首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Long noncoding RNAs (lncRNAs) are emerging as regulators of many basic cellular pathways. Several lncRNAs are selectively expressed in the developing retina, although little is known about their functional role in this tissue. Vax2os1 is a retina-specific lncRNA whose expression is restricted to the mouse ventral retina. Here we demonstrate that spatiotemporal misexpression of Vax2os1 determines cell cycle alterations in photoreceptor progenitor cells. In particular, the overexpression of Vax2os1 in the developing early postnatal mouse retina causes an impaired cell cycle progression of photoreceptor progenitors toward their final committed fate and a consequent delay of their differentiation processes. At later developmental stages, this perturbation is accompanied by an increase of apoptotic events in the photoreceptor cell layer, in comparison with control retinas, without affecting the proper cell layering in the adult retina. Similar results are observed in mouse photoreceptor-derived 661W cells in which Vax2os1 overexpression results in an impairment of the cell cycle progression rate and cell differentiation. Based on these results, we conclude that Vax2os1 is involved in the control of cell cycle progression of photoreceptor progenitor cells in the ventral retina. Therefore, we propose Vax2os1 as the first example of lncRNA that acts as a cell cycle regulator in the mammalian retina during development.  相似文献   

3.
4.
5.
Constant intense light causes apoptosis of rod and cone photoreceptors in adult albino zebrafish. The photoreceptors subsequently regenerate from proliferating inner nuclear layer (INL) progenitor cells that migrate to the outer nuclear layer (ONL) and differentiate into rods and cones. To identify gene expression changes during this photoreceptor regeneration response, a microarray analysis was performed at five time points during the light treatment. The time course included an early time point during photoreceptor death (16 h), later time points during progenitor cell proliferation and migration (31, 51, and 68 h) and a 96 h time point, which likely corresponds to the initial photoreceptor differentiation. Mean expression values for each gene were calculated at each time point relative to the control (0 h light exposure) and statistical analysis by one-way ANOVA identified 4567 genes exhibiting significant changes in gene expression along the time course. The genes within this data set were clustered based on their temporal expression patterns and proposed functions. Quantitative real-time PCR validated the microarray expression profiles for selected genes, including stat3 whose expression increased markedly during the light exposure. Based on immunoblots, both total and activated Stat3 protein expression also increased during the light treatment. Immunolocalization of Stat3 on retinal tissue sections demonstrated increased expression in photoreceptors and Müller glia by 16 h of light exposure. Some of the Stat3-positive Müller cells expressed PCNA at 31 h, suggesting that Stat3 may play a role in signaling a subset of Müller cells to proliferate during the regeneration response.  相似文献   

6.
Drosophila affords a genetically well-defined system to study apoptosis in vivo. It offers a powerful extension to in vitro models that have implicated a requirement for cytochrome c in caspase activation and apoptosis. We found that an overt alteration in cytochrome c anticipates programmed cell death (PCD) in Drosophila tissues, occurring at a time that considerably precedes other known indicators of apoptosis. The altered configuration is manifested by display of an otherwise hidden epitope and occurs without release of the protein into the cytosol. Conditional expression of the Drosophila death activators, reaper or grim, provoked apoptogenic cytochrome c display and, surprisingly, caspase activity was necessary and sufficient to induce this alteration. In cell-free studies, cytosolic caspase activation was triggered by mitochondria from apoptotic cells but identical preparations from healthy cells were inactive. Our observations provide compelling validation of an early role for altered cytochrome c in PCD and suggest propagation of apoptotic physiology through reciprocal, feed-forward amplification involving cytochrome c and caspases.  相似文献   

7.
Zebrafish transgenic lines are important experimental tools for lineage tracing and imaging studies. It is crucial to precisely characterize the cell lineages labeled in transgenic lines to understand their limitations and thus properly interpret the data obtained from their use; only then can we confidently select a line appropriate for our particular research objectives. Here we profiled the cell lineages labeled in the closely related neural crest transgenic lines Tg(foxd3:GFP), Tg(sox10:eGFP) and Tg(sox10:mRFP). These fish were crossed to generate embryos, in which foxd3 and sox10 transgenic neural crest labeling could be directly compared at the cellular level using live confocal imaging. We have identified key differences in the cell lineages labeled in each line during early neural crest development and demonstrated that the most anterior cranial neural crest cells initially migrating out of neural tube at the level of forebrain and anterior midbrain express sox10:eGFP and sox10:mRFP, but not foxd3:GFP. This differential profile was robustly maintained in the different-tiating progeny of the neural crest lineages until 3.5dpf. Our data will enable researchers to make an informed choice in selecting transgenic lines for future neural crest research.  相似文献   

8.
To gain insight into the processes by which acetic acid-induced programmed cell death (AA-PCD) takes place in yeast, we investigated both cytochrome c release from yeast mitochondria and mitochondrial coupling over the time course of AA-PCD. We show that the majority of cytochrome c release occurs early in AA-PCD from intact coupled mitochondria which undergo only gradual impairment. The released cytochrome c can be reduced both by ascorbate and by superoxide anion and in turn be oxidized via cytochrome c oxidase, thus working both as a ROS scavenger and a respiratory substrate. Late in AA-PCD, the released cytochrome c is degraded.  相似文献   

9.
To determine the contribution of the endoplasmic reticulum (ER) to cell fate decision, we focused on BRI3-binding protein (BRI3BP) residing in this organelle. BRI3BP, when overexpressed, augmented the apoptosis of human embryonic kidney 293T cells challenged with drugs including the anti-cancer agent etoposide. In contrast, the knockdown of BRI3BP reduced the drug-triggered apoptosis. BRI3BP overexpression enhanced both mitochondrial cytochrome c release and caspase-3 activity in etoposide-treated cells. In response to etoposide, the ER reorganized into irregularly shaped lamellae in mock-transfected cells, whereas in BRI3BP-overexpressing cells, such reorganization was not observed. These observations suggest that BRI3BP is involved in the structural dynamics of the ER and affects mitochondrial viability. Taken together, BRI3BP, widely expressed in animal cell types, seems to possess a pro-apoptotic property and can potentiate drug-induced apoptosis.  相似文献   

10.
11.
VDAC1, an outer mitochondrial membrane (OMM) protein, is crucial for regulating mitochondrial metabolic and energetic functions and acts as a convergence point for various cell survival and death signals. VDAC1 is also a key player in apoptosis, involved in cytochrome c (Cyto c) release and interactions with anti-apoptotic proteins. Recently, we demonstrated that various pro-apoptotic agents induce VDAC1 oligomerization and proposed that a channel formed by VDAC1 oligomers mediates cytochrome c release. As VDAC1 transports Ca2 + across the OMM and because Ca2 + has been implicated in apoptosis induction, we addressed the relationship between cytosolic Ca2 + levels ([Ca2 +]i), VDAC1 oligomerization and apoptosis induction. We demonstrate that different apoptosis inducers elevate cytosolic Ca2 + and induce VDAC1 over-expression. Direct elevation of [Ca2 +]i by the Ca2 +-mobilizing agents A23187, ionomycin and thapsigargin also resulted in VDAC1 over-expression, VDAC1 oligomerization and apoptosis. In contrast, decreasing [Ca2 +]i using the cell-permeable Ca2 +-chelating reagent BAPTA-AM inhibited VDAC1 over-expression, VDAC1 oligomerization and apoptosis. Correlation between the increase in VDAC1 levels and oligomerization, [Ca2 +]i levels and apoptosis induction, as induced by H2O2 or As2O3, was also obtained. On the other hand, cells transfected to overexpress VDAC1 presented Ca2 +-independent VDAC1 oligomerization, cytochrome c release and apoptosis, suggesting that [Ca2 +]i elevation is not a pre-requisite for apoptosis induction when VDAC1 is over-expressed. The results suggest that Ca2 + promotes VDAC1 over-expression by an as yet unknown signaling pathway, leading to VDAC1 oligomerization, ultimately resulting in apoptosis. These findings provide a new insight into the mechanism of action of existing anti-cancer drugs involving induction of VDAC1 over-expression as a mechanism for inducing apoptosis. This article is part of a Special Issue entitled: Calcium Signaling in Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau  相似文献   

12.
The physiological transient complex between cytochrome f (Cf) and cytochrome c6 (Cc6) from the cyanobacterium Nostoc sp. PCC 7119 has been analysed by NMR spectroscopy. The binding constant at low ionic strength is 8 ± 2 mM−1, and the binding site of Cc6 for Cf is localized around its exposed haem edge. On the basis of the experimental data, the resulting docking simulations suggest that Cc6 binds to Cf in a fashion that is analogous to that of plastocyanin but differs between prokaryotes and eukaryotes.  相似文献   

13.
Non-muscle cofilin (n-cofilin) is a member of the ADF/cofilin family of actin depolymerizing proteins. Recent studies reported a mitochondrial translocation of n-cofilin during apoptosis. As these studies also revealed impaired cytochrome c release and a block in apoptosis upon small interfering RNA-mediated n-cofilin knockdown, n-cofilin was postulated to be essential for apoptosis induction. To elucidate the general importance of ADF/cofilin activity for apoptosis, we exposed mouse embryonic fibroblasts deficient for n-cofilin, ADF (actin depolymerizing factor), or all ADF/cofilin isoforms to well-characterized apoptosis inducers. Cytochrome c release, caspase-3 activation, and apoptotic chromatin condensation were unchanged in all mutant fibroblasts. Thus, we conclude that ADF/cofilin activity is not generally required for induction or progression of apoptosis in mammalian cells. Interestingly, mitochondrial association of ADF and n-cofilin during apoptosis was preceded by, and dependent on, actin that translocated by a yet unknown mechanism to mitochondria during cell death.  相似文献   

14.

Background  

The tbx5 mutation in human causes Holt-Oram syndrome, an autosomal dominant condition characterized by a familial history of congenital heart defects and preaxial radial upper-limb defects. We report aberrant apoptosis and dormant cell growth over head, heart, trunk, fin, and tail of zebrafish embryos with tbx5 deficiency correspond to the dysmorphogenesis of tbx5 morphants.  相似文献   

15.
The Trans-activator protein (Tat) of human immunodeficiency virus (HIV) is a pleiotropic protein involved in different aspects of AIDS pathogenesis. As a number of viral proteins Tat is suspected to disturb mitochondrial function. We prepared pure synthetic full-length Tat by native chemical ligation (NCL), and Tat peptides, to evaluate their direct effects on isolated mitochondria. Submicromolar doses of synthetic Tat cause a rapid dissipation of the mitochondrial transmembrane potential (ΔΨm) as well as cytochrome c release in mitochondria isolated from mouse liver, heart, and brain. Accordingly, Tat decreases substrate oxidation by mitochondria isolated from these tissues, with oxygen uptake being initially restored by adding cytochrome c. The anion-channel inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) protects isolated mitochondria against Tat-induced mitochondrial membrane permeabilization (MMP), whereas ruthenium red, a ryanodine receptor blocker, does not. Pharmacologic inhibitors of the permeability transition pore, Bax/Bak inhibitors, and recombinant Bcl-2 and Bcl-XL proteins do not reduce Tat-induced MMP. We finally observed that Tat inhibits cytochrome c oxidase (COX) activity in disrupted mitochondria isolated from liver, heart, and brain of both mouse and human samples, making it the first described viral protein to be a potential COX inhibitor.  相似文献   

16.
The assembly of cytochrome c oxidase (CcO) in yeast mitochondria is shown to be dependent on a new assembly factor designated Coa1 that associates with the mitochondrial inner membrane. Translation of the mitochondrial-encoded subunits of CcO occurs normally in coa1Delta cells, but these subunits fail to accumulate. The respiratory defect in coa1Delta cells is suppressed by high-copy MSS51, MDJ1 and COX10. Mss51 functions in Cox1 translation and elongation, whereas Cox10 participates in the biosynthesis of heme a, a key cofactor of CcO. Respiration in coa1Delta and shy1Delta cells is enhanced when Mss51 and Cox10 are coexpressed. Shy1 has been implicated in formation of the heme a3-Cu(B) site in Cox1. The interaction between Coa1 and Cox1, and the physical and genetic interactions between Coa1 and Mss51, Shy1 and Cox14 suggest that Coa1 coordinates the transition of newly synthesized Cox1 from the Mss51:Cox14 complex to the heme a cofactor insertion involving Shy1. coa1Delta cells also display a mitochondrial copper defect suggesting that Coa1 may have a direct link to copper metallation of CcO.  相似文献   

17.
The nephrotoxicity of diclofenac, a non-steroidal anti-inflammatory drug that inhibits both isoforms of cyclooxygenase (COX) has been reported to be fatal to vultures but this was not so with meloxicam which is COX-2 selective. Our study showed that diclofenac was more toxic than meloxicam to both the proximal tubular LLC-PK1 cells and the distal tubular Madin-Darby canine kidney type II (MDCKII) cells, and that LLC-PK1 cells were more susceptible. Exposure of MDCKII cells to meloxicam caused activation of caspase-9/-3 and release of cytochrome c. These observations together with a positive annexin V-FITC staining implicate an intrinsic mitochondrial cell death pathway by apoptosis. Diclofenac-treated MDCKII cells on the other hand showed extensive propidium iodide staining, suggestive of cell death by necrosis. The mode of cell death in LLC-PK1 cells was however less well-defined with positive annexin V-FITC staining but minimal increase in caspase-3 activity alluding to a caspase-independent pathway.  相似文献   

18.
19.
To investigate the role of cytochrome c (cyt c) release in yeast acetic acid-induced programmed cell death (AA-PCD), wild type (wt) and cells lacking metacaspase (Δyca1), cytochrome c (Δcyc1,7) and both (Δcyc1,7Δyca1) were compared for AA-PCD occurrence, hydrogen peroxide (H2O2) production and caspase activity. AA-PCD occurs in Δcyc1,7 and Δcyc1,7Δyca1 cells slower than in wt, but similar to that in Δyca1 cells, in which no cytochrome c release occurs. Both H2O2 production and caspase activation occur in these cells with early and extra-activation in Δcyc1,7 cells. We conclude that alternative death pathways can be activated in yeast AA-PCD, one dependent on cyt c release, which requires YCA1, and the other(s) independent on it.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号