首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integration of genetic information with ecological and phenotypic data constitutes an effective approach to gain insight into the mechanisms determining interpopulation variability and the evolutionary processes underlying local adaptation and incipient speciation. Here, we use the Pyrenean Morales grasshopper (Chorthippus saulcyi moralesi) as study system to (i) analyse the relative role of genetic drift and selection in range‐wide patterns of phenotypic differentiation and (ii) identify the potential selective agents (environment, elevation) responsible for variation. We also test the hypothesis that (iii) the development of dispersal‐related traits is associated with different parameters related to population persistence/turnover, including habitat suitability stability over the last 120 000 years, distance to the species distribution core and population genetic variability. Our results indicate that selection shaped phenotypic differentiation across all the studied morphological traits (body size, forewing length and shape). Subsequent analyses revealed that among‐population differentiation in forewing length was significantly explained by a temperature gradient, suggesting an adaptive response to thermoregulation or flight performance under contrasting temperature regimes. We found support for our hypothesis predicting a positive association between the distance to the species distribution core and the development of dispersal‐related morphology, which suggests an increased dispersal capability in populations located at range edges that, in turn, exhibit lower levels of genetic variability. Overall, our results indicate that range‐wide patterns of phenotypic variation are partially explained by adaptation in response to local environmental conditions and differences in habitat persistence between core and peripheral populations.  相似文献   

2.
Heterogeneity in resource availability and quality can trigger spatial patterns in the expression of sexually selected traits such as body mass and weaponry. While relationships between habitat features and phenotypic quality are well established at broad geographical scales, information is poor on spatial patterns at finer, intrapopulation scales. We analyzed biometric data collected on 1965 red deer Cervus elaphus males over 20 years from a nonmigratory population living on two sides of a mountainous ridge, with substantial differences in land cover and habitat quality but similar climate and population density. We investigate spatial patterns in (i) body mass, (ii) antler mass, and (iii) antler investment. We also tested for site‐ and age‐specific patterns in allometric relationship between body mass and antler mass. Statistically significant fine‐scale spatial variations in body mass, antler mass, and, to a lesser extent, antler allocation matched spatial differences in land cover. All three traits were greater in the northern slope, characterized by higher habitat heterogeneity and greater availability of open habitats, than in the southern slope. Moreover, the allometric relationship between body mass and antler mass differed among age‐classes, in a pattern that was consistent between the two mountain slopes. Our results support the occurrence of spatial patterns in the expression of individual attributes also at a fine, intrapopulation scale. Our findings emphasize the role of environmental heterogeneity in shaping spatial variations of key life‐history traits, with potential consequences for reproductive success.  相似文献   

3.
How populations of long‐living species respond to climate change depends on phenotypic plasticity and local adaptation processes. Marginal populations are expected to have lags in adaptation (i.e. differences between the climatic optimum that maximizes population fitness and the local climate) because they receive pre‐adapted alleles from core populations preventing them from reaching a local optimum in their climatically marginal habitat. Yet, whether adaptation lags in marginal populations are a common feature across phylogenetically and ecologically different species and how lags can change with climate change remain unexplored. To test for range‐wide patterns of phenotypic variation and adaptation lags of populations to climate, we (a) built model ensembles of tree height accounting for the climate of population origin and the climate of the site for 706 populations monitored in 97 common garden experiments covering the range of six European forest tree species; (b) estimated populations' adaptation lags as the differences between the climatic optimum that maximizes tree height and the climate of the origin of each population; (c) identified adaptation lag patterns for populations coming from the warm/dry and cold/wet margins and from the distribution core of each species range. We found that (a) phenotypic variation is driven by either temperature or precipitation; (b) adaptation lags are consistently higher in climatic margin populations (cold/warm, dry/wet) than in core populations; (c) predictions for future warmer climates suggest adaptation lags would decrease in cold margin populations, slightly increasing tree height, while adaptation lags would increase in core and warm margin populations, sharply decreasing tree height. Our results suggest that warm margin populations are the most vulnerable to climate change, but understanding how these populations can cope with future climates depend on whether other fitness‐related traits could show similar adaptation lag patterns.  相似文献   

4.
Species can adapt to new environmental conditions either through individual phenotypic plasticity, intraspecific genetic differentiation in adaptive traits, or both. Wild emmer wheat, Triticum dicoccoides, an annual grass with major distribution in Eastern Mediterranean region, is predicted to experience in the near future, as a result of global climate change, conditions more arid than in any part of the current species distribution. To understand the role of the above two means of adaptation, and the effect of population range position, we analyzed reaction norms, extent of plasticity, and phenotypic selection across two experimental environments of high and low water availability in two core and two peripheral populations of this species. We studied 12 quantitative traits, but focused primarily on the onset of reproduction and maternal investment, which are traits that are closely related to fitness and presumably involved in local adaptation in the studied species. We hypothesized that the population showing superior performance under novel environmental conditions will either be genetically differentiated in quantitative traits or exhibit higher phenotypic plasticity than the less successful populations. We found the core population K to be the most plastic in all three trait categories (phenology, reproductive traits, and fitness) and most successful among populations studied, in both experimental environments; at the same time, the core K population was clearly genetically differentiated from the two edge populations. Our results suggest that (1) two means of successful adaptation to new environmental conditions, phenotypic plasticity and adaptive genetic differentiation, are not mutually exclusive ways of achieving high adaptive ability; and (2) colonists from some core populations can be more successful in establishing beyond the current species range than colonists from the range extreme periphery with conditions seemingly closest to those in the new environment.  相似文献   

5.
Habitat selection and spatial usage are important components of animal behavior influencing fitness and population dynamic. Understanding the animal–habitat relationship is crucial in ecology, particularly in developing strategies for wildlife management and conservation. As this relationship is governed by environmental features and intra‐ and interspecific interactions, habitat selection of a population may vary locally between its core and edges. This is particularly true for central place foragers such as gray and harbor seals, where, in the Northeast Atlantic, the availability of habitat and prey around colonies vary at local scale. Here, we study how foraging habitat selection may vary locally under the influence of physical habitat features. Using GPS/GSM tags deployed at different gray and harbor seals’ colonies, we investigated spatial patterns and foraging habitat selection by comparing trip characteristics and home‐range similarities and fitting GAMMs to seal foraging locations and environmental data. To highlight the importance of modeling habitat selection at local scale, we fitted individual models to colonies as well as a global model. The global model suffered from issues of homogenization, while colony models showed that foraging habitat selection differed markedly between regions for both species. Despite being capable of undertaking far‐ranging trips, both gray and harbor seals selected their foraging habitat depending on local availability, mainly based on distance from the last haul‐out and bathymetry. Distance from shore and tidal current also influenced habitat preferences. Results suggest that local conditions have a strong influence on population spatial ecology, highlighting the relevance of processes occurring at fine geographical scale consistent with management within regional units.  相似文献   

6.
Phenotypic variation among populations is thought to be generated from spatial heterogeneity in environments that exert selection pressures that overcome the effects of gene flow and genetic drift. Here, we tested for evidence of isolation by distance or by ecology (i.e., ecological adaptation) to generate variation in early life history traits and phenotypic plasticity among 13 wood frog populations spanning 1200 km and 7° latitude. We conducted a common garden experiment and related trait variation to an ecological gradient derived from an ecological niche model (ENM) validated to account for population density variation. Shorter larval periods, smaller body weight, and relative leg lengths were exhibited by populations with colder mean annual temperatures, greater precipitation, and less seasonality in precipitation and higher population density (high-suitability ENM values). After accounting for neutral genetic variation, the QSTFST analysis supported ecological selection as the key process generating population divergence. Further, the relationship between ecology and traits was dependent upon larval density. Specifically, high-suitability/high-density populations in the northern part of the range were better at coping with greater conspecific competition, evidenced by greater postmetamorphic survival and no difference in body weight when reared under stressful conditions of high larval density. Our results support that both climate and competition selection pressures drive clinal variation in larval and metamorphic traits in this species. Range-wide studies like this one are essential for accurate predictions of population’s responses to ongoing ecological change.Subject terms: Biogeography, Ecological modelling, Evolutionary ecology, Evolution  相似文献   

7.
Recent patterns of global change have highlighted the importance of understanding the dynamics and mechanisms of species range shifts and expansions. Unique demographic features, spatial processes, and selective pressures can result in the accumulation and evolution of distinctive phenotypic traits at the leading edges of expansions. We review the characteristics of expanding range margins and highlight possible mechanisms for the appearance of phenotypic differences between individuals at the leading edge and core of the range. The development of life history traits that increase dispersal or reproductive ability is predicted by theory and supported with extensive empirical evidence. Many examples of rapid phenotypic change are associated with trade‐offs that may influence the persistence of the trait once expansion ends. Accounting for the effects of edge phenotypes and related trade‐offs could be critical for predicting the spread of invasive species and population responses to climate change.  相似文献   

8.
Dispersal is a key component of a species''s ecology and will be under different selection pressures in different parts of the range. For example, a long-distance dispersal strategy suitable for continuous habitat at the range core might not be favoured at the margin, where the habitat is sparse. Using a spatially explicit, individual-based, evolutionary simulation model, the dispersal strategies of an organism that has only one dispersal event in its lifetime, such as a plant or sessile animal, are considered. Within the model, removing habitat, increasing habitat turnover, increasing the cost of dispersal, reducing habitat quality or altering vital rates imposes range limits. In most cases, there is a clear change in the dispersal strategies across the range, although increasing death rate towards the margin has little impact on evolved dispersal strategy across the range. Habitat turnover, reduced birth rate and reduced habitat quality all increase evolved dispersal distances at the margin, while increased cost of dispersal and reduced habitat density lead to lower evolved dispersal distances at the margins. As climate change shifts suitable habitat poleward, species ranges will also start to shift, and it will be the dispersal capabilities of marginal populations, rather than core populations, that will influence the rate of range shifting.  相似文献   

9.
In a widespread species, a matching of phenotypic traits to local environmental optima is generally attributed to site-specific adaptation. However, the same matching can occur via adaptive plasticity, without requiring genetic differences among populations. Adult sea kraits (Laticauda saintgironsi) are highly philopatric to small islands, but the entire population within the Neo-Caledonian Lagoon is genetically homogeneous because females migrate to the mainland to lay their eggs at communal sites; recruits disperse before settling, mixing up alleles. Consequently, any matching between local environments (e.g. prey sizes) and snake phenotypes (e.g. body sizes and relative jaw sizes (RJSs)) must be achieved via phenotypic plasticity rather than spatial heterogeneity in gene frequencies. We sampled 13 snake colonies spread along an approximately 200 km northwest–southeast gradient (n > 4500 individuals) to measure two morphological features that affect maximum ingestible prey size in gape-limited predators: body size and RJS. As proxies of habitat quality (HQ), we used protection status, fishing pressure and lagoon characteristics (lagoon width and distance of islands to the barrier reef). In both sexes, spatial variation in body sizes and RJSs was linked to HQ; albeit in different ways, consistent with sex-based divergences in foraging ecology. Strong spatial divergence in morphology among snake colonies, despite genetic homogeneity, supports the idea that phenotypic plasticity can facilitate speciation by creating multiple phenotypically distinct subpopulations shaped by their environment.  相似文献   

10.
Both habitat heterogeneity and species’ life-history traits play important roles in driving population dynamics, yet there is little scientific consensus around the combined effect of these two factors on populations in complex landscapes. Using a spatially explicit agent-based model, we explored how interactions between habitat spatial structure (defined here as the scale of spatial autocorrelation in habitat quality) and species life-history strategies (defined here by species environmental tolerance and movement capacity) affect population dynamics in spatially heterogeneous landscapes. We compared the responses of four hypothetical species with different life-history traits to four landscape scenarios differing in the scale of spatial autocorrelation in habitat quality. The results showed that the population size of all hypothetical species exhibited a substantial increase as the scale of spatial autocorrelation in habitat quality increased, yet the pattern of population increase was shaped by species’ movement capacity. The increasing scale of spatial autocorrelation in habitat quality promoted the resource share of individuals, but had little effect on the mean mortality rate of individuals. Species’ movement capacity also determined the proportion of individuals in high-quality cells as well as the proportion of individuals experiencing competition in response to increased spatial autocorrelation in habitat quality. Positive correlations between the resource share of individuals and the proportion of individuals experiencing competition indicate that large-scale spatial autocorrelation in habitat quality may mask the density-dependent effect on populations through increasing the resource share of individuals, especially for species with low mobility. These findings suggest that low-mobility species may be more sensitive to habitat spatial heterogeneity in spatially structured landscapes. In addition, localized movement in combination with spatial autocorrelation may increase the population size, despite increased density effects.  相似文献   

11.
Light intensity and heterogeneity are some of the main environmental factors that differ between forest and savanna habitats, and plant species from these habitats form distinct functional types. In this study, we tested the hypothesis that not only differences in morphological and physiological traits but also phenotypic plasticity in response to light are involved in adaptation to forest and savanna habitats by investigating ecotypic differentiation between populations of Plathymenia reticulata (Leguminosae: Mimosoideae), a tree from the Brazilian Atlantic Forest and the Brazilian Cerrado (savanna). Seeds from four natural populations (one from each biome core area and two from ecotonal regions) were grown in a common garden with four light treatments. Fifteen morphological and physiological characteristics were evaluated until individuals reached 6 mo old. Comparisons among populations showed differences for seven traits in at least one light treatment. These differences pointed to local adaptation to different biomes. Populations showed different levels of phenotypic plasticity in response to light in seven traits. Higher plasticity was found either in the forest core population or ecotonal populations; lower values were found in the cerrado core population. Lower plasticity in the cerrado population emphasizes the stress resistant syndrome, as lower plasticity is probably advantageous in a habitat where a conservative resource use is crucial. Higher plasticity in forest individuals suggests higher ability in exploiting the light heterogeneity in this habitat. Also, higher plasticity in ecotonal populations can be important to ensure the maintenance of P. reticulata in these temporally and spatially dynamic areas. Abstract in Portugese is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

12.
Species may be able to respond to changing environments by a combination of adaptation and migration. We study how adaptation affects range shifts when it involves multiple quantitative traits evolving in response to local selection pressures and gene flow. All traits develop clines shifting in space, some of which may be in a direction opposite to univariate predictions, and the species tracks its environmental optimum with a constant lag. We provide analytical expressions for the local density and average trait values. A species can sustain faster environmental shifts, develop a wider range and greater local adaptation when spatial environmental variation is low (generating low migration load) and multitrait adaptive potential is high. These conditions are favoured when nonlinear (stabilising) selection is weak in the phenotypic direction of the change in optimum, and genetic variation is high in the phenotypic direction of the selection gradient.  相似文献   

13.
The ideal free distribution (IFD) predicts that organisms will disperse to sites that maximize their fitness based on availability of resources. Habitat heterogeneity underlies resource variation and influences spatial variation in demography and the distribution of populations. We relate nest site productivity at multiple scales measured over a decade to habitat quality in a box-nesting population of Forpus passerinus (green-rumped parrotlets) in Venezuela to examine critical IFD assumptions. Variation in reproductive success at the local population and neighborhood scales had a much larger influence on productivity (fledglings per nest box per year) than nest site or female identity. Habitat features were reliable cues of nest site quality. Nest sites with less vegetative cover produced greater numbers of fledglings than sites with more cover. However, there was also a competitive cost to nesting in high-quality, low-vegetative cover nest boxes, as these sites experienced the most infanticide events. In the lowland local population, water depth and cover surrounding nest sites were related with F. passerinus productivity. Low vegetative cover and deeper water were associated with lower predation rates, suggesting that predation could be a primary factor driving habitat selection patterns. Parrotlets also demonstrated directional dispersal. Pairs that changed nest sites were more likely to disperse from poor-quality nest sites to high-quality nest sites rather than vice versa, and juveniles were more likely to disperse to, or remain in, the more productive of the two local populations. Parrotlets exhibited three characteristics fundamental to the IFD: habitat heterogeneity within and between local populations, reliable habitat cues to productivity, and active dispersal to sites of higher fitness.  相似文献   

14.
通过分析珍稀濒危植物峨眉含笑(Michelia wilsonii)种子与果实的表型性状特征,研究其变异规律和空间自相关性,为峨眉含笑天然种群的保护利用工作提供依据。以雅安周公山的峨眉含笑为研究对象,测定12项种实表型性状指标,采用变异系数和半方差函数,探究峨眉含笑种实的空间变异特征。结果显示(:1)峨眉含笑种实表型性状的平均变异系数为27.59%,种实的形态变异程度最小,种子性状的变异程度比果实性状更为丰富。(2)聚合果下部的种子败育率与蓇葖败育率最高,分别为18.32%和38.22%;中部的败育率最低,分别为15.05%和23.45%。(3)半方差函数模型以指数和球状模型为主,呈聚集分布。除果实长、种子纵径和种子败育率外,其余9项指标具有中高等强度的空间自相关性。(4)9项指标的各向异性比接近于1,空间异质性表现为各向同性。因此,峨眉含笑种实表型性状在中等尺度的空间范围内具有丰富的变异性。  相似文献   

15.
Decreasing population size and increasing isolation may lead to reduced plant fitness. These effects of habitat fragmentation may especially apply to populations close to the margin of their geographical range, where populations generally are often smaller and more isolated, and the environment is less favourable than at the range centre. In this context we studied north-west German range-margin populations of Narthecium ossifragum (L.) HUDS., a clonal, perennial herb typical for acidic and nutrient-poor wet heathlands. We asked whether plant fitness and reproduction of the range-margin populations were affected by population size and habitat quality, and whether any changes in population size over the past 10–20 years were related to past population size and habitat quality.Population size varied between 60 and 100.000 individuals and was highly positively related to shoot density. Larger (and denser) populations formed more flowers and fruits, but fewer seeds. Soil water content had a strong positive effect on seed production and seed mass, and the latter also increased with increasing soil phosphorus content. Relative light intensity showed a positive impact on shoot density and, hence, population size. Compared to British range centre populations, the populations at the German range margin formed more, but smaller seeds that failed to germinate both in the field and in laboratory experiments. Despite the lack of sexual reproduction, population sizes generally had not decreased during the past two decades, most likely due to successful clonal growth. The change in population size of Narthecium, however, was negatively related to the present soil phosphorus content, indicating that an increased supply of nutrients and a decrease in light availability may have a negative effect on population dynamics.The results imply that fragmented and small range-margin populations not necessarily are doomed to extinction, provided that the habitat quality remains suitable for growth and vegetative reproduction.  相似文献   

16.
Animal community dynamics in changing landscapes are primarily driven by changes in vegetation structure and ultimately by how species respond to these changes and at which spatial scale. We consider two major components of local community dynamics, species colonisation and extinction. We hypothesise that (1) the optimal spatial extent needed to accurately predict them will differ between these two processes; (2) it will also likely differ from species to species as a result of life history traits differences related to differences in habitat selection and (3) that a species' primary habitat will determine the spatial extent at which it perceives change in vegetation structure. We used data collected over 25 yr in a changing Mediterranean landscape to study bird species local colonisation and extinction patterns in two groups of species typical from two habitats: open farmland and woodland. Vegetation changes were measured at spatial extents ranging from 0.2 to 79 ha. Local species colonisation and extinction estimates were computed using a method accounting for heterogeneity in detection probability among species. We built linear models between local species colonisation/extinction estimates and vegetation changes and examined variations in model quality with respect to the spatial extent at which vegetation changes had been measured. Models for open habitat species showed that colonisation processes operated at the landscape scale (79 ha), while extinction was more tightly linked to local habitat requirements (0.2 ha). Models for woodland species presented a low and constant model quality whatever the spatial extent considered. Our results suggest that the dynamics of the woodland species considered responded to a combination of vegetation changes at several scales and, in particular, to changes in the vertical structure of the vegetation. We highlight the need to explicitly consider spatial extent in studies of habitat selection and of habitat and population dynamics to improve our understanding of the biological consequences of land use changes and guide more effective conservation efforts.  相似文献   

17.
The phenotypic plasticity of traits, defined as the ability of a genotype to express different phenotypic values of the trait across a range of environments, can vary between habitats depending on levels of temporal and spatial heterogeneity. Other traits can be insensitive to environmental perturbations and show environmental canalization. We tested levels of phenotypic plasticity in diverse Drosophila serrata populations along a latitudinal cline ranging from a temperate, variable climate to a tropical, stable climate by measuring developmental rate and size-related traits at three temperatures (16°C, 22°C, and 28°C). We then compared the slopes of the thermal reaction norms among populations. The 16–22°C part of the reaction norms for developmental rate was flatter (more canalized) for the temperate populations than for the tropical populations. However, slopes for the reaction norms of the two morphological traits (wing size, wing:thorax ratio), were steeper (more plastic) in the temperate versus the tropical populations over the entire thermal range. The different latitudinal patterns in plasticity for developmental rate and the morphological traits may reflect contrasting selection pressures along the tropical–temperate thermal gradient.  相似文献   

18.
Sexual dimorphism in relation to current selection in the house finch   总被引:3,自引:0,他引:3  
Abstract.— Sexual dimorphism is thought to have evolved in response to selection pressures that differ between males and females. Our aim in this study was to determine the role of current net selection in shaping and maintaining contemporary sexual dimorphism in a recently established population of the house finch ( Carpodacus mexicanus ) in Montana. We found strong differences between sexes in direction of selection on sexually dimorphic traits, significant heritabilities of these traits, and a close congruence between current selection and observed sexual dimorphism in Montana house finches. Strong directional selection on sexually dimorphic traits and similar intensities of selection in each sex suggested that sexual dimorphism arises from adaptive responses in males and females, with both sexes being far from their local fitness optimum. This pattern is expected when a recently established population experiences continuous immigration from ecologically distinct areas of a species range or as a result of widely fluctuating selection pressures, as found in our study. Strong and sexually dimorphic selection pressures on heritable morphological traits, in combination with low phenotypic and genetic covariation among these traits during growth, may have accounted for close congruence between current selection and observed sexual dimorphism in the house finch. This conclusion is consistent with the profound adaptive population divergence in sexual dimorphism that accompanied very successful colonization of most of the North America by the house finch over the last 50 years.  相似文献   

19.
Clonal spread is favoured in many plants at the expense of seed production in order to expand rapidly into open habitats or to occupy space by forming dense patches. However, for the dynamics of a population in a patchy landscape seed dispersal remains important even for clonal plants. We used a spatially explicit individual-based metapopulation model to examine the consequences of two trade-offs in Hieracium pilosella L: first, between vegetative and sexual reproduction, and second, between short and far-distance dispersal of seeds. Our main question was, what are the environmental conditions that cause a mixed strategy of vegetative and sexual reproduction to be optimal. The model was parameterised with field data on local population dynamics of H. pilosella. Patch dynamics were given firstly by disturbance events that opened patches in a matrix of a clonal grass that were colonisable for H. pilosella, and secondly by the gradual disappearance of H. pilosella patches due to the expanding grass. Simulations revealed opposing selection pressures on traits determined by the two trade-offs. Vegetative reproduction is favoured by local dynamics, i.e. the need for maintenance and expansion of established populations, whereas seed production is favoured by the necessity to colonise empty habitats. Similar pressures act on the proportion of seeds dispersed over short and far distances. Optimum reproductive and dispersal strategies depended on habitat quality (determined by seedling establishment probability), the fraction of dispersed seeds, and the fraction of seeds lost on unsuitable ground. Under habitat conditions supporting moderate to low seedling establishment, between 20% and 40% of reproductive effort in H. pilosella should be devoted to sexual reproduction with at least 10% of the seeds dispersed over distances suitable to attain empty patches. We conclude that in a spatially heterogeneous landscape sexual seed production in a clonal plant is advantageous even at the expense of local vegetative growth.  相似文献   

20.
Adaptive ecological differentiation among sympatric populations is promoted by environmental heterogeneity, strong local selection and restricted gene flow. High gene flow, on the other hand, is expected to homogenize genetic variation among populations and therefore prevent local adaptation. Understanding how local adaptation can persist at the spatial scale at which gene flow occurs has remained an elusive goal, especially for wild vertebrate populations. Here, we explore the roles of natural selection and nonrandom gene flow (isolation by breeding time and habitat choice) in restricting effective migration among local populations and promoting generalized genetic barriers to neutral gene flow. We examined these processes in a network of 17 breeding ponds of the moor frog Rana arvalis, by combining environmental field data, a common garden experiment and data on variation in neutral microsatellite loci and in a thyroid hormone receptor (TRβ) gene putatively under selection. We illustrate the connection between genotype, phenotype and habitat variation and demonstrate that the strong differences in larval life history traits observed in the common garden experiment can result from adaptation to local pond characteristics. Remarkably, we found that haplotype variation in the TRβ gene contributes to variation in larval development time and growth rate, indicating that polymorphism in the TRβ gene is linked with the phenotypic variation among the environments. Genetic distance in neutral markers was correlated with differences in breeding time and environmental differences among the ponds, but not with geographical distance. These results demonstrate that while our study area did not exceed the scale of gene flow, ecological barriers constrained gene flow among contrasting habitats. Our results highlight the roles of strong selection and nonrandom gene flow created by phenological variation and, possibly, habitat preferences, which together maintain genetic and phenotypic divergence at a fine‐grained spatial scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号