首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current methods for the detection of contagious outbreaks give contemporaneous information about the course of an epidemic at best. It is known that individuals near the center of a social network are likely to be infected sooner during the course of an outbreak, on average, than those at the periphery. Unfortunately, mapping a whole network to identify central individuals who might be monitored for infection is typically very difficult. We propose an alternative strategy that does not require ascertainment of global network structure, namely, simply monitoring the friends of randomly selected individuals. Such individuals are known to be more central. To evaluate whether such a friend group could indeed provide early detection, we studied a flu outbreak at Harvard College in late 2009. We followed 744 students who were either members of a group of randomly chosen individuals or a group of their friends. Based on clinical diagnoses, the progression of the epidemic in the friend group occurred 13.9 days (95% C.I. 9.9–16.6) in advance of the randomly chosen group (i.e., the population as a whole). The friend group also showed a significant lead time (p<0.05) on day 16 of the epidemic, a full 46 days before the peak in daily incidence in the population as a whole. This sensor method could provide significant additional time to react to epidemics in small or large populations under surveillance. The amount of lead time will depend on features of the outbreak and the network at hand. The method could in principle be generalized to other biological, psychological, informational, or behavioral contagions that spread in networks.  相似文献   

2.
In the Susceptible–Infectious–Recovered (SIR) model of disease spreading, the time to extinction of the epidemics happens at an intermediate value of the per-contact transmission probability. Too contagious infections burn out fast in the population. Infections that are not contagious enough die out before they spread to a large fraction of people. We characterize how the maximal extinction time in SIR simulations on networks depend on the network structure. For example we find that the average distances in isolated components, weighted by the component size, is a good predictor of the maximal time to extinction. Furthermore, the transmission probability giving the longest outbreaks is larger than, but otherwise seemingly independent of, the epidemic threshold.  相似文献   

3.
As more and more users access social network services from smart devices with GPS receivers, the available amount of geo-tagged information makes repeating classical experiments possible on global scales and with unprecedented precision. Inspired by the original experiments of Milgram, we simulated message routing within a representative sub-graph of the network of Twitter users with about 6 million geo-located nodes and 122 million edges. We picked pairs of users from two distant metropolitan areas and tried to find a route between them using local geographic information only; our method was to forward messages to a friend living closest to the target. We found that the examined network is navigable on large scales, but navigability breaks down at the city scale and the network becomes unnavigable on intra-city distances. This means that messages usually arrived to the close proximity of the target in only 3–6 steps, but only in about 20% of the cases was it possible to find a route all the way to the recipient, in spite of the network being connected. This phenomenon is supported by the distribution of link lengths; on larger scales the distribution behaves approximately as , which was found earlier by Kleinberg to allow efficient navigation, while on smaller scales, a fractal structure becomes apparent. The intra-city correlation dimension of the network was found to be , less than the dimension of the distribution of the population.  相似文献   

4.
The structure of contact networks affects the likelihood of disease spread at the population scale and the risk of infection at any given node. Though this has been well characterized for both theoretical and empirical networks for the spread of epidemics on completely susceptible networks, the long-term impact of network structure on risk of infection with an endemic pathogen, where nodes can be infected more than once, has been less well characterized. Here, we analyze detailed records of the transportation of cattle among farms in Turkey to characterize the global and local attributes of the directed—weighted shipments network between 2007-2012. We then study the correlations between network properties and the likelihood of infection with, or exposure to, foot-and-mouth disease (FMD) over the same time period using recorded outbreaks. The shipments network shows a complex combination of features (local and global) that have not been previously reported in other networks of shipments; i.e. small-worldness, scale-freeness, modular structure, among others. We find that nodes that were either infected or at high risk of infection with FMD (within one link from an infected farm) had disproportionately higher degree, were more central (eigenvector centrality and coreness), and were more likely to be net recipients of shipments compared to those that were always more than 2 links away from an infected farm. High in-degree (i.e. many shipments received) was the best univariate predictor of infection. Low in-coreness (i.e. peripheral nodes) was the best univariate predictor of nodes always more than 2 links away from an infected farm. These results are robust across the three different serotypes of FMD observed in Turkey and during periods of low-endemic prevalence and high-prevalence outbreaks.  相似文献   

5.
Traditional contact tracing relies on knowledge of the interpersonal network of physical interactions, where contagious outbreaks propagate. However, due to privacy constraints and noisy data assimilation, this network is generally difficult to reconstruct accurately. Communication traces obtained by mobile phones are known to be good proxies for the physical interaction network, and they may provide a valuable tool for contact tracing. Motivated by this assumption, we propose a model for contact tracing, where an infection is spreading in the physical interpersonal network, which can never be fully recovered; and contact tracing is occurring in a communication network which acts as a proxy for the first. We apply this dual model to a dataset covering 72 students over a 9 month period, for which both the physical interactions as well as the mobile communication traces are known. Our results suggest that a wide range of contact tracing strategies may significantly reduce the final size of the epidemic, by mainly affecting its peak of incidence. However, we find that for low overlap between the face-to-face and communication interaction network, contact tracing is only efficient at the beginning of the outbreak, due to rapidly increasing costs as the epidemic evolves. Overall, contact tracing via mobile phone communication traces may be a viable option to arrest contagious outbreaks.  相似文献   

6.
The deployment of wireless sensor networks for healthcare applications have been motivated and driven by the increasing demand for real-time monitoring of patients in hospital and large disaster response environments. A major challenge in developing such sensor networks is the need for coordinating a large number of randomly deployed sensor nodes. In this study, we propose a multi-parametric clustering scheme designed to aid in the coordination of sensor nodes within cognitive wireless sensor networks. In the proposed scheme, sensor nodes are clustered together based on similar network behaviour across multiple network parameters, such as channel availability, interference characteristics, and topological characteristics, followed by mechanisms for forming, joining and switching clusters. Extensive performance evaluation is conducted to study the impact on important factors such as clustering overhead, cluster joining estimation error, interference probability, as well as probability of reclustering. Results show that the proposed clustering scheme can be an excellent candidate for use in large scale cognitive wireless sensor network deployments with high dynamics.  相似文献   

7.

Background

The focus of management in many complex systems is shifting towards facilitation, adaptation, building resilience, and reducing vulnerability. Resilience management requires the development and application of general heuristics and methods for tracking changes in both resilience and vulnerability. We explored the emergence of vulnerability in the South African domestic ostrich industry, an animal production system which typically involves 3–4 movements of each bird during its lifetime. This system has experienced several disease outbreaks, and the aim of this study was to investigate whether these movements have contributed to the vulnerability of this system to large disease outbreaks.

Methodology/Principal Findings

The ostrich production system requires numerous movements of birds between different farm types associated with growth (i.e. Hatchery to juvenile rearing farm to adult rearing farm). We used 5 years of movement records between 2005 and 2011 prior to an outbreak of Highly Pathogenic Avian Influenza (H5N2). These data were analyzed using a network analysis in which the farms were represented as nodes and the movements of birds as links. We tested the hypothesis that increasing economic efficiency in the domestic ostrich industry in South Africa made the system more vulnerable to outbreak of Highly Pathogenic Avian Influenza (H5N2). Our results indicated that as time progressed, the network became increasingly vulnerable to pathogen outbreaks. The farms that became infected during the outbreak displayed network qualities, such as significantly higher connectivity and centrality, which predisposed them to be more vulnerable to disease outbreak.

Conclusions/Significance

Taken in the context of previous research, our results provide strong support for the application of network analysis to track vulnerability, while also providing useful practical implications for system monitoring and management.  相似文献   

8.
Statistical properties of the static networks have been extensively studied. However, online social networks are evolving dynamically, understanding the evolving characteristics of the core is one of major concerns in online social networks. In this paper, we empirically investigate the evolving characteristics of the Facebook core. Firstly, we separate the Facebook-link(FL) and Facebook-wall(FW) datasets into 28 snapshots in terms of timestamps. By employing the k-core decomposition method to identify the core of each snapshot, we find that the core sizes of the FL and FW networks approximately contain about 672 and 373 nodes regardless of the exponential growth of the network sizes. Secondly, we analyze evolving topological properties of the core, including the k-core value, assortative coefficient, clustering coefficient and the average shortest path length. Empirical results show that nodes in the core are getting more interconnected in the evolving process. Thirdly, we investigate the life span of nodes belonging to the core. More than 50% nodes stay in the core for more than one year, and 19% nodes always stay in the core from the first snapshot. Finally, we analyze the connections between the core and the whole network, and find that nodes belonging to the core prefer to connect nodes with high k-core values, rather than the high degrees ones. This work could provide new insights into the online social network analysis.  相似文献   

9.
Decision-making about pandemic mitigation often relies upon simulation modelling. Models of disease transmission through networks of contacts–between individuals or between population centres–are increasingly used for these purposes. Real-world contact networks are rich in structural features that influence infection transmission, such as tightly-knit local communities that are weakly connected to one another. In this paper, we propose a new flow-based edge-betweenness centrality method for detecting bottleneck edges that connect nodes in contact networks. In particular, we utilize convex optimization formulations based on the idea of diffusion with p-norm network flow. Using simulation models of COVID-19 transmission through real network data at both individual and county levels, we demonstrate that targeting bottleneck edges identified by the proposed method reduces the number of infected cases by up to 10% more than state-of-the-art edge-betweenness methods. Furthermore, the proposed method is orders of magnitude faster than existing methods.  相似文献   

10.
We respond more quickly to our own face than to other faces, but there is debate over whether this is connected to attention-grabbing properties of the self-face. In two experiments, we investigate whether the self-face selectively captures attention, and the attentional conditions under which this might occur. In both experiments, we examined whether different types of face (self, friend, stranger) provide differential levels of distraction when processing self, friend and stranger names. In Experiment 1, an image of a distractor face appeared centrally – inside the focus of attention – behind a target name, with the faces either upright or inverted. In Experiment 2, distractor faces appeared peripherally – outside the focus of attention – in the left or right visual field, or bilaterally. In both experiments, self-name recognition was faster than other name recognition, suggesting a self-referential processing advantage. The presence of the self-face did not cause more distraction in the naming task compared to other types of face, either when presented inside (Experiment 1) or outside (Experiment 2) the focus of attention. Distractor faces had different effects across the two experiments: when presented inside the focus of attention (Experiment 1), self and friend images facilitated self and friend naming, respectively. This was not true for stranger stimuli, suggesting that faces must be robustly represented to facilitate name recognition. When presented outside the focus of attention (Experiment 2), no facilitation occurred. Instead, we report an interesting distraction effect caused by friend faces when processing strangers’ names. We interpret this as a “social importance” effect, whereby we may be tuned to pick out and pay attention to familiar friend faces in a crowd. We conclude that any speed of processing advantages observed in the self-face processing literature are not driven by automatic attention capture.  相似文献   

11.

Background

Emerging infectious diseases continue to pose serious threats to global public health. So far, however, few published study has addressed the need for manpower reallocation needed in hospitals when such a serious contagious outbreak occurs.

Aim

To quantify the demand elasticity of the major surgery types in order to guide future manpower reallocation during contagious outbreaks.

Materials and Methods

Based on a nationwide research database in Taiwan, we extracted the monthly volumes of major surgery types for the period 1998–2003, which covered the SARS period, in order to carry out a time series analysis. The demand elasticity of each surgery type was then estimated by autoregressive integrated moving average (ARIMA) analysis.

Results

During the study period, the surgical volumes of most selected surgery types either increased or remained steady. We categorized these surgery types into low-, moderate- and high-elastic groups according to their demand elasticity. Appendectomy, ‘open reduction of fracture with internal fixation’ and ‘free skin graft’ were in the low demand elasticity group. Transurethral prostatectomy and extracorporeal shockwave lithotripsy (ESWL) were in the high demand elasticity group. The manpower of the departments carrying out the surgeries with low demand elasticity should be maintained during outbreaks. In contrast, departments in charge of surgeries mainly with high demand elasticity, like urology departments, may be in a position to have part of their staff reallocated.

Conclusions

Taking advantage of the demand variation during the SARS period in 2003, we adopted the concept of demand elasticity and used a time series approach to figure out an effective index of demand elasticity for various types of surgery that could be used as a rational reference to carry out manpower reallocation during contagious outbreak situations.  相似文献   

12.
Recent studies have emphasized the importance of multiplex networks – interdependent networks with shared nodes and different types of connections – in systems primarily outside of neuroscience. Though the multiplex properties of networks are frequently not considered, most networks are actually multiplex networks and the multiplex specific features of networks can greatly affect network behavior (e.g. fault tolerance). Thus, the study of networks of neurons could potentially be greatly enhanced using a multiplex perspective. Given the wide range of temporally dependent rhythms and phenomena present in neural systems, we chose to examine multiplex networks of individual neurons with time scale dependent connections. To study these networks, we used transfer entropy – an information theoretic quantity that can be used to measure linear and nonlinear interactions – to systematically measure the connectivity between individual neurons at different time scales in cortical and hippocampal slice cultures. We recorded the spiking activity of almost 12,000 neurons across 60 tissue samples using a 512-electrode array with 60 micrometer inter-electrode spacing and 50 microsecond temporal resolution. To the best of our knowledge, this preparation and recording method represents a superior combination of number of recorded neurons and temporal and spatial recording resolutions to any currently available in vivo system. We found that highly connected neurons (“hubs”) were localized to certain time scales, which, we hypothesize, increases the fault tolerance of the network. Conversely, a large proportion of non-hub neurons were not localized to certain time scales. In addition, we found that long and short time scale connectivity was uncorrelated. Finally, we found that long time scale networks were significantly less modular and more disassortative than short time scale networks in both tissue types. As far as we are aware, this analysis represents the first systematic study of temporally dependent multiplex networks among individual neurons.  相似文献   

13.
The statistical mechanical approach to complex networks is the dominant paradigm in describing natural and societal complex systems. The study of network properties, and their implications on dynamical processes, mostly focus on locally defined quantities of nodes and edges, such as node degrees, edge weights and –more recently– correlations between neighboring nodes. However, statistical methods quickly become cumbersome when dealing with many-body properties and do not capture the precise mesoscopic structure of complex networks. Here we introduce a novel method, based on persistent homology, to detect particular non-local structures, akin to weighted holes within the link-weight network fabric, which are invisible to existing methods. Their properties divide weighted networks in two broad classes: one is characterized by small hierarchically nested holes, while the second displays larger and longer living inhomogeneities. These classes cannot be reduced to known local or quasilocal network properties, because of the intrinsic non-locality of homological properties, and thus yield a new classification built on high order coordination patterns. Our results show that topology can provide novel insights relevant for many-body interactions in social and spatial networks. Moreover, this new method creates the first bridge between network theory and algebraic topology, which will allow to import the toolset of algebraic methods to complex systems.  相似文献   

14.
The jump–yip display of black-tailed prairie dogs (Cynomys ludovicianus) is contagious, spreading through a prairie dog town as ‘the wave’ through a stadium. Because contagious communication in primates serves to assess conspecific social awareness, we investigated whether instigators of jump–yip bouts adjusted their behaviour relative to the response of conspecifics recruited to display bouts. Increased responsiveness of neighbouring town members resulted in bout initiators devoting a significantly greater proportion of time to active foraging. Contagious jump–yips thus function to assess neighbours’ alertness, soliciting social information to assess effective conspecific group size in real time and reveal active probing of conspecific awareness consistent with theory of mind in these group-living rodents.  相似文献   

15.
This study reports the first experimental exploration of possible contagious yawning in monkeys. Twenty-two stumptail macaques (Macaca arctoides) were presented with video clips of either yawns or control mouth movements by conspecifics. At a group level, monkeys yawned significantly more often during and just after the yawn tape than the control tape. Supplementary analysis revealed that the yawn tape also elicited significantly more self-directed scratching responses than the control tape, which suggests that yawning might have been caused by tension arising from viewing the yawn tape. Understanding to what extent the observed effect resembles contagious yawning as found in humans and chimpanzees requires more detailed experimentation.  相似文献   

16.
The assembly of local communities from regional pools is a multifaceted process that involves the confluence of interactions and environmental conditions at the local scale and biogeographic and evolutionary history at the regional scale. Understanding the relative influence of these factors on community structure has remained a challenge and mechanisms driving community assembly are often inferred from patterns of taxonomic, functional, and phylogenetic diversity. Moreover, community assembly is often viewed through the lens of competition and rarely includes trophic interactions or entire food webs. Here, we use motifs – subgraphs of nodes (e.g. species) and links (e.g. predation) whose abundance within a network deviates significantly as compared to a random network topology – to explore the assembly of food web networks found in the leaves of the northern pitcher plant Sarracenia purpurea. We compared counts of three‐node motifs across a hierarchy of scales to a suite of null models to determine if motifs are over‐, under‐, or randomly represented. We then assessed if the pattern of representation of a motif in a given network matched that of the network it was assembled from. We found that motif representation in over 70% of site networks matched the continental network they were assembled from and over 75% of local networks matched the site networks they were assembled from for the majority of null models. This suggests that the same processes are shaping networks across scales. To generalize our results and effectively use a motif perspective to study community assembly, a theoretical framework detailing potential mechanisms for all possible combinations of motif representation is necessary.  相似文献   

17.
Live animal movements are a major transmission route for the spread of infectious agents such as Mycobacterium bovis, the main agent of bovine Tuberculosis (bTB). France became officially bTB-free in 2001, but M. bovis is still circulating in the cattle population, with about a hundred of outbreaks per year, most located in a few geographic areas. The aim of this study was to analyse the role of cattle movements in bTB spread in France between 2005 and 2014, using social network analysis and logistic regression models. At a global scale, the trade network was studied to assess the association between several centrality measures and bTB infection though a case-control analysis. The bTB infection status was associated with a higher in-degree (odds-ratio [OR] = 2.4 [1.1–5.4]) and with a higher ingoing contact chain (OR = 2.2 [1.0–4.7]). At a more local scale, a second case-control analysis was conducted to estimate the relative importance of cattle movements and spatial neighbourhood. Only direct purchase from infected herds was shown to be associated with bTB infection (OR = 2.9 [1.7–5.2]), spatial proximity to infected herds being the predominant risk factor, with decreasing ORs when distance increases. Indeed, the population attributable fraction was 12% [5%–18%] for cattle movements and 73% [68%–78%] for spatial neighbourhood. Based on these results, networks of potential effective contacts between herds were built and analysed for the three major spoligotypes reported in France. In these networks, the links representing cattle movements were associated with higher edge betweenness than those representing the spatial proximity between infected herds. They were often links connecting distinct communities and sometimes distinct geographical areas. Therefore, although their role was quantitatively lower than the one of spatial neighbourhood, cattle movements appear to have been essential in the French bTB dynamics between 2005 and 2014.  相似文献   

18.
Localization of mobile nodes in wireless sensor network gets more and more important, because many applications need to locate the source of incoming measurements as precise as possible. Many previous approaches to the location-estimation problem need know the theories and experiential signal propagation model and collect a large number of labeled samples. So, these approaches are coarse localization because of the inaccurate model, and to obtain such data requires great effort. In this paper, a semi-supervised manifold learning is used to estimate the locations of mobile nodes in a wireless sensor network. The algorithm is used to compute a subspace mapping function between the signal space and the physical space by using a small amount of labeled data and a large amount of unlabeled data. This mapping function can be used online to determine the location of mobile nodes in a sensor network based on the signals received. We use independent development nodes to setup the network in metallurgical industry environment, outdoor and indoor. Experimental results show that we can achieve a higher accuracy with much less calibration effort as compared with RADAR localization systems.  相似文献   

19.
Over the last 40 years, disease outbreaks have significantly reduced coral populations throughout the Caribbean. Most coral‐disease models assume that coral diseases are contagious and that pathogens are transmitted from infected to susceptible hosts. However, this assumption has not been rigorously tested. We used spatial epidemiology to examine disease clustering, at scales ranging from meters to tens of kilometers, to determine whether three of the most common Caribbean coral diseases, (i) yellow‐band disease, (ii) dark‐spot syndrome, and (iii) white‐plague disease, were spatially clustered. For all three diseases, we found no consistent evidence of disease clustering and, therefore, these diseases did not follow a contagious‐disease model. We suggest that the expression of some coral diseases is instead a two‐step process. First, environmental thresholds are exceeded. Second, these environmental conditions either weaken the corals, which are then more susceptible to infection, or the conditions increase the virulence or abundance of pathogens. Exceeding such environmental thresholds will most likely become increasingly common in rapidly warming oceans, leading to more frequent coral‐disease outbreaks.  相似文献   

20.
Evidence is growing that forms of incivility–e.g. aggressive and disrespectful behaviors, harassment, hate speech and outrageous claims–are spreading in the population of social networking sites’ (SNS) users. Online social networks such as Facebook allow users to regularly interact with known and unknown others, who can behave either politely or rudely. This leads individuals not only to learn and adopt successful strategies for using the site, but also to condition their own behavior on that of others. Using a mean field approach, we define anevolutionary game framework to analyse the dynamics of civil and uncivil ways of interaction in online social networks and their consequences for collective welfare. Agents can choose to interact with others–politely or rudely–in SNS, or to opt out from online social networks to protect themselves from incivility. We find that, when the initial share of the population of polite users reaches a critical level, civility becomes generalized if its payoff increases more than that of incivility with the spreading of politeness in online interactions. Otherwise, the spreading of self-protective behaviors to cope with online incivility can lead the economyto non-socially optimal stationary states. JEL Codes: C61, C73, D85, O33, Z13. PsycINFO Codes: 2240, 2750.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号