首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Preparations that contain well-spread metaphase chromosomes are critical for plant cytogenetic analyses including chromosome counts, banding procedures, in situ hybridization, karyotyping and construction of ideograms. Chromosome spreading is difficult for plants with large and numerous chromosomes. We report here a technique for obtaining cytoplasm-free, well-spread metaphases from two Amaryllidaceae species: Sprekelia formosissima (2n = 120) and Hymenocallis howardii (2n = 96). The technique has three main steps: 1) pretreatment to cause chromosome condensation, 2) dripping onto tilted slides coated with a thin layer of pure acetic acid and 3) application of steam and acetic acid to produce cytoplasmic hydrolysis, which spreads the chromosomes.  相似文献   

3.
Peng R  Zhang T  Liu F  Ling J  Wang C  Li S  Zhang X  Wang Y  Wang K 《PloS one》2012,7(3):e33847
Fluorescence in situ hybridization (FISH) has become one of the most important techniques applied in plant molecular cytogenetics. However, the application of this technique in cotton has lagged behind because of difficulties in chromosome preparation. The focus of this article was FISH performed not only on cotton pachytene chromosomes, but also on cotton extended DNA fibers. The cotton pollen mother cells (PMCs) instead of buds or anthers were directly digested in enzyme to completely breakdown the cell wall. Before the routine acetic acid treatment, PMCs were incubated in acetic acid and enzyme mixture to remove the cytoplasm and clear the background. The method of ice-cold Carnoy's solution spreading chromosome was adopted instead of nitrogen removed method to avoid chromosomes losing and fully stretch chromosome. With the above-improved steps, the high-quality well-differentiated pachytene chromosomes with clear background were obtained. FISH results demonstrated that a mature protocol of cotton pachytene chromosomes preparation was presented. Intact and no debris cotton nuclei were obtained by chopping from etiolation cotyledons instead of the conventional liquid nitrogen grinding method. After incubating the nuclei with nucleus lysis buffer on slide, the parallel and clear background DNA fibers were acquired along the slide. This method overcomes the twist, accumulation and fracture of DNA fibers compared with other methods. The entire process of DNA fibers preparation requires only 30 min, in contrast, it takes 3 h with routine nitrogen grinding method. The poisonous mercaptoethanol in nucleus lysis buffer is replaced by nonpoisonous dithiothreitol. PVP40 in nucleus isolation buffer is used to prevent oxidation. The probability of success in isolating nuclei for DNA fiber preparation is almost 100% tested with this method in cotton. So a rapid, safe, and efficient method for the preparation of cotton extended DNA fibers suitable for FISH was established.  相似文献   

4.
Preparation of chromosome spreads is a prerequisite for the successful performance of fluorescence in situ hybridization (FISH). Preparation of high quality plant chromosome spreads is challenging due to the rigid cell wall. One of the approved methods for the preparation of plant chromosomes is a so-called drop preparation, also known as drop-spreading or air-drying technique. Here, we present a protocol for the fast preparation of mitotic chromosome spreads suitable for the FISH detection of single and high copy DNA probes. This method is an improved variant of the air-dry drop method performed under a relative humidity of 50%-55%. This protocol comprises a reduced number of washing steps making its application easy, efficient and reproducible. Obvious benefits of this approach are well-spread, undamaged and numerous metaphase chromosomes serving as a perfect prerequisite for successful FISH analysis. Using this protocol we obtained high-quality chromosome spreads and reproducible FISH results for Hordeum vulgare, H. bulbosum, H. marinum, H. murinum, H. pubiflorum and Secale cereale.  相似文献   

5.
Summary We have developed a new protocol for the preparation of banded chromosomes from human bone marrow. This protocol incorporates new procedures with improvements in conventional ones to rapidly produce high quality banded karyotypes from bone marrow aspirates. Tissue culture is completely climinated and replaced with a truly direct method of chromosome preparation in which a small amount of marrow is treated with a solution containing trypsin, hypotonic salts and colcemid (THC). The THC protocol, when compared with standard short term culture methods for marrow chromosome preparation, produces more extended and more readily banded chromosomes. Rapid banding is further facilitated by replacement of standard G-banding techniques with Wright's staining. These technical developments allow karyotypic analysis within 2–4 h after receipt of the specimen. The high quality and rapidity of the THC protocol have important implications for the clinical usefulness of cytogenetic analysis of bone marrow in studying congenital defects as well as leukemias and lymphomas.  相似文献   

6.
Polytene chromosome preparations were obtained from larval, pupal and adult female Malpighian tubules of Aedes aegypti. The Malpighian tubules of the pupae (0-4 h old) from larvae reared at 20 C provided the best cytogenetic analysis. The interaction of nucleic acids and proteins that influence the spreading of the chromosomes could be reduced with the preparation technique of the sheets submitted to a stronger treatment starting with the hypotony of tissue and successive bathings with acetic acid. A simple technique should facilitate molecular cytogenetics used in the location of resistance and vector competence genes.  相似文献   

7.
Whole-mounted polytene chromosomes were isolated from nuclei by microdissection in 60% acetic acid and analyzed by electron microscopy. Elementary chromosome fibers in the interchromomeric regions and individual chromomeres can be distinguished in polytene chromosomes at low levels of polyteny (26–27 chromatids). Elementary fibers in the interbands are oriented parallel to the axis of the polytene chromosome. Their number roughly corresponds to the expected level of polyteny. These fibers have an irregular beaded structure, 100–300 Å in diameter, and there is no apparent lateral association between them in the interchromomeric regions. Most bands, in contrast, form continuous structures crossing the entire width of the chromosome. Polytene chromosomes isolated in 2% or 10% acetic acid can be reversibly dispersed in a solution for chromatin spreading. The spread chromosomes consist of long uniform deoxyribonucleoprotein (DNP) fibers with a nucleosome structure. This supports the notion that continuous DNA molecules extend through the entire length of a polytene chromosome and that the nucleosome structure exists both in bands and interbands. Analysis of the band shape and of the fibrillar pattern in the interbands emphasizes that the polytene chromosome assumes a ribbonlike structure from which the more complex three-dimensional structure of the polytene chromosome at higher levels of polyteny develops.  相似文献   

8.
Silver staining of histone-depleted metaphase chromosomes   总被引:2,自引:0,他引:2  
To investigate a possible relationship between the core-like structures seen in silver-stained chromosomes (prepared by standard cytogenetic methods) and the scaffolds observed in histone-depleted chromosomes, the ability of the scaffold to stain with silver has been examined. Isolated chromosomes were histone-depleted by washing in ammonium acetate or by spreading the chromosomes on an ammonium acetate hypophase. The residual chromosome structures were carbon-platinum shadowed or stained with silver, and then examined by electron microscopy. The results provide clear evidence that the scaffold structure has a high affinity for silver and is therefore similar in its silver-staining potential to the core structure in standard chromosomes. This suggests that the silver core in standard chromosomes may represent the scaffold visualized by histone depletion. The peripherally dispersed DNA radiating from the scaffold also proved to be silver-reactive, and additional experiments demonstrated that purified DNA is capable of binding silver. This result indicates that cytological silver staining is not simply a matter of staining protein, as has previously been thought, but may also involve the staining of chromosomal DNA. In the ammonium acetate-treated and carbon-platinum-shadowed preparations, the scaffold structure was highly variable in its morphology and appeared to be composed of undispersed or incompletely dehistonized chromatin fibers. The silver-stained scaffold reflected this variability. Taken together with other evidence, these findings lead to a questioning of the reality of chromosome core structures.  相似文献   

9.
Summary Genomic in situ hybridization was used to identify alien chromatin in chromosome spreads of wheat, Triticum aestivum L., lines incorporating chromosomes from Leymus multicaulis (Kar. and Kir.) Tzvelev and Thinopyrum bessarabicum (Savul. and Rayss) Löve, and chromosome arms from Hordeum chilense Roem. and Schult, H. vulgare L. and Secale cereale L. Total genomic DNA from the introgressed alien species was used as a probe, together with excess amounts of unlabelled blocking DNA from wheat, for DNA:DNA in-situ hybridization. The method labelled the alien chromatin yellow-green, while the wheat chromosomes showed only the orange-red fluorescence of the DNA counterstain. Nuclei were screened from seedling root-tips (including those from half-grains) and anther wall tissue. The genomic probing method identified alien chromosomes and chromosome arms and allowed counting in nuclei at all stages of the cell cycle, so complete metaphases were not needed. At prophase or interphase, two labelled domains were visible in most nuclei from disomic lines, while only one labelled domain was visible in monosomic lines. At metaphase, direct visualization of the morphology of the alien chromosome or chromosome segment was possible and allowed identification of the relationship of the alien chromatin to the wheat chromosomes. The genomic in-situ hybridization method is fast, sensitive, accurate and informative. Hence it is likely to be of great value for both cytogenetic analysis and in plant breeding programmes.  相似文献   

10.
以六倍体短柄草为研究材料,对短柄草的染色体制片方法进行了优化,建立了一种改进的短柄草染色体酶解制片方法。试验结果表明,以45%醋酸固定液固定根尖、酶解时间2h可以获得最佳的根尖染色体制片。此方法不仅可以得到分散良好的有丝分裂中期分裂相,而且还缩短了酶解的时间,提高了制片的效率。  相似文献   

11.
BACKGROUND: Metaphase spreading is an essential technique for clinical and molecular cytogenetics. Results of classical banding techniques as well as complex fluorescent in situ hybridization (FISH) applications, such as comparative genomic hybridization (CGH) or multiplex FISH (M-FISH), are greatly influenced by the quality of chromosome spreading and pretreatment of the slide prior to hybridization. Materials and Methods Using hot steam and a metal plate with a temperature gradient across its surface, a reproducible protocol for slide preparation, aging, and hybridization was developed. RESULTS: This protocol yields good chromosome spreads from even the most difficult cell suspensions and is unaffected by the environmental conditions. Chromosome spreads were suitable for both banding and FISH techniques common to the cytogenetic laboratory. Chemical aging is a rapid slide pretreatment procedure for FISH applications, which allows freshly prepared cytogenetic slides to be used for in situ hybridization within 30 min, thus increasing analytical throughput and reducing benchwork. Furthermore, the gradually denaturing process described allows the use of fresh biologic material with optimal FISH results while protecting chromosomal integrity during denaturing. CONCLUSION: The slide preparation and slide pretreatment protocols can be performed in any laboratory, do not require specialized equipment, and provide robust results.  相似文献   

12.
Analysis of localization of chromosomes 2, 3, and 6 of Calliphora erythrocephala Mg. in ovarian nurse cell nuclei with different chromatin structure has shown that the regions of DNA probe hybridization reduced with increasing chromatin compaction. Hybridization of DNA probes of chromosomes 3 and 6 to secondary reticular nuclei demonstrated that chromosomes retain their territories in the nuclei when the chromatin acquires a reticular structure. These results suggest regular organization of the chromosomal apparatus at all stages of the endomitotic cycle, including the stage of highly polyploid reticular nuclei. FISH of DNA probe of the chromosome 2 telomeric region to secondary reticular nuclei revealed a peripheral distribution of the signal. Zones of more intensive DNA probe hybridization have been distinguished. These zones probably are the regions of accumulation of telomeric and (or) centromeric chromosome regions.  相似文献   

13.
Distinct cell-cycle-dependent changes in the conformation of centromeric chromatin in a specific human chromosome containing alpha-satellite DNA have been demonstrated by fluorescence in situ hybridization (FISH). This method, based upon specific FISH signal morphology, allows simultaneous analysis of chromosomal aneuploidy and detection of specific cell-cycle stage(s) of human tumor and/or normal cell populations in a single preparation of interphase cells. This interphase cytogenetic procedure might prove useful for both basic and clinical research involving human cells.  相似文献   

14.
Interstitial telomeric sites (ITSs) in chromosomes from DNA repair-proficient mammalian cells are sensitive to both spontaneous and radiation-induced chromosome breakage. Exact mechanisms of this chromosome breakage sensitivity are not known. To investigate factors that predispose ITSs to chromosome breakage we used murine scid cells. These cells lack functional DNA-PKcs, an enzyme involved in the repair of DNA double-strand breaks. Interestingly, our results revealed lack of both spontaneous and radiation-induced chromosome breakage at ITSs found in scid chromosomes. Therefore, it is possible that increased sensitivity of ITSs to chromosome breakage is associated with the functional DNA double-strand break repair machinery. To investigate if this is the case we used scid cells in which DNA-PKcs deficiency was corrected. Our results revealed complete disappearance of ITSs in scid cells with functional DNA-PKcs, presumably through chromosome breakage at ITSs, but their unchanged frequency in positive and negative control cells. Therefore, our results indicate that the functional DNA double-strand break machinery is required for elevated sensitivity of ITSs to chromosome breakage. Interestingly, we observed significant differences in mitotic chromosome condensation between scid cells and their counterparts with restored DNA-PKcs activity suggesting that lack of functional DNA-PKcs may cause a defect in chromatin organization. Increased condensation of mitotic chromosomes in the scid background was also confirmed in vivo. Therefore, our results indicate a previously unanticipated role of DNA-PKcs in chromatin organisation, which could contribute to the lack of ITS sensitivity to chromosome breakage in murine scid cells.  相似文献   

15.
Fixed polytene chromosome preparations have been stained by indirect immunofluorescence. Anti-H3 serum and anti-H4 serum cause very intense and highly specific staining of chromosomes. Anti-(H3–H4 complex) serum did not produce staining of chromosomes at a level above background. The results obtained in these staining experiments are in direct contrast to serological results obtained with soluble chromatin. It appears that a unique structure exists within the H3–H4 complex that is not present on the individual histone components. This structure is apparently destroyed or obscured by acetic acid fixation during the preparation of polytene chromosome spreads.  相似文献   

16.
W H Pan  A Houben  R Schlegel 《Génome》1993,36(2):387-390
Effective somatic cell synchronization in root-tip meristems and improved chromosome spreading were achieved in white campion, wheat, rye, and barley by application of hydroxyurea and amiprophos-methyl or colchicine, combined with a pretreatment of ice water and modified fixative, as well as enzymatic digestion of the meristems. The protocol provides metaphase indices of approximately 50%. The chromosomes and chromosomal DNA were with minimum distortion, providing useful material for chromosome banding studies, in situ DNA-DNA hybridization, microdissection, and microcloning.  相似文献   

17.
Analysis of localization of chromosomes 2, 3, and 6 of Calliphora erythrocephala Mg. in ovarian nurse cell nuclei with different chromatin structure has shown that the regions of DNA probe hybridization reduced with increasing chromatin compaction. Hybridization of DNA probes of chromosomes 3 and 6 to secondary reticular nuclei demonstrated that chromosomes retain their territories in the nuclei when the chromatin acquires a reticular structure. These results suggest regular organization of the chromosomal apparatus at all stages of the endomitotic cycle, including the stage of highly polyploid reticular nuclei. FISH of DNA probe of the chromosome 2 telomeric region to secondary reticular nuclei revealed a peripheral distribution of the signal. Zones of more intensive DNA probe hybridization have been distinguished. These zones probably are the regions of accumulation of telomeric and (or) centromeric chromosome regions.  相似文献   

18.
The karyotypes of water mites (Acari: Hydrachnellae: Hydrodromidae) are largely unknown. The present investigation is the first report of a study designed to characterize the chromosomes of water mites. The study was carried out with specimens of Hydrodroma despiciens collected from Eber Lake in Afyon, Turkey. Several different methods were tried to obtain chromosomes of this species. However, somatic cell culture proved to be the most effective for the preparation of chromosomes. In the present study, we determined the diploid chromosome number of Hydrodroma despiciens to be 2n = 16. However, a large metacentric chromosome was found in each metaphase, which we believed to be the X chromosome. We could not determine the sex chromosomes of this species. This study is the first approach to the cytogenetic characterization of this water mite group. Furthermore, these cytogenetic data will contribute to the understanding of the phylogenetic relationship among water mites. To our knowledge, this is the first report on the cytogenetics of water mites.  相似文献   

19.
Classical banding methods provide basic information about the identities and structures of chromosomes on the basis of their unique banding patterns. Spectral karyotyping (SKY), and the related multiplex fluorescence in situ hybridization (M-FISH), are chromosome-specific multicolor FISH techniques that augment cytogenetic evaluations of malignant disease by providing additional information and improved characterization of aberrant chromosomes that contain DNA sequences not identifiable using conventional banding methods. SKY is based on cohybridization of combinatorially labeled chromosome-painting probes with unique fluorochrome signatures onto human or mouse metaphase chromosome preparations. Image acquisition and analysis use a specialized imaging system, combining Sagnac interferometer and CCD camera images to reconstruct spectral information at each pixel. Here we present a protocol for SKY analysis using commercially available SkyPaint probes, including procedures for metaphase chromosome preparation, slide pretreatment and probe hybridization and detection. SKY analysis requires approximately 6 d.  相似文献   

20.
J Xu  E D Earle 《Génome》1996,39(1):216-221
We describe a molecular cytogenetic procedure for high resolution physical mapping of DNA markers, an essential step toward construction of an integrated molecular-classical-cytological map. Tomato was selected as material because its pachytene chromosomes are amenable for study and because detailed molecular, classical, and cytological maps are available. Karyotyping of acetocarmine-stained pachytene chromosomes showing detailed cytogenetic landmarks was combined with direct FISH of the 5S rDNA gene. This enabled us to pinpoint the 5S rDNA gene to the first heterochromatic knob immediately adjacent to the centromere in the short arm of chromosome 1. Thus the position of the 5S rDNA gene on the molecular map was related to the position of the 5S rDNA on the cytogenetic map. The results also provide conclusive evidence of the location of a functional gene in the pericentric heterochromatic region, a rare event to date in plants. We conclude that karyotyping of pachytene chromosomes can be combined with FISH to map a DNA sequence to a cytogenetically defined region and to determine the chromatin origin of an expressed gene. Key words : direct fluorescence in situ hybridization, 5S rDNA, pachytene chromosomes, heterochromatic gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号