首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
分子发动机研究进展   总被引:7,自引:0,他引:7  
分子发动机是利用化学能/化学势进行机械作功的生物大分子,包括线性分子发动机与旋转式分子发动机两大类.它们参与了胞质运输、DNA复制、基因转录、ATP合成/水解等一系列重要生命活动过程.目前对于各种分子发动机的结构及作用机制的研究取得了一些重要进展.  相似文献   

2.
Motor maps and electrical thresholds for evoking movements from motor areas of the cerebral cortex were evaluated in normal cats by using intracortical microstimulation techniques. Stainless steel chambers were implanted over craniotomies in adult cats trained to perform reaching and retrieval movements with their forelimbs. Prehensile motor training was continued and movement performance monitored for about 6–10 weeks during which the cortex was progressively explored with sharp tungsten electrodes inserted into cortical gyri (anterior and posterior sigmoid, and coronal) and the banks of sulci (cruciate, presylvian and coronal). Twice weekly, under light general anaesthesia, 3–4 tracks were made in either hemisphere till about 50 tracks were made in each hemisphere. Mean thresholds for evoking forelimb movements from different cytoarchitectonic areas (4γ, 4δ, 6aγ and 3a) were compared and no consistent or significant differences were observed between the different areas. In the animals (4/6) which used either forelimb to perform the tasks, there were no consistent differences in the mean thresholds for evoking forelimb movements from the two hemispheres. However, in 2 animals, which used their right forelimbs predominantly or exclusively to perform all the tasks, mean thresholds for evoking forelimb movements was significantly higher in areas 4γ and 6aγ of the left hemisphere (compared to the right); no consistent differences in the mean thresholds for evoking hindlimb or facial movements were observed between the two hemispheres. These findings suggest that ICMS thresholds for evoking forelimb movements may be similar in different sensorimotor areas of the cat cerebral cortex, and these thresholds could be influenced by motor training.  相似文献   

3.
Voluntary motor drive is an important central command that descends via the corticospinal tract to initiate muscle contraction. When electrical stimulation (ES) is applied to an antagonist or agonist muscle, it changes the agonist muscle’s representative motor cortex and thus its voluntary motor drive. In this study, we used a reaction time task to compare the effects of weak and strong ES of the antagonist or agonist muscle during the premotor period of a wrist extension. We recorded motor evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS) that was applied to the extensor carpi radialis (ECR; agonist) and flexor carpi radialis (FCR; antagonist). When stronger ES intensities were applied to the antagonist, the MEP control ratio in the ECR significantly increased during the premotor time. Furthermore, the MEP control ratio with stronger antagonist ES intensity was significantly larger than that in the agonist for the same ES intensity. In the FCR, the MEP control ratio was also significantly greater at the strong ES intensity than at the weak ES intensity. Furthermore, the MEP control ratio in the antagonist with a strong ES intensity was significantly larger than that in the agonist with the same ES intensity. These results suggest that agonist corticomotor excitability might be enhanced by ES of the antagonist, which in turn strongly activates the descending motor system in the preparation of agonist contraction.  相似文献   

4.
Many contemporary investigators are unaware of the important papers involving lesions of the primate primary motor cortex published prior to those revealed by a computer search of the literature (i.e., papers published prior to about 1966). In order to increase awareness of these reports, we present here an annotated bibliography of these papers beginning with that of Ferrier and Yeo (1884). We provide evidence that these papers can provide valuable information on the function of the primate motor cortex and on recovery of behavior after brain lesions, and are also useful for sharpening the questions posed by more refined modern studies.  相似文献   

5.
6.
We evaluated motor maps in the cerebral cortex and motor performance in cats before and after lesions of the forelimb representation in the primary motor area. After the lesion there was a reduction in the use of the affected forelimb and loss of accuracy in prehension tasks using the forelimb; some recovery occurred during the mapping study. Electrode tracts and lesion sites were located in cytoarchitectonically identified cortical areas 4γ, 4δ, 6aα, 6aγ, 3a. The lesions were mainly in area 4γ. In the lesioned hemisphere there were many points around the lesion site (in areas 4γ and 3a) from which movements could not be evoked. In some areas distant from the lesion site (e.g. area 6aγ) the mean thresholds for evoking forelimb movements were significantly elevated. Mean thresholds for evoking hindlimb and facial movements were not different from before. In the contralateral hemisphere mean thresholds for evoking forelimb, but not hindlimb or facial movements, were significantly elevated in several sensorimotor areas (area 4γ, 6aγ and 3a). Mean thresholds for evoking forelimb movements appeared to progressively increase during the time of study. Minimal currents required to evoke forelimb movements from the cerebral cortex increase (possibly progressively) following a lesion of the forelimb representation in the primary motor area, affecting many interconnected motor areas in the hemispheres ipsilateral and contralateral to the lesioned site. This increase in thresholds may play a role in the changes in cortical control of the affected and contralateral limbs following brain lesions and explain the increased sense of effort required to produce movements.  相似文献   

7.
Professional ball game players report the feeling of the ball ‘slowing-down’ before hitting it. Because effective motor preparation is critical in achieving such expert motor performance, these anecdotal comments imply that the subjective passage of time may be influenced by preparation for action. Previous reports of temporal illusions associated with action generally emphasize compensation for suppressed sensory signals that accompany motor commands. Here, we show that the time is perceived slowed-down during preparation of a ballistic reaching movement before action, involving enhancement of sensory processing. Preparing for a reaching movement increased perceived duration of a visual stimulus. This effect was tightly linked to action preparation, because the amount of temporal dilation increased with the information about the upcoming movement. Furthermore, we showed a reduction of perceived frequency for flickering stimuli and an enhanced detection of rapidly presented letters during action preparation, suggesting increased temporal resolution of visual perception during action preparation. We propose that the temporal dilation during action preparation reflects the function of the brain to maximize the capacity of sensory information-acquisition prior to execution of a ballistic movement. This strategy might facilitate changing or inhibiting the planned action in response to last-minute changes in the external environment.  相似文献   

8.
Neural connectivity was measured during motor imagery (MI) and motor execution (ME) using magnetoencephalography in nine healthy subjects, MI, and at rest. Lower coherence values during ME and MI between sensorimotor areas than at rest, and lower values during MI between the left supplementary motor area and inferior frontal gyrus than ME suggested the sensorimotor network of MI functioned with similar connectivity to ME and that the inhibitory activity functioned continuously during MI, respectively.  相似文献   

9.
细菌鞭毛马达——一种卓越的分子机器   总被引:1,自引:0,他引:1  
鞭毛马达(flagellar motor)是一种分子旋转马达,它在细菌鞭毛的结构与功能中起着中心作用.鞭毛马达的结构已基本清楚,主要由Mot A、Mot B、Fli G、Fli M和Fli N 5种蛋白组成定子(stator)和转子(rotor),其驱动力来自于跨膜的H+或Na+流.目前对鞭毛马达的旋转动力学及旋转力矩产生机制已有初步的了解.鞭毛马达可作为研究分子旋转马达的理想模型,对其深入研究将有助于认识生物能量转化利用及细胞运动的机制并具有广泛的生物学意义.  相似文献   

10.
Mitotic dynamics     
A new model for mitotic dynamics of eukaryotic cells is proposed. In the kinetochore mo-tor-midzone motor model two kinds of motors, the kinetochore motors and the midzone motors, play important roles in chromosome movement. Using this model the chromosome congression during prometaphase, the chromosome oscillation during metaphase and the chromatid segregation during anaphase are described in a unified way.  相似文献   

11.
A novel equality relating the rate of energy dissipation to a degree of violation of the fluctuation-response relation (FRR) in non-equilibrium Langevin systems is described. The FRR is a relation between the correlation function of the fluctuations and the response function of macroscopic variables. Although it has been established that the FRR holds in equilibrium, physical significance of violation of the FRR in non-equilibrium systems has been under debate. Recently, the authors have found that an extent of the FRR violation is related in a simple equality to the rate of energy dissipation into the environment in non-equilibrium Langevin systems. In this paper, we fully explain the FRR, the FRR violation, and the new equality with regard to a Langevin model termed a Brownian motor model, which is considered as a simple model of a biological molecular motor. Furthermore, applications of our result to experimental studies of molecular motors are discussed, and, as an illustration, we predict the value of a new time constant regarding the motion of a KIF1A, which is a kind of single-headed kinesin.  相似文献   

12.
The displacement of immature neurons from their place of origin in the germinal epithelium toward their adult positions in the nervous system appears to involve migratory pathways or guides. While the importance of radial glial fibers in this process has long been recognized, data from recent investigations have suggested that other mechanisms might also play a role in directing the movement of young neurons. We have labeled autonomic preganglionic cells by microinjections of horseradish peroxidase (HRP) into the sympathetic chain ganglia of embryonic rats in order to study the migration and differentiation of these spinal cord neurons. Our results, in conjunction with previous observations, suggest that the migration pattern of preganglionic neurons can be divided into three distinct phases. In the first phase, the autonomic motor neurons arise in the ventral ventricular zone and migrate radially into the ventral horn of the developing spinal cord, where, together with somatic motor neurons, they form a single, primitive motor column (Phelps P. E., Barber R. P., and Vaughn J. E. (1991). J. Comp. Neurol. 307:77–86). During the second phase, the autonomic motor neurons separate from the somatic motor neurons and are displaced dorsally toward the intermediate spinal cord. When the preganglionic neurons reach the intermediolateral (IML) region, they become progressively more multipolar, and many of them undergo a change in alignment, from a dorsoventral to a mediolateral orientation. In the third phase of autonomic motor neuron development, some of these cells are displaced medially, and occupy sites between the IML and central canal. The primary and tertiary movements of the preganglionic neurons are in alignment with radial glial processes in the embryonic spinal cord, an arrangement that is consistent with a hypothesis that glial elements might guide autonomic motor neurons during these periods of development. In contrast, during the second phase, the dorsal translocation of preganglionic neurons occurs in an orientation perpendicular to radial glial fibers, indicating that glial elements are not involved in the secondary migration of these cells. The results of previous investigations have provided evidence that, in addition to glial processes, axonal pathways might provide a substrate for neuronal migration. Logically, therefore, it is possible that the secondary dorsolateral translocation of autonomic preganglionic neurons could be directed along early forming circumferential axons of spinal association interneurons, and this hypothesis is supported by the fact that such fibers are appropriately arrayed in both developmental time and space to guide this movement.  相似文献   

13.
Spindle assembly and elongation involve poleward and away-from-the-pole forces produced by microtubule dynamics and spindle-associated motors. Here, we show that a bidirectional Drosophila Kinesin-14 motor that moves either to the microtubule plus or minus end in vitro unexpectedly causes only minor spindle defects in vivo. However, spindles of mutant embryos are longer than wild type, consistent with increased plus-end motor activity. Strikingly, suppressing spindle dynamics by depriving embryos of oxygen causes the bidirectional motor to show increased accumulation at distal or plus ends of astral microtubules relative to wild type, an effect not observed for a mutant motor defective in motility. Increased motor accumulation at microtubule plus ends may be due to increased slow plus-end movement of the bidirectional motor under hypoxia, caused by perturbation of microtubule dynamics or inactivation of the only other known Drosophila minus-end spindle motor, cytoplasmic dynein. Negative-stain electron microscopy images are consistent with highly cooperative motor binding to microtubules, and gliding assays show dependence on motor density for motility. Mutant effects of the bidirectional motor on spindle function may be suppressed under normal conditions by motor: motor interactions and minus-end movement induced by spindle dynamics. These forces may also bias wild-type motor movement toward microtubule minus ends in live cells. Our findings link motor : motor interactions to function in vivo by showing that motor density, together with cellular dynamics, may influence motor function in live cells.  相似文献   

14.
15.
The rotorod is commonly used to assess motor ability in mice. We examined a number of inbred strains to determine whether there is genetic variability in rotorod performance and motor learning. Mice received three trials per day for three days in a modified accelerating rotorod paradigm, and active rotation performance was calculated for each day. Male and female 129S1/SvImJ, A/J, BALB/cByJ, C3H/HeJ, C57BL/6J, CBA/J, DBA/2J and FVB/NJ mice were tested. Strain and sex differences were observed in motor performance. Motor learning also differed across strains, as some strains showed an improvement in performance over the three days while other strains did not. In certain strains the weight and body length of the mouse correlated with rotorod performance. The role of vision in motor performance on the rotorod was assessed by a comparison of C3H/HeJ mice (with retinal degeneration) and congenic C3A.BLiA- Pde6b + (Pdeb+) mice (without retinal degeneration). The sight-impaired C3H mice stayed on the rotorod longer than did their sighted Pdeb+ partners, although both strains improved across days. Thus, we have demonstrated a genetic component in rotorod performance, and we have shown that factors other than inherent motor ability can contribute to rotorod performance in mice.  相似文献   

16.
运动想象对大脑相关功能有明显的改善作用,目前正在大量应用于运动训练和康复治疗领域.近年来随着诸如功能磁共振等成像工具的出现,神经成像的复杂程度得到了不断提高,从而推动了人们对运动想象的脑机制尤其是涉及多脑区之间的协同作用机制的认识逐步深入.针对运动想象的多脑区之间相互协作机制及运动想象在运动功能康复中的应用作了详细介绍.  相似文献   

17.
The role of the dynein stalk in cytoplasmic and flagellar motility   总被引:4,自引:0,他引:4  
We have recently identified a microtubule binding domain within the motor protein cytoplasmic dynein. This domain is situated at the end of a slender 10–12 nm projection which corresponds to the stalks previously observed extending from the heads of both axonemal and cytoplasmic dyneins. The stalks also correspond to the B-links observed to connect outer arm axonemal dyneins to the B-microtubules in flagella and constitute the microtubule attachment sites during dynein motility. The stalks contrast strikingly with the polymer attachment domains of the kinesins and myosins which are found on the surface of the motor head. The difference in dynein's structural design raises intriguing questions as to how the stalk functions in force production along microtubules. In this article, we attempt to integrate the myriad of biochemical and EM structural data that has been previously collected regarding dynein with recent molecular findings, in an effort to begin to understand the mechanism of dynein motility. Received: 13 March 1998 / Revised version: 17 April 1998 / Accepted: 17 April 1998  相似文献   

18.
19.
Summary The thoracic homologue of the abdominal segmental giant neurone of crayfish Pacifastacus leniusculus is identified and described. It has a small cell body located in the anterior ventro-lateral quadrant of the ganglion and a large neuropil arborization, with dendrites aligned along the tracts of the giant fibres. The SG axon exits the ganglion within the major root which innervates the leg, usually in the anterior region of this root. Within 1–2 mm of the ganglion the axon terminates in a mass of fine branches, apparently randomly located within the base of the root.The SG receives suprathreshold input from the ipsilateral MG and LG fibres through rectifying electrical synapses. It makes output to FF motor neurones, also through electrical synapses. The SG also makes output to at least one corollary discharge interneurone. The SG receives depolarizing inhibitory synaptic potentials which can prevent its activation by the GFs. Some but not all of these synaptic potentials are common to similar potentials occurring in a large leg promotor motor neurone.Abbreviations AC anterior connective - GF giant fibre - IPSP inhibitory post-synaptic potential - LG lateral giant fibre - MG medial giant fibre - MoG motor giant neurone - PC posterior connective - PMM promotor motor neurone - r1 first root - r3 third root - rAD anterior distal root - rPD posterior distal root - rPM promotor muscle root - SG segmental giant neurone  相似文献   

20.
BACKGROUND: The etiology of developmental delay in children is frequently unknown. Increasing evidence supports the possibility that environmental and occupational factors might be part of the basis for such delays. This study focuses on the development of children born to mothers who were exposed during their pregnancy to waste anesthetic gases. METHODS: The study population included 40 children aged 5-13 years born to female anesthesiologists and nurses working in operating rooms (OpRs) exposed to waste anesthetic gases, and 40 unexposed children born to female nurses and physicians who worked in hospitals during their pregnancy but did not work in OpRs. The unexposed group was matched for children's age and gender and maternal occupation (nurses vs. doctors). By means of standardized developmental tests, the present study population was evaluated for their medical and neurodevelopmental state. Questionnaires were given for the detection of attention and activity levels as perceived by the parents. Additional questionnaires dealt with information concerning developmental milestones, maternal and fetal morbidity, and gynecological history. RESULTS: No differences were noted between the groups as newborns or in developmental milestones at the age of 5-13 years; however, the mean score of gross motor ability was significantly lower in the exposed versus the unexposed group. Additionally, the mean score of the DSM-III-R Parent-Teacher Questionnaire (PTQ) (i.e., measure of inattention/hyperactivity) was higher in the exposed group. The level of exposure, as measured by the number of weekly hours in the OpRs, was significantly and negatively correlated with fine motor ability and the score of IQ performance. CONCLUSIONS: Our study supports the hypothesis that occupational exposure to anesthetic gases might be a risk factor for minor neurological deficits of children born to mothers who work in OpRs and therefore indicates the need for more studies in this area and perhaps more caution among OpR pregnant women and employers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号