首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大气二氧化碳(CO_2)和近地层臭氧(O_3)浓度升高将极大地改变作物的生长环境,进而影响作物包括主要粮食作物的生产力。利用自然光气体熏蒸平台,设置室外对照(Ambient)、室内对照(CK,实时模拟室外环境)、高浓度CO_2(Ambient CO_2+200μmol/mol)、高浓度O_3(Ambient O_3的1.6倍)、高浓度CO_2+O_35个处理,研究大气组分变化对敏感水稻汕优63生长动态、物质生产及氮素吸收的影响。结果表明,室外对照和室内对照水稻的多数测定指标无显著差异。与CK相比,O_3处理使水稻生育中后期株高和分蘖数明显下降,且随时间推移降幅逐渐增加,最大降幅分别达21%和15%,但CO_2处理使水稻生育中后期株高和分蘖数明显增加,最大增幅分别为5%和18%,CO_2+O_3处理使水稻株高最大下降为7%,但对各期分蘖数没有影响。与CK相比,O_3处理使水稻成熟期叶片、茎鞘、稻穗和根系生物量大幅下降,使全株总生物量平均下降51%,CO_2处理对绿叶和黄叶生物量无显著影响,但使茎鞘、稻穗和根系生物量明显增加,使全株总生物量平均增加37%,CO_2+O_3处理对各器官和全株生物量均无显著影响。臭氧处理使生物量在叶片中的分配比例显著增加,而CO_2处理则表现相反,CO_2+O_3处理对水稻物质分配的影响小于单独的O_3处理。与CK相比,O_3处理使水稻抽穗期植株含氮率平均增加29%,吸氮量下降31%,而CO_2处理或CO_2+O_3处理对地上部植株含氮率和吸氮量的影响均未达显著水平。试验结论,近地层臭氧浓度升高使水稻变矮、分蘖减少、生长受抑,但同步增加的二氧化碳浓度可明显缓减甚至抵消臭氧胁迫对汕优63生长发育的负效应。  相似文献   

2.
依托中国稻田臭氧FACE(free air ozone concentration enrichment)技术平台,以超级稻Ⅱ优084为供试材料,臭氧设置当前大气臭氧浓度和高臭氧浓度(比前者高50%),移栽密度设置低密度(16穴·m-2)、中密度(24穴·m-2)和高密度(32穴·m-2),研究不同移栽密度条件下近地层臭氧浓度升高对水稻光合作用、物质生产以及茎鞘非结构性碳水化合物浓度和含量的影响.结果表明: 臭氧浓度升高使水稻移栽后63 d、77 d和86 d剑叶SPAD值分别下降6%、11%和13%,均达显著或极显著水平.臭氧胁迫下结实期叶片净光合速率、气孔导度和蒸腾速率的降幅亦随时间推移而明显增加.高臭氧浓度使水稻抽穗至成熟期的物质生产量平均下降46%,从而使最终生物产量下降25%,均达显著水平.臭氧浓度升高使水稻拔节后茎鞘可溶性糖和淀粉的浓度和含量均显著降低,但使抽穗前茎鞘贮藏同化物的转运率大幅增加.方差分析表明,臭氧与密度间的互作对水稻所有测定参数均无显著影响.综上,近地层臭氧浓度升高使超级稻Ⅱ优084生育中后期的光合和生长均明显受抑,但这种抑制作用不受移栽密度的影响.
  相似文献   

3.
为了解CO2浓度升高和N肥水平对水稻茎鞘内非结构性碳水化合物(NSC)含量和积累量的影响,利用开顶式气室(OTC),以常规粳稻"南粳9108"为试验材料,设置3个CO2浓度水平:对照T0(背景大气)、T0+120μmol·mol-1(T1)和T0+200μmol·mol-1(T2)。在OTC内采用盆栽方式,设置3个氮(N)肥水平:10 g N·m^-2(N1)、20 g N·m^-2(N2)和30g N·m^-2(N3)。分别于水稻抽穗期、灌浆期(抽穗后20 d)和成熟期对地上部分各器官生物量、茎鞘NSC含量以及顶部四张叶片的N含量进行分析。结果表明:CO2浓度升高对抽穗期叶N含量总体无显著影响,但显著降低灌浆期N2和N3水平的叶N含量;CO2浓度升高对抽穗期茎鞘NSC含量和积累量无显著影响,抽穗期置换到高CO2浓度环境使灌浆期茎鞘NSC积累显著增加,置换到低CO2浓度环境使NSC积累显著减少。同一CO2浓度条件下,NSC含量和积累量均为N1>N2>N3,且N1处理均显著高于N3处理,CO2浓度升高和N水平的交互作用对灌浆期茎鞘NSC含量影响显著。水稻产量在不同CO2浓度水平间无显著差异,但随施氮水平的提高而增加。抽穗期与灌浆期水稻茎鞘NSC含量和积累量与茎鞘干重呈极显著正相关,与叶N含量呈极显著负相关;叶N衰减越慢,灌浆期水稻茎鞘NSC残留比(RNSC)越低;结实率和产量与RNSC呈显著负相关,RNSC越大,茎鞘NSC转移的越少,结实率和产量越低。  相似文献   

4.
开放式空气CO2增高对水稻物质生产与分配的影响   总被引:21,自引:7,他引:21  
在大田栽培条件下,研究开放式空气CO2增加(FACE)200μmol·mol^-1的处理对水稻物质生产与分配的影响.结果表明,FACE处理使移栽至抽穗后20d的干物质积累量显著增加,使抽穗后20d至成熟期的干物质生产量显著减少,生物产量显著提高.移栽至抽穗期的干物质积累量增加是由于叶面积系数和净同化率共同提高所致;抽穗期至抽穗后20d的干物质积累量增加主要是由于叶面积系数的增加所致;抽穗后20d至成熟期的干物质生产量减少主要是由于净同化率的下降所造成.提高茎鞘占全株干物重的比例,降低叶片占全株干物重的比例,对穗占全株干物重的比例无显著影响,能显著提高水稻抽穗期茎鞘中可溶性糖、淀粉的含有率和含量,提高FACE处理的生物产量能极显著提高水稻产量(r=0.7825).  相似文献   

5.
2001—2003年,利用农田开放式空气CO2浓度增高 (FACE) 技术平台,以冬小麦宁麦9号为供试材料,研究开放式条件下CO2浓度增高对小麦整个生育期干物质生产与分配的影响.结果表明:与对照相比,FACE处理使小麦播种-越冬始期的干物质生产量略有增加(10.8%),使越冬始期-拔节期、拔节期-孕穗期、孕穗期-抽穗期显著增加,分别增加了31.6%、40.5%、27.2%,使抽穗期-成熟期略有减少(-5.5%),使成熟期生物产量显著增加(13.6%);FACE处理对小麦播种-越冬始期的平均叶面积系数(LAI)和净同化率(NAR)均无显著影响,但使越冬始期-抽穗期LAI显著增加,NAR稍有增加,使抽穗期-抽穗后20 d NAR显著下降;FACE处理使不同生育时期叶片占全株质量的比例下降,而使茎鞘占全株质量的比例增加;FACE小麦抽穗期和成熟期茎鞘可溶性糖和淀粉含量及总量均明显增加.  相似文献   

6.
2001年和2002年利用农田开放式空气CO2浓度增高(FACE)系统平台,研究不同施N量条件下FACE对武香粳14号不同生育时期磷含量、磷积累、磷分配和磷效率的影响.结果表明,FACE使水稻不同生育时期植株含磷率和吸磷量显著或极显著增加,增幅分别为3.9%~20.6%和28.9%~71.4%;FACE使水稻抽穗后磷在生殖器官中的比例下降9.8%~26.3%,在营养器官中的比例增加2.2%~23.9%,均达显著或极显著水平,而FACE对抽穗前磷在叶片、茎鞘中的比例无显著影响;FACE使水稻不同生育时期单位磷的干物质生产效率、籽粒生产效率和收获指数均明显下降,降幅分别为3.7%~16.6%、6.5%~15.5%和5.4%~9.0%;氮处理以及氮与FACE处理的互作对水稻不同生育时期的磷素营养影响较小.  相似文献   

7.
采用FACE(Free Air Carbon-dioxide Enrichment)技术,研究了不同N、P施肥水平下,水稻分蘖期、拔节期、抽穗期和成熟期根、茎、穗生长,C/N比、N、P含量及N、P吸收对大气CO2浓度升高的响应,结果表明,高CO2促进水稻茎、穗和根的生长,增加分蘖期叶干重,对拔节期、抽穗期的成熟期叶干重没有显著增加,降低茎、叶N含量;增加抽穗期穗N含量;降低成熟期穗N含量;对分蘖期根N含量影响不显著,而降低拔节期,抽穗期和成熟期根N含量,增加拔节期、抽穗期和成熟期叶P含量,对茎、穗、根P含量影响不显著,水稻各组织C含量变化不显著,C/N比增加,显著增加水稻地上部分P吸收;增加N吸收,但没有统计显著性,N、P施用对水稻各组织生物量没有显著影响,高N(HN)比低N(LN)增加组织中N含量,而不同P肥水平间未表现出明显差异,高N条件下高CO2增加水稻成熟期地下部分/地上部分比,文中还讨论了高CO2对N、P含量及地下部分/地上部分比的影响机制。  相似文献   

8.
利用封闭式生长室,研究了CO2浓度升高(环境CO2 350 μmol·mol-1,EC)、温度升高(环境温度 2 ℃,ET)以及二者同时升高(ECT)对川西亚高山红桦幼苗养分积累和分配的影响.结果表明:经过一个生长季, EC处理下红桦幼苗单株N、P、K积累比对照分别增加44%、45%和11%(P《0.05),ET处理下分别增加37%、76%和9%(P《0.05),ECT处理下分别增加24%、88%和20% (P《0.05).EC处理使N向红桦幼苗叶中分配的比例降低11.68%(P《0.05),向枝、茎、根中分配的比例分别增加2.95%、3.39%和5.34%(P》0.05);ET处理使N向叶中分配的比例增加11.09%(P《0.05),向枝、茎、根中分配的比例分别降低0.69%、10.35%和0.05%(P》0.05).ECT处理下N的分配格局与EC处理相似.3种处理下P和K在红桦幼苗中的分配变化差异较大,CO2浓度和温度升高可能促进植物养分的积累,改变养分在植物各器官间的分配.  相似文献   

9.
近地层臭氧浓度升高使水稻生长受抑进而使产量下降,但这种影响是否因不同栽培条件而异尚不清楚。2011年依托先进的稻田臭氧FACE(Free Air gas Concentration Enrichment)技术平台,以汕优63为供试材料,臭氧设置大气臭氧浓度(Ambient)和高臭氧浓度(比Ambient高50%),秧苗素质设置弱苗(移栽时无分蘖)和壮苗(移栽时带两个分蘖),移栽密度设置低密度(16穴/m2)、中密度(24穴/m2)和高密度(32穴/m2),研究不同秧苗素质和移栽密度条件下臭氧胁迫对水稻生长和产量的影响。结果表明:高浓度臭氧使水稻结实期叶片SPAD值、净光合速率、气孔导度和蒸腾速率明显下降,但胞间CO2浓度和叶温无显著变化。高浓度臭氧对水稻拔节前物质生产量没有影响,但使拔节至抽穗期、抽穗至成熟期物质生产量平均分别降低13%和29%,进而使成熟期生物产量和籽粒产量均显著下降。方差分析表明,臭氧与秧苗素质间没有互作效应,但臭氧与移栽密度的互作对最终产量的影响达显著水平。以上结果表明,臭氧胁迫使水稻生长后期光合受阻,导致物质生产和产量显著下降;适当增加移栽密度可能会减少臭氧胁迫下水稻产量的损失。  相似文献   

10.
不断升高的大气CO2浓度影响水稻颖花发育、灌浆结实和品质形成,但这种影响是否与籽粒在稻穗上的着生部位有关尚不清楚.利用稻田FACE (Free-Air CO2 Enrichment)平台,以优质丰产粳稻‘武运粳23’为材料,CO2处理设背景CO2浓度(Ambient)和高CO2浓度(增200 μmol·mol-1, FACE)两个水平,研究开放大田条件下高浓度CO2对水稻颖花密度、籽粒结实能力、稻米外观和食味品质的影响及其与稻穗不同着生位置的关系.结果表明:FACE处理使武运粳23籽粒产量平均增加18.3%,从产量构成因素看,穗数和饱粒重分别增加21.4%、9.4%,每穗颖花数、饱粒率平均减少9.0%、2.2%.FACE水稻饱粒率下降主要与稻穗不同部位空粒率大幅增加有关.FACE水稻每穗颖花数减少主要与稻穗上部、中部二次枝梗现存颖花大幅减少有关,而其他位置颖花数均无显著变化;稻穗不同位置饱粒重和饱粒率对FACE的响应无显著差异.FACE处理使绿粒率下降,但糙米长度和宽度均增加,稻穗不同部位趋势一致.FACE使垩白粒率(增幅59%)、垩白度(增幅55%)均极显著增加,增幅表现为稻穗一次枝梗>二次枝梗、上部>中部>下部.FACE使稻穗不同位置稻米直链淀粉含量略增,使最高粘度、热浆粘度、崩解值、最终粘度和消减值略降,但多未达显著水平.FACE使稻米糊化温度显著下降,弱势粒的降幅大于强势粒.综上,高浓度CO2环境下武运粳23产量增加主要与穗数增多和籽粒增重有关,而稻穗明显变小;高浓度CO2使稻米绿粒率减少,垩白增多,而对蒸煮食味品质影响较少;颖花着生位置对高浓度CO2环境下水稻颖花发育、结实和品质的影响因不同测定指标而异.  相似文献   

11.
水稻物质生产与氮、磷、钾、硅素积累特点及其相互关系   总被引:1,自引:0,他引:1  
大田条件下研究了30个水稻基因型的干物质与N、P、K、Si积累特性及其相互关系.结果表明,水稻干物质积累总量随N、P、K和Si积累总量的增加呈直线增加,其相关系数早季和晚季均达极显著水平.同时,N、P、K、Si积累的平衡有利于干物质积累,干物质积累量随NBI(养分平衡指数)直线增加,随NDI(养分偏离指数)直线下降.30个水稻品种平均N、P、K、Si积累总量比值早季为3.76:1:4.55:7.10,晚季为2.88:1:4.54:8.09.干物质积累能力以中期最强,前期最弱,而N积累能力却以前期最强,后期最弱.水稻抽穗前积累的干物质主要分配在茎鞘中,当抽穗期茎鞘比率达到最大时,茎鞘重约为叶片重的2倍,而抽穗前积累的N主要分配在叶片中,叶片中N的分配比率全生育期均比干物质分配比率高.成熟期积累的干物质、N和P主要分配在穗部,早、晚季稻的平均分配比率分别为58.01%、66.42%和70.06%,而K主要分配在茎鞘中,早、晚季稻的平均分配比率为62.08%.早季Si在茎中的分配比率(43.11%)最大,而晚季却以穗中的分配比率(46.99%)最大.  相似文献   

12.
研究了干旱、CO2 浓度和温度升高对春小麦生育期、光合速率 (Pn)、蒸发蒸腾 (ET)及水分利用效率 (WUE)的影响 .结果表明 ,大气CO2 浓度升高 (5 5 0、70 0 μmol·mol-1)虽可延长抽穗 成熟期 ,但高温 (日平均温度高于正常日平均温度约 4 .8℃ )对生育期的影响远大于高CO2 影响 ,使得高CO2 、高温下抽穗 成熟期缩短 ,且种子提前萌发 ;CO2 浓度升高和高温共同作用使各水分处理的小麦光合增强、气孔阻力增加、叶片水平的水分利用效率 (WUEl)和群体水平的水分利用效率 (WUE)增大 ,但对蒸腾速率影响不显著 .对蒸发蒸腾的影响因不同的土壤水分而不同 ,在高 (田间持水量的 75 %~ 85 % )、中 (田间持水量的 5 5 %~6 5 % )水分条件下 ,高温和高CO2 使蒸发蒸腾增加 ,而在低水分条件 (田间持水量的 35 %~ 4 5 % )下 ,高温和高CO2 使蒸发蒸腾减少  相似文献   

13.
自由大气CO2浓度升高对夏大豆生长与产量的影响   总被引:6,自引:0,他引:6  
IPCC报告指出到本世纪中期全球大气CO2浓度将比目前的浓度增加50%.CO2浓度升高将影响大豆的生长及产量.有关大气CO2浓度对大豆影响的研究大多在温室或开顶式气室中进行的,利用FACE (Free Air CO2 Enrichment)系统对大豆生长发育受CO2浓度升高影响的试验首次在中国进行,FACE圈中心的CO2浓度维持在(550±60)μmol·mol-1,对照浓度(389±40)μmol·mol-1.这是继美国SoyFACE之后世界第二个利用FACE系统对大豆生长发育进行的研究,研究表明:大气CO2浓度升高提高了两个大豆品种全生育期的叶、茎、荚重及地上部分总重,收获后地上部分总干重平均提高52.30%;大豆叶面积对CO2浓度升高的响应存在品种差异,中黄35促进叶面积增加而中黄13抑制叶面积的增加.CO2浓度升高使鼓粒期大豆比叶重增加,中黄35比叶重增加23.08%到达显著水平.CO2浓度升高使大豆节数、分枝数、茎粗提高,特别是茎粗收获期中黄35增加7 18%,中黄13增加26.33%,均到达显著或极显著水平;大气CO2浓度升高使两个品种产量平均增加30.93%,产量的增加主要是由于CO2浓度升高提高了大豆单株荚数和百粒重.大气CO2浓度升高对大豆各器官占地上部分重量的比例影响不明显,对大豆收获指数的影响未达显著水平.大气CO2浓度升高对大豆的影响品种差异明显.结论与美国SoyFACE的研究结果基本一致,如FACE系统下大豆生物量、产量都较对照增高,但变化幅度较SoyFACE的结果高.  相似文献   

14.
为了筛选出适宜长白9号种植的黑土、盐碱土的最佳配比,研究了5种土壤对长白9号抽穗后叶、穗、茎、鞘各器官渗透调节能力及膜损伤程度的影响。结果表明:黑土∶碱土=1∶1处理(C)游离氨基酸、脯氨酸及可溶性蛋白质含量高于其他配比土壤;黑土与碱土3∶1时,可溶性蛋白和可溶性糖含量与黑土基本一致,游离氨基酸与脯氨酸含量更接近于C处理;原盐碱土生长的长白9号抽穗后各器官的渗透调节物质积累相对较少,丙二醛含量与O2-·产生速率明显高于其他处理;抽穗至成熟,长白9号各器官渗透调节物质的积累顺序依次为叶穗茎鞘,说明原盐碱土高Na+浓度和高pH值使长白9号渗透调节能力降低,膜损伤程度加速;黑土与碱土的比例达到1∶1或更高时,可有效调节土壤的Na+浓度和pH值,长白9号各器官的渗透调节能力提高,叶和穗两器官尤为明显。  相似文献   

15.
采用FACE(Free Air Carbon-dioxide Enrichment)技术,研究了不同N、P施肥水平下,水稻分蘖期、拔节期、抽穗期和成熟期根、茎、叶、穗生长,C/N比,N、P含量及N、P吸收对大气CO2浓度升高的响应.结果表明,高CO2促进水稻茎、穗和根的生长.增加分蘖期叶干重,对拔节期、抽穗期和成熟期叶干重没有显著增加.降低茎、叶N含量;增加抽穗期穗N含量,降低成熟期穗N含量;对分蘖期根N含量影响不显著,而降低拔节期、抽穗期和成熟期根N含量.增加拔节期、抽穗期和成熟期叶P含量,对茎、穗、根P含量影响不显著.水稻各组织C含量变化不显著.C/N比增加.显著增加水稻地上部分P吸收;增加N吸收,但没有统计显著性.N、P施用对水稻各组织生物量没有显著影响.高N(HN)比低N(LN)增加组织中N含量,而不同P肥水平间未表现出明显差异.高N条件下高CO2增加水稻成熟期地下部分/地上部分比.文中还讨论了高CO2对N、P含量及地下部分/地上部分比的影响机制.  相似文献   

16.
开放式空气二氧化碳浓度增高对小麦产量形成的影响   总被引:18,自引:3,他引:18  
利用农田开放式空气CO2浓度增高(FACE)系统平台,以弱筋小麦宁麦9号为供试品种,研究大气CO2浓度增高和不同施氮水平对小麦生育期、株高、产量和产量构成因素的影响.结果表明:FACE处理的小麦播种至抽穗期、抽穗至成熟期及全生育期天数分别比对照缩短1.3、1.3和2.6 d,但均未达到显著水平;FACE处理的小麦穗长、穗下第1和第2节间长度显著变长,成熟期株高显著增加,比对照增加4.0%;低、中、高氮条件下,FACE处理小麦的籽粒产量分别比对照提高15.2%、21.4%和35.4%,平均增产24.6%,均达极显著水平;FACE处理小麦的单位面积穗数极显著增加,比对照增加17.8%,使穗粒数和粒重显著增加,分别比对照增加了2.9%和4.8%.FACE处理使小麦显著增产主要是由于单位面积穗数显著增加,而单位面积穗数的增加主要是由于小麦的分蘖能力明显增强所致.  相似文献   

17.
臭氧胁迫使两优培九倒伏风险增加——FACE研究   总被引:5,自引:0,他引:5  
近地层臭氧(O3)浓度升高使作物生长发育受到抑制进而使产量下降,但O3胁迫条件下作物抗倒性状的变化及其可能原因均不清楚。FACE(Free Air gas Concentration Enrichment)试验在很少扰动的自然农田实施,其特有的空间优势为研究这一问题提供了最好的机会。依托全球唯一的稻田臭氧FACE技术平台,以杂交稻两优培九为供试材料,设置大气背景O3浓度和高O3浓度两个水平首次对这一问题进行了实验研究。结果表明:高O3浓度使水稻抽穗期单茎(去除叶鞘)倒5、倒4和倒3节间的平均倒伏指数分别增加25%、16%和14%,使抽穗后35 d对应节间倒伏指数分别增加13%、12%和2%,除抽穗后35 d倒3节间外均达显著或极显著水平;高浓度O3使水稻抽穗期和抽穗后35 d植株倒5、倒4和倒3节间的抗折力和弯曲力矩均下降,前者降幅明显大于后者;高O3浓度对抽穗期和抽穗后35 d倒5、倒4、倒3和倒2和倒1节间的长度和粗度影响较小,但使各节间单位长度鲜重和干重一致下降,以单位长度干重降幅更大;高O3浓度使结实期倒5、倒4、倒3、倒2和倒1节间可溶性糖和淀粉含有率均下降,抽穗后35 d降幅大于抽穗期。以上数据表明,未来高浓度臭氧环境条件下两优培九结实期的倒伏风险明显增加,这主要与基部节间抗折能力明显削弱有关,而后者可能又与节间充实程度下降有关。  相似文献   

18.
FACE水稻干物质积累与分配模型   总被引:3,自引:1,他引:2  
借助中国唯一的FACE技术平台,通过设置不同的N肥处理,研究了FACE条件下水稻干物质积累及分配动态的模拟模型.模型以生理发育时间为驱动因子,以CO2浓度函数为主要影响因子,同时引入N素影响因子调节干物质的积累与各器官分配指数.模拟结果表明,随着大气CO2浓度的增加,水稻地上部总干物重显著增加,叶干重分配指数下降,穗干重分配指数基本不变,茎干重分配指数前期增加,后期持平.通过不同年份试验数据对模型的验证,预测根均方差(RMSE)较小,且相关系数均达到了极显著水平.表明模型拟合程度高,具有较好的适应性和预测性.  相似文献   

19.
通过顶置光源植物生长室控制380和760 μmol·mol-1 2个CO2浓度水平,研究了磷缺乏与正常供磷条件下,CO2浓度升高对玉米/大豆间作、玉米单作和大豆单作3种种植模式下作物株高、茎粗、叶面积及干物质积累的影响.结果表明:(1)CO2浓度升高能显著增加单/间作玉米、大豆的株高、茎粗、叶面积、根干重、地上部干重及总干重.(2)CO2浓度升高对供磷水平下单、间作玉米大豆的株高、茎粗、叶面积及干物质积累量增加的正效应均大于缺磷处理.(3)两种CO2浓度下,间作大豆与单作大豆生长差异不显著,而间作玉米较单作玉米有明显的生长优势,且供磷和CO2浓度的升高均能够促进这种优势.  相似文献   

20.
利用稻田FACE(Free Air CO_2Enrichment)系统平台,以杂交稻汕优63为供试材料,二氧化碳设环境CO_2浓度(Ambient)和高CO_2浓度(Ambient+200μmol/mol),抽穗期源库改变设剪叶(剪除剑叶)和疏花处理(相间剪除1次枝梗),以不处理为对照(CK),研究大气CO_2浓度升高对不同源库处理水稻产量形成及物质生产的影响。结果表明:CK条件下,大气CO_2浓度升高使汕优63籽粒产量显著增加32%,这主要与单位面积总颖花量大幅增加(+26%)有关,结实能力亦呈增加趋势但未达显著水平。大气CO_2浓度升高使抽穗期剪叶处理水稻的籽粒产量平均增加55%,明显大于对照水稻,这主要与受精率(+28%)、饱粒率(+23%)和所有籽粒平均粒重(+19%)大幅增加有关。相反,对抽穗期疏花处理水稻而言,高CO_2浓度环境下籽粒产量的增幅(+25%,P=0.07)明显小于对照水稻,这主要与结实能力的响应略有下调有关。与产量响应类似,大气CO_2浓度升高使对照、剪叶和疏花条件下最终生物量分别增加39%、43%和28%,除疏花处理外均达显著水平。抽穗期剪叶和疏花处理本身使水稻籽粒产量分别降低40%和45%,前者主要是结实能力大幅下降所致,而后者与总颖花量减半相关。以上结果表明,大气CO_2浓度升高使杂交水稻生产力大幅增加,人为减小源库比(如剪叶)可增强CO_2肥料效应,而增加源库比(如疏花)则可使这种肥料效应减弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号