for 24 hr) reduces palmitate oxidation rates. This decrease in palmitate oxidation is prevented by chronic exposure of the BMMSCs to oleate. These results suggest that reducing saturated fatty acid oxidation can decrease human BMMSC proliferation and cause cell death. These results also suggest that saturated fatty acids may be involved in the long-term impairment of BMMSC survival in vivo.  相似文献   

5.
Leishmania parasites alternate between extracellular promastigote stages in the insect vector and an obligate intracellular amastigote stage that proliferates within the phagolysosomal compartment of macrophages in the mammalian host. Most enzymes involved in Leishmania central carbon metabolism are constitutively expressed and stage-specific changes in energy metabolism remain poorly defined. Using 13C-stable isotope resolved metabolomics and 2H2O labelling, we show that amastigote differentiation is associated with reduction in growth rate and induction of a distinct stringent metabolic state. This state is characterized by a global decrease in the uptake and utilization of glucose and amino acids, a reduced secretion of organic acids and increased fatty acid β-oxidation. Isotopomer analysis showed that catabolism of hexose and fatty acids provide C4 dicarboxylic acids (succinate/malate) and acetyl-CoA for the synthesis of glutamate via a compartmentalized mitochondrial tricarboxylic acid (TCA) cycle. In vitro cultivated and intracellular amastigotes are acutely sensitive to inhibitors of mitochondrial aconitase and glutamine synthetase, indicating that these anabolic pathways are essential for intracellular growth and virulence. Lesion-derived amastigotes exhibit a similar metabolism to in vitro differentiated amastigotes, indicating that this stringent response is coupled to differentiation signals rather than exogenous nutrient levels. Induction of a stringent metabolic response may facilitate amastigote survival in a nutrient-poor intracellular niche and underlie the increased dependence of this stage on hexose and mitochondrial metabolism.  相似文献   

6.
Mitochondria can synthesize a limited number of proteins encoded by mtDNA (mitochondrial DNA) by using their own biosynthetic machinery, whereas most of the proteins in mitochondria are imported from the cytosol. It could be hypothesized that the mitochondrial pool of amino acids follows the frequency of amino acids in mtDNA-encoded proteins or, alternatively, that the profile is the result of the participation of amino acids in pathways other than protein synthesis (e.g. haem biosynthesis and aminotransferase reactions). These hypotheses were tested by evaluating the pool of free amino acids and derivatives in highly-coupled purified liver mitochondria obtained from rats fed on a nutritionally adequate diet for growth. Our results indicated that the pool mainly reflects the amino acid composition of mtDNA-encoded proteins, suggesting that there is a post-translational control of protein synthesis. This conclusion was supported by the following findings: (i) correlation between the concentration of free amino acids in the matrix and the frequency of abundance of amino acids in mtDNA-encoded proteins; (ii) the similar ratios of essential-to-non-essential amino acids in mtDNA-encoded proteins and the mitochondrial pool of amino acids; and (iii), lack of a correlation between codon usage or tRNA levels and amino-acid concentrations. Quantitative information on the mammalian mitochondrial content of amino acids, such as that presented in the present study, along with functional studies, will help us to better understand the pathogenesis of mitochondrial diseases or the biochemical implications in mitochondrial metabolism.  相似文献   

7.
8.
Nitrogen metabolism genes of Bacillus subtilis are regulated by the availability of rapidly metabolizable nitrogen sources, but not by any mechanism analogous to the two-component Ntr regulatory system found in enteric bacteria. Instead, at least three regulatory proteins independently control the expression of gene products involved in nitrogen metabolism in response to nutrient availability. Genes expressed at high levels during nitrogen-limited growth are controlled by two related proteins, GlnR and TnrA, which bind to similar DNA sequences under different nutritional conditions. The TnrA protein is active only during nitrogen limitation, whereas GlnR-dependent repression occurs in cells growing with excess nitrogen. Although the nitrogen signal regulating the activity of the GlnR and TnrA proteins is not known, the wild-type glutamine synthetase protein is required for the transduction of this signal to the GlnR and TnrA proteins. Examination of GlnR- and TnrA-regulated gene expression suggests that these proteins allow the cell to adapt to growth during nitrogen-limited conditions. A third regulatory protein, CodY, controls the expression of several genes involved in nitrogen metabolism, competence and acetate metabolism in response to growth rate. The highest levels of CodY-dependent repression occur in cells growing rapidly in a medium rich in amino acids, and this regulation is relieved during the transition to nutrient-limited growth. While the synthesis of amino acid degradative enzymes in B. subtilis is substrate inducible, their expression is generally not regulated in response to nitrogen availability by GlnR and TnrA. This pattern of regulation may reflect the fact that the catabolism of amino acids produced by proteolysis during sporulation and germination provides the cell with substrates for energy production and macromolecular synthesis. As a result, expression of amino acid degradative enzymes may be regulated to ensure that high levels of these enzymes are present in sporulating cells and in dormant spores.  相似文献   

9.
10.
11.
Biochemistry textbooks and cell culture experiments seem to be telling us two different things about the significance of external glutamine supply for mammalian cell growth and proliferation. Despite the fact that glutamine is a nonessential amino acid that can be synthesized by cells from glucose‐derived carbons and amino acid‐derived ammonia, most mammalian cells in tissue culture cannot proliferate or even survive in an environment that does not contain millimolar levels of glutamine. Not only are the levels of glutamine in standard tissue culture media at least ten‐fold higher than other amino acids, but glutamine is also the most abundant amino acid in the human bloodstream, where it is assiduously maintained at approximately 0.5 mM through a combination of dietary uptake, de novo synthesis, and muscle protein catabolism. The complex metabolic logic of the proliferating cancer cells' appetite for glutamine—which goes far beyond satisfying their protein synthesis requirements—has only recently come into focus. In this review, we examine the diversity of biosynthetic and regulatory uses of glutamine and their role in proliferation, stress resistance, and cellular identity, as well as discuss the mechanisms that cells utilize in order to adapt to glutamine limitation.  相似文献   

12.
Protein synthesis at different stages of yeast-mycelial transition induced by N-acetyl-D-glucosamine in Candida albicans was evaluated by following incorporation of radioactive amino acids into the acid-insoluble cellular material. In passing from the early germ-tube formation (60-90 min) to the mature hyphal cell (240-270 min) there was a marked decrease in the capacity for protein synthesis. Apparently, this decrease was not due to a decreased amino acid uptake into the soluble cellular pool or to exhaustion of carbon/energy source in the inducing medium with consequent arrest of growth. Protein synthesis, however, did not decay when amino acids at high concentration were added to the medium fostering the yeast-mycelial transition and this effect was potentiated by glucose. Analysis of the intracellular amino acid pool showed that both germ-tubes and hyphal cells were relatively depleted of several amino acids as compared to the yeast-form cells, whereas in the hyphae there was a higher concentration of glutamic acid/glutamine, the latter being the predominant component. These modulations in amino acid pool composition were not seen when yeasts were converted to hyphae in an amino acid-rich induction medium. This study emphasizes that yeast-form cells of C. albicans may efficiently convert to the mycelial form even under a progressively lowered rate of protein synthesis, and suggests that initiation of hyphal morphogenesis in the presence of N-acetyl-D-glucosamine is somehow separated from cellular growth.  相似文献   

13.
Tumor cells adapt via metabolic reprogramming to meet elevated energy demands due to continuous proliferation, for example by switching to alternative energy sources. Nutrients such as glucose, fatty acids, ketone bodies and amino acids may be utilized as preferred substrates to fulfill increased energy requirements. In this study we investigated the metabolic characteristics of benign and cancer cells of the prostate with respect to their utilization of medium chain (MCTs) and long chain triglycerides (LCTs) under standard and glucose-starved culture conditions by assessing cell viability, glycolytic activity, mitochondrial respiration, the expression of genes encoding key metabolic enzymes as well as mitochondrial mass and mtDNA content. We report that BE prostate cells (RWPE-1) have a higher competence to utilize fatty acids as energy source than PCa cells (LNCaP, ABL, PC3) as shown not only by increased cell viability upon fatty acid supplementation but also by an increased ß-oxidation of fatty acids, although the base-line respiration was 2-fold higher in prostate cancer cells. Moreover, BE RWPE-1 cells were found to compensate for glucose starvation in the presence of fatty acids. Of notice, these findings were confirmed in vivo by showing that PCa tissue has a lower capacity in oxidizing fatty acids than benign prostate. Collectively, these metabolic differences between benign and prostate cancer cells and especially their differential utilization of fatty acids could be exploited to establish novel diagnostic and therapeutic strategies.  相似文献   

14.
15.
16.
17.
The mitochondrial phospholipid (CL) has been linked to mitochondrial and cellular functions. It has been postulated that the composition of CL is of impact for mitochondrial energy metabolism and cell proliferation. Although a correlation between CL composition and proliferation could be demonstrated for several cell types, evidence for a causal relationship remains obscure. Here, we applied two independent approaches, i) supplementation of fatty acids and ii) knock-out of the phospholipid remodeling enzyme tafazzin, to manipulate CL composition and analyzed the response on proliferation of C6 glioma cells. Both strategies caused substantial changes in the distribution of cellular fatty acids as well as in the distribution of fatty acids incorporated in CL that were accompanied by changes of the composition of molecular CL species. These changes did not correlate with cell proliferation. However, knock-out of tafazzin caused dramatic reduction in proliferation of C6 glioma cells independent of CL composition. The mechanism of tafazzin-dependent restriction of proliferation remains unclear. Among the various fatty acids administered only palmitic acid restricted cell proliferation by induction of cell death.  相似文献   

18.
19.
Glutamine and glutamate--their central role in cell metabolism and function   总被引:4,自引:0,他引:4  
Glucose is widely accepted as the primary nutrient for maintenance and promotion of cell function. However, we propose that the 5-carbon amino acids, glutamine and glutamate, should be considered to be equally important for maintenance and promotion of cell function. The functions of glutamine are many and include: substrate for protein synthesis, anabolic precursor for muscle growth, acid-base balance in the kidney, substrate for ureogenesis in the liver, substrate for hepatic and renal gluconeogenesis, an oxidative fuel for intestine and cells of the immune system, inter-organ nitrogen transport, precursor for neurotransmitter synthesis, precursor for nucleotide and nucleic acid synthesis and precursor for glutathione production. Many of these functions are connected to the formation of glutamate from glutamine. We propose that the unique properties regarding concentration and routes of metabolism of these amino acids allow them to be used for a diverse array of processes related to the specialized function of each of the glutamine utilizing cells. In this review we highlight the specialized aspects of glutamine/glutamate metabolism of different glutamine-utilizing cells and in each case relate key aspects of metabolism to cell function.  相似文献   

20.
Both concentration and pattern of free amino acids in Tetrahymena pyriformis, as well as utilization, synthesis, and excretion of amino acids, were affected by type of carbohydrate in growth media. With glucose, cell pool concentrations were higher than with dextrin, and alanine and glycine together accounted for an average of 45% of the total pool. These two amino acids accumulated in similar proportions when their synthesis from essential amino acids was a prerequisite, as when they were provided by growth media, but they constituted only 15 to 18% of the free amino acids in cells from media with dextrin. Alanine, glycine, and glutamic acid were excreted into the medium regardless of whether they were provided by starting media; hence, they appear to be end products of the required metabolism of some of the essential amino acids. Both accumulation and excretion of the above non-essential amino acids were nearly twice as extensive in media providing glucose as the only carbohydrate as when the carbohydrate supplied was dextrin or dextrin plus glucose. Thus, the observed differences are not attributable to differences in osmolarity of monosaccharide and polysaccharide media. Free amino acid differences do not appear to be the immediate cause of the different growth-stimulating properties of such carbohydrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号