首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Macroalgae has bloomed in the brackish lake of Shenzhen Bay, China continuously from 2010 to 2014. Gracilaria tenuistipitata was identified as the causative macroalgal species. The aim of this study was to explore the outbreak mechanism of G. tenuistipitata, by studying the effects of salinity and nitrogen sources on growth, and the different nitrogen sources uptake characteristic. Our experimental design was based on environmental conditions observed in the bloom areas, and these main factors were simulated in the laboratory. Results showed that salinity 12 to 20 ‰ was suitable for G. tenuistipitata growth. When the nitrogen sources'' (NH4 +, NO3 ) concentrations reached 40 µM or above, the growth rate of G. tenuistipitata was significantly higher. Algal biomass was higher (approximately 1.4 times) when cultured with NH4 + than that with NO3 addition. Coincidentally, macroalgal bloom formed during times of moderate salinity (∼12 ‰) and high nitrogen conditions. The NH4 + and NO3 uptake characteristic was studied to understand the potential mechanism of G. tenuistipitata bloom. NH4 + uptake was best described by a linear, rate-unsaturated response, with the slope decreasing with time intervals. In contrast, NO3 uptake followed a rate-saturating mechanism best described by the Michaelis-Menten model, with kinetic parameters Vmax = 37.2 µM g−1 DM h−1 and Ks = 61.5 µM. Further, based on the isotope 15N tracer method, we found that 15N from NH4 + accumulated faster and reached an atom% twice than that of 15N from NO3 , suggesting when both NH4 + and NO3 were available, NH4 + was assimilated more rapidly. The results of the present study indicate that in the estuarine environment, the combination of moderate salinity with high ammonium may stimulate bloom formation.  相似文献   

3.
Kinetics of Growth and Substrate Uptake in a Biological Film System   总被引:7,自引:4,他引:3       下载免费PDF全文
The rates of growth and substrate uptake in a biological film continuous-flow reactor were studied. The experiments were performed with high fluid velocities to bring the reactor operation to the reaction-controlled regime, thus avoiding external diffusional resistances. The glucose uptake experiments were performed with small film thicknesses so that full substrate penetration within the entire film thickness could be obtained. In this way, the catalyst effectiveness factor was 1.0 and the observed rate was the true, or intrinsic, rate. The results of the experiments indicate that both the intrinsic rate of substrate uptake and the rate of film growth are independent of the substrate concentration remaining in the reactor (zero-order reactions). However, the value of the initial substrate concentration when the film is in the early stages of growth defines the magnitude of both the rate of uptake and growth. This effect of the initial substrate concentration follows a saturation-function pattern.  相似文献   

4.
HIROSE  T.; KITAJIMA  K. 《Annals of botany》1986,58(4):479-486
Polygonun cuspidatum was grown hydroponically to examine theeffect of nitrogen removal from the nutrient solution upon plantgrowth and the partitioning of dry matter and nitrogen amongorgans. Nitrogen removal reduced the growth rate mainly dueto the reduced growth of leaf area. Accelerated root growthwas observed only in plants which earlier had received highlevels of nitrogen. Nitrogen removal caused almost exclusiveallocation of available nitrogen to root growth. Nitrogen fluxfrom the shoot to the root occurred in plants which had receivedlow nitrogen. Not only was net assimilation rate (NAR) littleaffected by nitrogen removal, but it also was not correlatedwith the concentration of leaf nitrogen on an area basis. Light-saturatedCO2 exchange rate (CER) was highly correlated with the concentrationof leaf nitrogen. Nitrogen use efficiency (NUE) in CER (CERdivided by leaf nitrogen) remained constant against leaf nitrogen,indicating efficient use of nitrogen under light saturation,while NUE in terms of NAR decreased with higher concentrationof leaf nitrogen. Polygonum cuspidatum Sieb. et Zuce., CO2 exchange rate, growth analysis, leaf nitrogen, net assimilation rate, nitrogen use efficiency, partitioning of dry matter and nitrogen  相似文献   

5.
Net uptake of by non-nodulated soybean plants [Glycme max(L ) Merr cv Ransom] growing in flowing hydroponicculture was measured daily during a 63 d period of reproductivedevelopment between the first florally inductive photopenodand late seed growth Removal of from a replenished solution containing 10 mol m was determined by ion chromatography Uptake of continued throughout reproductive development The net uptakerate of cycled between maxima and minima with a periodicity of oscillation of 3 to 7 d during the floralstage and about 6 d during the fruiting stage. Coupled withincreasing concentrations of carbon and C:N ratios in tissues,the oscillations in net uptake rates of are evidence that the demand for carbohydrate by reproductiveorgans is contingent on the availability of nitrogen in theshoot pool rather than that the demand for nitrogen followsthe flux of carbohydrate into reproductive tissues. Key words: Nitrate uptake rate, carbon-nitrogen partitioning, Glycme max (L ) Merrill  相似文献   

6.
The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.  相似文献   

7.
This paper seeks to calarify conflicting reports on the nitrogen requirements for in vitro embryogenesis in Daucus carota. Tissue derived from petiole explants of the wild strain of this species were tested with a variety of sources of cellular nitrogen under conditions otherwise favorable for in vitro embryogenesis. The use of very small, sieved and well-washed inocula reduced the carry-over of soluble materials with the inoculum. Embryo yield was quantified by direct counting of samples. Nitrate at concentrations ranging from 5 to 95 mM KNO3 supportes only weak growth and very low embryogenesis under the exacting conditions of these experiments. As little as 0.1 mM NH4Cl added to a nitrate medium allows some embryogenesis and 10 mM NH4Cl is near optimal when KNO3 is in the range of 12 to 40 mM concentration. Glutamine, glutamic acid, urea and alanine can individually partially replace NH4Cl as a supplement to KNO3. Glutamine, alanine, and possibly glutamic acid can serve as sole sources of nitrogen supporting both good growth and embryogenesis. It was concluded that a reduced nitrogen source is required, at least as a supplement to nitrate, for rapid growth and for in vitro embryogenesis of cultured wild carrot tissue. The relationship of pH of the culture medium to growth and embryogenesis was explored and optima observed at approximately pH 5.4 for both processes.  相似文献   

8.
The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root : shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.  相似文献   

9.
Critical examination of the amino-acid composition of proteinsin fast-growing and slow-growing tissues reveals only very 8maUdifferences, indicating that some factor other than the amino-acidcomplement is responsible for, or reflects, the great increasein the mass of protein in the fast-growing tissues. Increases in fresh weight and total protein are exactly parallel,indicating that water uptake is an active process associatedwith growth. Respiration, on the other hand, increases far morein the fast-growing over the slow-growing tissues than doestotal protein. A given amount of protein in the fast-growingtissue will support a much greater respiration rate than thesame amount in slow-growing tissue. The incorporation of radioactivity into amino-acids of the proteinin4icates that there are two distinct types: those in whichincorporation is increased in fast-growing tissue much morethan the total protein, and to the same ezte as respiration(notably glutarnic acid, aspartic acid, and threonine); andthose in which the increased incorporation is much nafler, slightlyless than total protein (notably proline and hydroxyproline).It is concluded that there are two n protein fractions: the‘active’ moiety, which is undergoing rapid breakdownd resynthesis, giving rise to much of the CO through oxidationof its residues; a the ‘inactive’ moiety, whichonce synthesized is not reutilized or broken down. It is theformer, or ‘active‘ protein whose synthesis is greatlyincreased in the fast. growing tissues, and it is the pace,rather than the kind, of reactions which differ entiates betweenthe fast- and slow-growing tissues. The entire experimental data are discussed with reference toa number of cur rent theories and investigations. A number ofexperimental observations are noted which admit of interpretationalong the lines here developed.  相似文献   

10.
HIROSE  T. 《Annals of botany》1986,58(4):487-496
An empirical model of vegetative plant growth is presented.The model is based on experimental data on Polygonum cuspidatum,which showed (1) that the partitioning of dry matter and nitrogenamong organs was linearly related to the nitrogen concentrationof the whole plant and (2) that leaf thickness was negativelycorrelated with leaf nitrogen concentration. The model properlydescribes the behaviour of plants. Steady-state solutions ofthe model give the relative growth rate, specific leaf weight,and partitioning of dry matter and nitrogen among organs withthe net assimilation rate and the specific absorption rate asenvironmental variables. The effect of nitrogen removal on drymatter and nitrogen partitioning was examined as non-steady-statedynamic solutions of the model. The model predicted not onlyreduced leaf growth and enhanced root growth but also a fluxof nitrogen from the leaf to the root, which agreed with theexperimental results. Mathematical model, partitioning of dry matter and nitrogen, plant nitrogen, relative growth rate, shoot: root ratio, specific leaf weight  相似文献   

11.
Manganese Uptake and Efflux in Cultured Rat Astrocytes   总被引:7,自引:0,他引:7  
Astrocytes play a central role in manganese (Mn) regulation in the CNS. Using primary astrocyte cultures from neonatal rat brains, these studies demonstrate a specific high-affinity transport system for Mn2+. Saturation kinetics are clearly indicated by both 1/v versus 1/s plots (Km = 0.30 +/- 0.03 microM; Vmax = 0.30 +/- 0.02 nmol/mg of protein/min) and plots of v versus [s]. Several divalent cations (Co2+, Zn2+, and Pb2+) failed to inhibit the initial rate of 54Mn2+ uptake. In contrast, extracellular Ca2+ at 10 microM decreased 54Mn2+ uptake. Exchange with extracellular Mn2+ was not obligatory for the efflux of 54Mn2+ into extracellular medium because efflux occurred into Mn(2+)-free extracellular medium, but efflux of 54Mn2+ was enhanced when astrocytes were equilibrated in the presence of unlabeled Mn2+. Efflux of 54Mn2+ was biphasic with both a rapid and a slow component. Efflux was most rapid during the first 10 min of incubation, with 27.5 +/- 2.2% of 54Mn2+ transported extracellularly, and 37.2 +/- 1.2% of preloaded 54Mn2+ was retained by the astrocytes at 120 min. These studies show, for the first time, that mammalian astrocytes can transport Mn via a specific transport system.  相似文献   

12.
Recent data have shown an accumulation of manganese in the basal ganglia in patients with chronic hepatic encephalopathy (HE). Astrocytes and ammonia are critically involved in the pathogenesis of HE, and we have recently demonstrated that ammonia decreases glutamate uptake in cultured astrocytes. Since failure by astrocytes to take up glutamate may represent an important pathogenetic mechanism in HE, we, therefore, examined the effect of manganese on glutamate transport in these cells. Treatment of cultured astrocytes with 100 M manganese for 2 days resulted in a 54% decrease in the uptake of D-aspartate, a nonmetabolizable analogue of glutamate. Kinetic analysis revealed a 28% decline in Vmax, with no change in the Km. Treatment of cultures with 5 mM NH4Cl inhibited D-aspartate uptake by 21%, and a combination of 5 mM NH4Cl with 100 M manganese produced an additive effect on uptake inhibition. These results suggest a pathogenetic role for manganese in HE, possibly involving glutamate transport.  相似文献   

13.
Myo-Inositol-Dependent Sodium Uptake in Ice Plant   总被引:39,自引:0,他引:39  
The phytohormone ethylene regulates many aspects of plant growth, development, and environmental responses. Much of the developmental regulation of ethylene responses in tomato (Lycopersicon esculentum) occurs at the level of hormone sensitivity. In an effort to understand the regulation of ethylene responses, we isolated and characterized tomato genes with sequence similarity to the Arabidopsis ETR1 (ethylene response 1) ethylene receptor. Previously, we isolated three genes that exhibit high similarity to ETR1 and to each other. Here we report the isolation of two additional genes, LeETR4 and LeETR5, that are only 42% and 40% identical to ETR1, respectively. Although the amino acids known to be involved in ethylene binding are conserved, LeETR5 lacks the histidine within the kinase domain that is predicted to be phosphorylated. This suggests that histidine kinase activity is not necessary for an ethylene response, because mutated forms of both LeETR4 and LeETR5 confer dominant ethylene insensitivity in transgenic Arabidopsis plants. Expression analysis indicates that LeETR4 accounts for most of the putative ethylene-receptor mRNA present in reproductive tissues, but, like LeETR5, it is less abundant in vegetative tissues. Taken together, ethylene perception in tomato is potentially quite complex, with at least five structurally divergent, putative receptor family members exhibiting significant variation in expression levels throughout development.  相似文献   

14.
The full genomes of two uncultured plant pathogenic Liberibacter, Ca. Liberibacter asiaticus and Ca. Liberibacter solanacearum, are publicly available. Recently, the larger genome of a closely related cultured strain, Liberibacter crescens BT-1, was described. To gain insights into our current inability to culture most Liberibacter, a comparative genomics analysis was done based on the RAST, KEGG, and manual annotations of these three organisms. In addition, pathogenicity genes were examined in all three bacteria. Key deficiencies were identified in Ca. L. asiaticus and Ca. L. solanacearum that might suggest why these organisms have not yet been cultured. Over 100 genes involved in amino acid and vitamin synthesis were annotated exclusively in L. crescens BT-1. However, none of these deficiencies are limiting in the rich media used to date. Other genes exclusive to L. crescens BT-1 include those involved in cell division, the stringent response regulatory pathway, and multiple two component regulatory systems. These results indicate that L. crescens is capable of growth under a much wider range of conditions than the uncultured Liberibacter strains. No outstanding differences were noted in pathogenicity-associated systems, suggesting that L. crescens BT-1 may be a plant pathogen on an as yet unidentified host.  相似文献   

15.
The relationship between aluminium (Al) uptake and growth inhibitionwas studied in tobacco cells (Nicotiana tabacum L. cv. Samsun;nonchlorophyllic cell line) in suspension culture. Cells atthe logarithmic phase of growth were treated with 100 µMA1C13 in modified Murashige-Skoog medium prepared without Piand EDTA (pH 4.0) for up to 21 h. After treatment, the inhibitionof cell growth by Al was estimated from the growth of the Al-treatedcells relative to that of the control cells during post-treatmentculture. Neither Al uptake nor the inhibition of the growthoccurred with less than a 10-h exposure but then both parametersincreased rapidly, reaching maximum values after an 18-h exposure.When cells were treated with AlCl3 at various concentrationsfor 18 h, the extent of growth inhibition was found to be afunction of the Al content of the cells. The dose-response curve(Al uptake versus growth inhibition) resembled the curve expectedfor "single-hit" kinetics. Extrapolation from the curve suggestedthat the uptake of 1 x 1011 Al atoms per cell is the minimumdose that inhibits cell growth. Cells of stationary phase wereresistant to Al and did not take up Al, an indication that theuptake of Al depends on the active growth of cells. Resultsof several types of experiment (hematoxylin staining, washingwith chelators, digestion of cell walls) indicated that Al wasincorporated inside the cells. Together, therefore, our resultssuggest that the amount of Al absorbed by the cells is a determiningfactor in the inhibition of growth by Al. 1Present address: Department of Biology, Faculty of Science,Hirosaki University Hirosaki, Aomori, 036 Japan  相似文献   

16.
Astrocytes in primary culture possess a rapid L-aspartate saturable transport system (Km = 93 M; Vmax = 81 nmol/min/mg protein), which shows certain stereospecificity since Vmax was 36% lower for D-aspartate uptake. These are values obtained at short incubation time (15 seconds), to obtain approximate initial rate conditions. Metabolic energy inhibitors, rotenone and iodoacetate very potently inhibited the L- and D-aspartate uptake processes, indicating that the transport process is an active one. However, the accumulation of L-aspartate was "enhanced by inhibitors of L-aspartate metabolism, such as the aspartate aminotransferase inhibitor, aminooxyacetate and L-methionine sulfoximine, an inhibitor of glutamine synthetase, whereas D-aspartate (a non-metabolizable analog of L-aspartate) uptake was not affected. The accumulated levels of L-aspartate in the presence of aminooxyacetate were similar to the levels of D-aspartate. These effects of L-aspartate metabolic inhibitors, suggest that due to metabolism of the the L-aspartate, short incubation time (eg., 15 seconds) is necessary to measure the initial rate of L-aspartate uptake, in order to obtain the "true kinetic parameters.  相似文献   

17.
Uptake and Utilization of Sugars in Cultured Rice Cells   总被引:4,自引:0,他引:4  
Suspension cultured cells of rice (Oryza sativa) were grownin a medium containing sucrose. Sucrose was rapidly hydrolyzedextracellularly in the early stage of subculture with a concomitantdecrease in the medium pH. The hydrolysis may be due to cellwall associated acid invertase and may be promoted by acidificationof the medium. The resulting glucose and fructose seemed tobe utilized equally. The cells grown on either sucrose, glucoseor fructose contained each of these sugars and possessed cellwall associated invertase activity. Protoplasts prepared bycell wall degrading enzymes utilized preferentially glucoseor fructose rather than sucrose. These results suggest thatexogenous sucrose is hydrolyzed by the cell wall associatedinvertase to hexoses, which are then taken up and metabolized. (Received November 25, 1987; Accepted February 8, 1988)  相似文献   

18.
Ammonia and Manganese Increase Arginine Uptake in Cultured Astrocytes   总被引:3,自引:0,他引:3  
Recent work has suggested a possible role for nitric oxide (NO) in the development of hepatic encephalopathy (HE). In this study, we examined the effect of ammonia and manganese, factors implicated in the pathogenesis of HE, on the transport of arginine (a precursor of NO) into primary cultures of astrocytes. Treatment with 5 mM ammonia for 1–4 days produced a maximal (53%) increase in L-arginine uptake at 3 days when compared to untreated cells. Kinetic analysis following 4-day treatment with 5 mM ammonia revealed an 82% increase in the Vmax and a 61% increase in the Km, value. Similar analysis with 100 M manganese showed a 101% increase in Vmax and a 131% increase in the Km value. These results suggest that both manganese and ammonia alter L-arginine uptake by modifying the transporter for arginine. A decrease of 32% in the non-saturable component of L-arginine transport was also observed following treatment with ammonia. When cultures were treated separately with 5 mM ammonia and 100 M manganese for 2 days, the uptake of L-arginine increased by 41% and 57%, respectively. Combined exposure led to no further increase in uptake. Our results suggest that ammonia and manganese may contribute to the pathogenesis of HE by influencing arginine transport and thus possibly NO synthesis in astrocytes.  相似文献   

19.
20.

Background

Symbiotic dinoflagellates transfer a substantial amount of their photosynthetic products to their animal hosts. This amount has been estimated to represent up to 90% of the photosynthetically fixed carbon and can satisfy in some instances the full respiratory requirements of the host. Although in several cnidarian-dinoflagellate symbioses glycerol is the primary photosynthetic product translocated to the host, the mechanism for its production and release has not been demonstrated conclusively.

Principal Findings

Using Symbiodinium cells in culture we were able to reproduce the synthesis and release of glycerol in vitro by employing an inductor for glycerol synthesis, osmotic up-shocks. Photosynthetic parameters and fluorescence analysis of photosystem II showed that the inductive conditions did not have a negative effect on photosynthetic performance, suggesting that the capacity for carbon fixation by the cells was not compromised. The demand for glycerol production required to attain osmotic balance increased the expression of ribulose 1,5-bisphosphate and of glycerol 3-phosphate dehydrogenase, possibly competing with the flux of fixed carbon necessary for protein synthesis. In longer exposures of cultured Symbiodinium cells to high osmolarity, the response was analogous to photoacclimation, reducing the excitation pressure over photosystem II, suggesting that Symbiodinium cells perceived the stress as an increase in light. The induced synthesis of glycerol resulted in a reduction of growth rates.

Conclusions

Our results favor a hypothetical mechanism of a signaling event involving a pressure sensor that may induce the flux of carbon (glycerol) from the symbiotic algae to the animal host, and strongly suggest that carbon limitation may be a key factor modulating the population of symbionts within the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号