首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Tissue hypoperfusion and inflammation in sepsis can lead to organ failure including kidney and liver. In sepsis, mortality of acute kidney injury increases by more than 50%. Which type of volume replacement should be used is still an ongoing debate. We investigated the effect of different volume strategies on inflammatory mediators in kidney and liver in an early sepsis model.

Material and Methods

Adult male Wistar rats were subjected to sepsis by cecal ligation and puncture (CLP) and assigned to three fluid replenishment groups. Animals received 30mL/kg of Ringer’s lactate (RL) for 2h, thereafter RL (75mL/kg), hydroxyethyl starch (HES) balanced (25mL/kg), containing malate and acetate, or HES saline (25mL/kg) for another 2h. Kidney and liver tissue was assessed for inflammation. In vitro rat endothelial cells were exposed to RL, HES balanced or HES saline for 2h, followed by stimulation with tumor necrosis factor-α (TNF-α) for another 4h. Alternatively, cells were exposed to malate, acetate or a mixture of malate and acetate, reflecting the according concentration of these substances in HES balanced. Pro-inflammatory cytokines were determined in cell supernatants.

Results

Cytokine mRNA in kidney and liver was increased in CLP animals treated with HES balanced compared to RL, but not after application of HES saline. MCP-1 was 3.5fold (95% CI: 1.3, 5.6) (p<0.01) and TNF-α 2.3fold (95% CI: 1.2, 3.3) (p<0.001) upregulated in the kidney. Corresponding results were seen in liver tissue. TNF-α-stimulated endothelial cells co-exposed to RL expressed 3529±1040pg/mL MCP-1 and 59±23pg/mL CINC-1 protein. These cytokines increased by 2358pg/mL (95% CI: 1511, 3204) (p<0.001) and 29pg/ml (95% CI: 14, 45) (p<0.01) respectively when exposed to HES balanced instead. However, no further upregulation was observed with HES saline. PBS supplemented with acetate increased MCP-1 by 1325pg/mL (95% CI: 741, 1909) (p<0.001) and CINC-1 by 24pg/mL (95% CI: 9, 38) (p<0.01) compared to RL. Malate as well as HES saline did not affect cytokine expression.

Conclusion

We identified HES balanced and specifically its component acetate as pro-inflammatory factor. How important this additional inflammatory burden on kidney and liver function is contributing to the sepsis-associated inflammatory burden in early sepsis needs further evaluation.  相似文献   

2.
During the recent years a new debate occurred because of the introduction of a new generation of hydroxyethyl starches (HES) and of balanced cristalloids, for the composition of the priming for cardiopulmonary bypass in cardiac surgery. Colloids used for fluid therapy belong to two groups: gelatin (modified fluid gelatine – MFG – in France) and hydroxyethyl starch (HES). Isotonic saline is mainly used as a solvent of colloids even though responsible for hyperchloremic acidosis when perfused in large volume. Morbidity due to this metabolic disorder is not largely investigated but does not seem very deleterious. However maintenance of the metabolic and acid-base equilibrium encourages the use of balanced solutions as proposed for some HES colloids. Characteristics of HES 130/0.4-0.42 improve safety profile and are preferred, however deleterious effects of HES on hemostasis with increasing bleeding risk and risk of renal impairment, cornerstone in cardiac surgery, lead to a respect of doses, indications and contra-indications of HES. Discussion is mandatory for the use of the new colloids and crystalloids in the composition of the priming, particularly some non oncotic effect of the synthetic colloids must be elucidated to improve the choice between albumin and other colloids.  相似文献   

3.
"Cardiac surgery with cardiopulmonary bypass (CPB) induces a systemic inflammatory response syndrome that may contribute to postoperative morbidity and mortality. We investigated the in-flammatory responses to colloids compared to crystalloid priming in cardiac surgery patients with cardiopulmonary bypass. Thirty patients undergoing coronary artery bypass grafting (CABG) preparing for CPB were randomized into Ringer's solution (RS), 10% hydroxyethyl starch (HES) or 25% human albumin (HA) group. Serum concentrations of tumor necrosis factor-α (TNF-α), interleukin-1 β (IL-1β ), interleukin-6 (IL-6) and interleukin-10 (IL-10) were measured before CPB, at the end of CPB and 1, 6 and 12 h after CPB. Serum C-reactive protein (CRP) was determined pre-operatively and then daily for 2 days. Body-weight gain was significantly decreased on the day after surgery in the HES group than in the RS group. Volume priming in CPB for CABG patients using HA or HES preparation had less tendency for intense inflammatory response with lower levels of TNF-α, IL-1 β , IL-6 and higher levels of IL-10 compared to patients treated with RS. HES prime had lower levels of circulating CRP than in patients treated with HA or Ringer prime on the second post-operative day. Our data indicate that volume priming using colloid during CPB in CABG patients might exert beneficial effects on inflammatory responses."  相似文献   

4.
We compared the effect of crystalloid to colloid fluid infusion on extravascular lung water (EVLW) in hypoproteinemic dogs. Plasmapheresis was used to decrease plasma colloid osmotic pressure (COP) to less than 40% of its base-line level. Five animals were then infused with 0.9% sodium chloride (saline), five with 5% human serum albumin (albumin), and five with 6% hydroxyethyl starch (hetastarch) to increase the pulmonary arterial occlusive pressure by 10 Torr in comparison to the postplasmapheresis level for a 5-h study interval. On completion of the procedure, the lungs were harvested and EVLW measured by the blood-free gravimetric technique. Three to six times the volume of saline compared with albumin or hetastarch (P less than 0.001) was infused. In the saline animals, COP was decreased to 3.3 +/- 1.3 Torr, whereas COP was increased to 18.1 +/- 1.4 Torr in albumin animals (P less than 0.001) and 20.1 +/- 1.6 Torr in the hetastarch group (P less than 0.001). The saline-treated dogs developed gross signs of systemic edema. The EVLW was 8.1 +/- 0.9 ml/kg in saline animals compared with 5.3 +/- 2.1 ml/kg in the albumin (P less than 0.05) and 4.1 +/- 1.4 ml/kg in the hetastarch (P less than 0.01) groups. These data indicate that crystalloid fluid infusion during hypoproteinemia is associated with the development of both systemic and pulmonary edema.  相似文献   

5.
Biliary excretion of hydroxyethyl starch in man   总被引:1,自引:0,他引:1  
The extent of biliary excretion of hydroxyethyl starch (HES) in man after intravenous administration of 500 ml of a 6% solution to nine healthy male volunteers was determined using a specific gas chromatograph mass spectrometer selected ion monitoring procedure. On the average, less than 1% of the administered dose was recovered in feces over a 14 day period.  相似文献   

6.
Therapy with hydroxyethyl starch (HES) is associated with a high incidence of persistent pruritus due to HES storage in cutaneous nerves. Up to now it has been unknown if HES also accumulates in the extracutaneous peripheral or central nervous system. To study this, five rats including one pregnant one were infused with a single dose (34-150 mg) of HES (70/200/450 kDa molecular weight) conjugated with fluorescein isothiocyanate (FITC). In addition, four sheep were infused with a cumulative dosage of 30 g, 120 g, and 420 g HES (200 kDa), respectively. After 7-13 days, biopsies from the adult rats, four fetal rats and sheep were taken from various organs. The specimens were analyzed by light, electron, and confocal laser scanning microscopy. Typical HES storage vacuoles were found in macrophages of the skin, liver, spleen, lung, and kidney. HES storage in healthy animals was not associated with signs of either inflammation or apoptosis contrary to a previously described animal hemorrhagic shock model. Beyond that, fetus biopsies did not show any storage phenomenon, confirming that HES does not cross the placental barrier. Deposits of HES could be detected in Schwann cells of cutaneous nerve fibers as well as in perineural and endoneural cells of sciatic nerve in one rat (HES 450 kDa) and three of four sheep. No HES storage was found in the central nervous system. Our findings clearly demonstrate that storage of HES is detectable only in small peripheral nerves, suggesting a cutaneous origin of the HES-induced pruritus.  相似文献   

7.
This study clarifies the contribution to overall osmotic kinetics of colloid osmotic pressure (Pi) and the interaction of synthetic colloids with the membrane. Solutions (6%) of dextran with weight average molecular weight (MW(w)) 68 800 (DEX 70), dextran with MW(w) 40 000 (DEX 40), hydroxyethyl starch with MW(w) 70 000 (HES 70), gelatin with MW(w) 60 000 and albumin were tested. An osmotic flow cell fitted with membranes of molecular weight cutoff size 30 000 or 50 000 was used to measure time-dependent changes in Pi for each of these solutions. A linear viscoelastic model was fitted to the curve describing changes to Pi as a function of time. Values of total effective Pi for DEX 40 and DEX 70 were larger than those for HES 70, gelatin, and albumin. As an index of solute-solvent exchange rate at the membrane surface, these values were in the order DEX 40 > DEX 70, HES 70 > gelatin, albumin. The findings suggest that DEX 40 may be preferable for the temporary restoration of plasma volume because of a heightened initial osmotic force. In contrast, the osmotic force exerted by gelatin is slower to increase but is likely to be longer lasting in vivo as a result of the inhibition of gelatin from penetrating the capillary membrane due to its interaction with negatively charged groups in the endothelial glycocalyx.  相似文献   

8.
We postulated that the seleno-organic compound ebselen would attenuate neutrophil recruitment and activation after aerosolized challenge with endotoxin (LPS) through its effect as an antioxidant and inhibitor of gene activation. Rats were given ebselen (1-100 mg/kg i.p.) followed by aerosolized LPS exposure (0.3 mg/ml for 30 min). Airway inflammatory indices were measured 4 h postchallenge. Bronchoalveolar lavage (BAL) fluid cellularity and myeloperoxidase activity were used as a measure of neutrophil recruitment and activation. RT-PCR analysis was performed in lung tissue to assess gene expression of TNF-alpha, cytokine-induced neutrophil chemoattractant-1 (CINC-1), macrophage-inflammatory protein-2 (MIP-2), ICAM-1, IL-10, and inducible NO synthase. Protein levels in lung and BAL were also determined by ELISA. Ebselen pretreatment inhibited neutrophil influx and activation as assessed by BAL fluid cellularity and myeloperoxidase activity in cell-free BAL and BAL cell homogenates. This protective effect was accompanied by a significant reduction in lung and BAL fluid TNF-alpha and IL-1 beta protein and/or mRNA levels. Ebselen pretreatment also prevented lung ICAM-1 mRNA up-regulation in response to airway challenge with LPS. This was not a global effect of ebselen on LPS-induced gene expression, because the rise in lung and BAL CINC-1 and MIP-2 protein levels were unaffected as were lung mRNA expressions for CINC-1, MIP-2, IL-10, and inducible NO synthase. These data suggest that the anti-inflammatory properties of ebselen are achieved through an inhibition of lung ICAM-1 expression possibly through an inhibition of TNF-alpha and IL-1 beta, which are potent neutrophil recruiting mediators and effective inducers of ICAM-1 expression.  相似文献   

9.

Background

Exacerbations of Chronic obstructive pulmonary disease (COPD) are an important cause of the morbidity and mortality associated with the disease. Strategies to reduce exacerbation frequency are thus urgently required and depend on an understanding of the inflammatory milieu associated with exacerbation episodes. Bacterial colonisation has been shown to be related to the degree of airflow obstruction and increased exacerbation frequency. The aim of this study was to asses the kinetics of cytokine release from COPD parenchymal explants using an ex vivo model of lipopolysaccharide (LPS) induced acute inflammation.

Methods

Lung tissue from 24 patients classified by the GOLD guidelines (7F/17M, age 67.9 ± 2.0 yrs, FEV1 76.3 ± 3.5% of predicted) and 13 subjects with normal lung function (8F,5M, age 55.6 ± 4.1 yrs, FEV1 98.8 ± 4.1% of predicted) was stimulated with 100 ng/ml LPS alone or in combination with either neutralising TNFα or IL-10 antibodies and supernatant collected at 1,2,4,6,24, and 48 hr time points and analysed for IL-1β, IL-5, IL-6, CXCL8, IL-10 and TNFα using ELISA. Following culture, explants were embedded in glycol methacrylate and immunohistochemical staining was conducted to determine the cellular source of TNFα, and numbers of macrophages, neutrophils and mast cells.

Results

In our study TNFα was the initial and predictive cytokine released followed by IL-6, CXCL8 and IL-10 in the cytokine cascade following LPS exposure. The cytokine cascade was inhibited by the neutralisation of the TNFα released in response to LPS and augmented by the neutralisation of the anti-inflammatory cytokine IL-10. Immunohistochemical analysis indicated that TNFα was predominantly expressed in macrophages and mast cells. When patients were stratified by GOLD status, GOLD I (n = 11) and II (n = 13) individuals had an exaggerated TNFα responses but lacked a robust IL-10 response compared to patients with normal lung function (n = 13).

Conclusion

We report on a reliable ex vitro model for the investigation of acute lung inflammation and its resolution using lung parenchymal explants from COPD patients. We propose that differences in the production of both TNFα and IL-10 in COPD lung tissue following exposure to bacterial LPS may have important biological implications for both episodes of exacerbation, disease progression and amelioration.  相似文献   

10.

Objective

The aim of this study was to compare the effects of hypotensive and normotensive resuscitation with a novel combination of fluids via lactate Ringer’s solution (LRS), 6% hydroxyethyl starch 130/0.4 solution (HES), and 7.5% hypertonic saline solution (HSS) at early stage of uncontrolled hemorrhagic shock (UHS) before hemostasis.

Methods

New Zealand white rabbits (n = 32) underwent UHS by transecting the splenic parenchyma, followed by blood withdrawal via the femoral artery to target mean arterial pressure (MAP) of 40–45 mmHg. Animals were distributed randomly into 4 groups (n = 8): in group Sham, sham operation was performed; in group HS, UHS was untreated; in group HS-HR, UHS was treated by hypotensive resuscitation with HSS and LRS+HES (ratio of 2∶1) to MAP of 50–55 mmHg; in group HS-NR, UHS was treated by normotensive resuscitation with HSS and LRS+HES (ratio of 2∶1) to MAP of 75–80 mmHg. Outcomes of hemodynamics, inflammatory and oxidative response, and other metabolic variables were measured and the histopathological studies of heart, lung and kidney were performed at the end of resusucitation.

Results

Hypotensive resuscitation with the novel combination of fluids for UHS rabbits decreased blood loss, maintained better stabilization of hemodynamics, and resulted in relatively higher hematocrit and platelet count, superior outcomes of blood gas, and lower plasma lactate concentration. Besides, hypotensive resuscitation attenuated the inflammatory and oxidative response significantly in UHS rabbits.

Conclusion

Hypotensive resuscitation with the novel combination of fluids via HSS and LRS+HES (ratio of 2∶1) has an effective treatment at early stage of UHS before hemostasis.  相似文献   

11.
Overexpression of tumor necrosis factor α (TNFα) is a hallmark of many inflammatory diseases, including rheumatoid arthritis, inflammatory bowel disease, and septic shock and hepatitis, making it a potential therapeutic target for clinical interventions. To explore chemical inhibitors against TNFα activity, we applied computer-aided drug design combined with in vitro and cell-based assays and identified a lead chemical compound, (E)-4-(2-(4-chloro-3-nitrophenyl) (named as C87 thereafter), which directly binds to TNFα, potently inhibits TNFα-induced cytotoxicity (IC50 = 8.73 μm) and effectively blocks TNFα-triggered signaling activities. Furthermore, by using a murine acute hepatitis model, we showed that C87 attenuates TNFα-induced inflammation, thereby markedly reducing injuries to the liver and improving animal survival. Thus, our results lead to a novel and highly specific small-molecule TNFα inhibitor, which can be potentially used to treat TNFα-mediated inflammatory diseases.  相似文献   

12.
TASK3 two-pore domain potassium (K2P) channels are responsible for native leak K channels in many cell types which regulate cell resting membrane potential and excitability. In addition, TASK3 channels contribute to the regulation of cellular potassium homeostasis. Because TASK3 channels are important for cell viability, having putative roles in both neuronal apoptosis and oncogenesis, we sought to determine their behavior under inflammatory conditions by investigating the effect of TNFα on TASK3 channel current. TASK3 channels were expressed in tsA-201 cells, and the current through them was measured using whole cell voltage clamp recordings. We show that THP-1 human myeloid leukemia monocytes, co-cultured with hTASK3-transfected tsA-201 cells, can be activated by the specific Toll-like receptor 7/8 activator, R848, to release TNFα that subsequently enhances hTASK3 current. Both hTASK3 and mTASK3 channel activity is increased by incubation with recombinant TNFα (10 ng/ml for 2–15 h), but other K2P channels (hTASK1, hTASK2, hTREK1, and hTRESK) are unaffected. This enhancement by TNFα is not due to alterations in levels of channel expression at the membrane but rather to an alteration in channel gating. The enhancement by TNFα can be blocked by extracellular acidification but persists for mutated TASK3 (H98A) channels that are no longer acid-sensitive even in an acidic extracellular environment. TNFα action on TASK3 channels is mediated through the intracellular C terminus of the channel. Furthermore, it occurs through the ASK1 pathway and is JNK- and p38-dependent. In combination, TNFα activation and TASK3 channel activity can promote cellular apoptosis.  相似文献   

13.
Necroptosis is a regulated form of necrotic cell death that has been implicated in the pathogenesis of various diseases including intestinal inflammation and systemic inflammatory response syndrome (SIRS). In this work, we investigated the signaling mechanisms controlled by the necroptosis mediator receptor interacting protein-1 (RIP1) kinase. We show that Akt kinase activity is critical for necroptosis in L929 cells and plays a key role in TNFα production. During necroptosis, Akt is activated in a RIP1 dependent fashion through its phosphorylation on Thr308. In L929 cells, this activation requires independent signaling inputs from both growth factors and RIP1. Akt controls necroptosis through downstream targeting of mammalian Target of Rapamycin complex 1 (mTORC1). Akt activity, mediated in part through mTORC1, links RIP1 to JNK activation and autocrine production of TNFα. In other cell types, such as mouse lung fibroblasts and macrophages, Akt exhibited control over necroptosis-associated TNFα production without contributing to cell death. Overall, our results provide new insights into the mechanism of necroptosis and the role of Akt kinase in both cell death and inflammatory regulation.  相似文献   

14.
15.
Increasing evidences have suggested vascular endothelial inflammatory processes are the initiator of atherosclerosis. Bestrophin 3 (Best-3) is involved in the regulation of cell proliferation, apoptosis and differentiation of a variety of physiological functions, but its function in cardiovascular system remains unclear. In this study, we investigated the effect of Best-3 on endothelial inflammation. We first demonstrated that Best-3 is expressed in endothelial cells and decreased after tumor necrosis factor-α (TNFα) challenge. Overexpression of Best-3 significantly attenuated TNFα-induced expression of adhesion molecules and chemokines, and subsequently inhibited the adhesion of monocytes to human umbilical vein endothelial cells (HUVECs). Conversely, knockdown of Best-3 with siRNA resulted in an enhancement on TNFα-induced expression of adhesion molecules and chemokines and adhesion of monocytes to HUVECs. Furthermore, overexpression of Best-3 with adenovirus dramatically ameliorated inflammatory response in TNFα-injected mice. Mechanistically, we found up-regulation of Best-3 inhibited TNFα-induced IKKβ and IκBα phosphorylation, IκBα degradation and NF-κB translocation. Our results demonstrated that Best-3 is an endogenous inhibitor of NF-κB signaling pathway in endothelial cells, suggesting that forced Best-3 expression may be a novel approach for the treatment of vascular inflammatory diseases.  相似文献   

16.
Pulmonary arterial hypertension (PH) is associated with high mortality due to right ventricular failure and hypoxia, therefore to understand the mechanism by which pulmonary vascular remodeling initiates these processes is very important. We used a well-characterized monocrotaline (MCT)-induced rat PH model, and analyzed lung morphology, expression of cytokines, mitogen-activated protein kinase (MAPK) phosphorylation, and phosphatidylinositol 3-kinase-Akt (PI-3k-Akt) pathway and nuclear factor (NF)-κB activation in order to elucidate the mechanisms by which sildenafil''s protective effect in PH is exerted. Besides its protective effect on lung morphology, sildenafil suppressed multiple cytokines involved in neutrophil and mononuclear cells recruitment including cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2α/β, tissue inhibitor of metalloproteinase (TIMP)-1, interleukin (IL)-1α, lipopolysaccharide induced CXC chemokine (LIX), monokine induced by gamma interferon (MIG), macrophage inflammatory protein (MIP)-1α, and MIP-3α. NF-κB activation and phosphorylation were also attenuated by sildenafil. Furthermore, sildenafil reduced extracellular signal-regulated kinase (ERK)1/2 and p38 MAPK activation while enhanced activation of the cytoprotective Akt pathway in PH. These data suggest a beneficial effect of sildenafil on inflammatory and kinase signaling mechanisms that substantially contribute to its protective effects, and may have potential implications in designing future therapeutic strategies in the treatment of pulmonary hypertension.  相似文献   

17.
Macrophage-mediated inflammation has been implicated in various kidney diseases. We previously reported that Rac1, a Rho family small GTP-binding protein, was overactivated in several chronic kidney disease models, and that Rac1 inhibitors ameliorated renal injury, in part via inhibition of inflammation, but the detailed mechanisms have not been clarified. In the present study, we examined whether Rac1 in macrophages effects cytokine production and the inflammatory mechanisms contributing to kidney derangement. Myeloid-selective Rac1 flox control (M-Rac1 FC) and knockout (M-Rac1 KO) mice were generated using the cre-loxP system. Renal function under basal conditions did not differ between M-Rac1 FC and KO mice. Accordingly, lipopolysaccharide (LPS)-evoked kidney injury model was created. LPS elevated blood urea nitrogen and serum creatinine, enhanced expressions of kidney injury biomarkers, Kim-1 and Ngal, and promoted tubular injury in M-Rac1 FC mice. By contrast, deletion of myeloid Rac1 almost completely prevented the LPS-mediated renal impairment. LPS triggered a marked induction of macrophage-derived inflammatory cytokines, IL-6 and TNFα, in M-Rac1 FC mice, which was accompanied by Rac1 activation, stimulation of reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase, and reactive oxygen species overproduction. These changes were inhibited in M-Rac1 KO mice. LPS evoked F4/80-positive macrophages accumulation in the kidney, which was not affected by myeloid Rac1 deficiency. We further tested the role of Rac1 signaling in cytokine production using macrophage cell line, RAW264.7. Exposure to LPS increased IL-6 and TNFα mRNA expression. The LPS-driven cytokine induction was dose-dependently blocked by the Rac1 inhibitor EHT1864, NADPH oxidase inhibitor diphenyleneiodonium, and NF-κB inhibitor BAY11-7082. In conclusion, genetic ablation of Rac1 in the myeloid lineage protected against LPS-induced renal inflammation and injury, by suppressing macrophage-derived cytokines, IL-6 and TNFα, without blocking recruitment. Our data suggest that Rac1 in macrophage is a novel target for the treatment of kidney disease through inhibition of cytokine production.  相似文献   

18.
Since inflammatory bowel diseases (IBD) represent significant morbidity and mortality in the US, the need for defining novel drug targets and inflammatory mechanisms would be of considerable benefit. Although protein tyrosine kinase 6 (PTK6, also known as breast tumor kinase BRK) has been primarily studied in an oncogenic context, it was noted that PTK6 null mice exhibited significantly enhanced colonic epithelial barrier function. Considering that the inflammatory functions of PTK6 have not yet been explored, we hypothesized that cytokines responsible for mediating IBD, such as TNFα/IFNγ, may solicit the action of PTK6 to alter barrier function. After first assessing critical mediators of TNFα/IFNγ driven epithelial barrier dysfunction, we further explored the possibility of PTK6 in this inflammatory context. In this report, we showed that PTK6 siRNA and PTK6 null young adult mouse colonic epithelial cells (YAMC) exhibited significant attenuation of TNFα/IFNγ induced barrier dysfunction as measured by electric cell-substrate impedance sensing (ECIS) assay and permeability assays. In addition, PTK6 null cells transfected with PTK6 cDNA displayed restored barrier dysfunction in response to TNFα/IFNγ, while the cells transfected with vector alone showed similar attenuation of barrier dysfunction. Furthermore, using subcellular fractionation and immunocytochemistry experiments, we found that PTK6 plays a role in FoxO1 nuclear accumulation leading to down-regulation of claudin-3, a tight junction protein. Moreover, we searched for relevant miRNA candidates putative for targeting PTK6 in order to identify and assess the impact of microRNA that target PTK6 with respect to TNFα/IFNγ induced barrier dysfunction. Subsequently, we assayed likely targets and determined their effectiveness in attenuating PTK6 expression as well as cytokine induced barrier dysfunction. Results showed that miR-93 reduced PTK6 expression and attenuated TNFα/IFNγ imposed decrease in transepithelial electrical resistance (TER), as well as excluded FoxO1 from the nucleus. Our results indicate that PTK6 may act as a novel mediator of intestinal epithelial permeability during inflammatory injury, and miR-93 may protect intestinal epithelial barrier function, at least in part, by targeting PTK6.  相似文献   

19.
High mobility group box 1 (HMGB1), a highly conserved, ubiquitous protein, is released into the circulation during sterile inflammation (e.g. arthritis, trauma) and circulatory shock. It participates in the pathogenesis of delayed inflammatory responses and organ dysfunction. While several molecules have been identified that modulate the release of HMGB1, less attention has been paid to identify pharmacological inhibitors of the downstream inflammatory processes elicited by HMGB1 (C23-C45 disulfide C106 thiol form). In the current study, a cell-based medium-throughput screening of a 5000+ compound focused library of clinical drugs and drug-like compounds was performed in murine RAW264.7 macrophages, in order to identify modulators of HMGB1-induced tumor-necrosis factor alpha (TNFα) production. Clinically used drugs that suppressed HMGB1-induced TNFα production included glucocorticoids, beta agonists, and the anti-HIV compound indinavir. A re-screen of the NIH clinical compound library identified beta-agonists and various intracellular cAMP enhancers as compounds that potentiate the inhibitory effect of glucocorticoids on HMGB1-induced TNFα production. The molecular pathways involved in this synergistic anti-inflammatory effect are related, at least in part, to inhibition of TNFα mRNA synthesis via a synergistic suppression of ERK/IκB activation. Inhibition of TNFα production by prednisolone+salbutamol pretreatment was also confirmed in vivo in mice subjected to HMGB1 injection; this effect was more pronounced than the effect of either of the agents administered separately. The current study unveils several drug-like modulators of HMGB1-mediated inflammatory responses and offers pharmacological directions for the therapeutic suppression of inflammatory responses in HMGB1-dependent diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号