首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 852 毫秒
1.

Background

Transposons are useful tools for creating transgenic organisms, insertional mutagenesis, and genome engineering. TcBuster, a novel hAT-family transposon system derived from the red flour beetle Tribolium castaneum, was shown to be highly active in previous studies in insect embryoes.

Methodology/Principal Findings

We tested TcBuster for its activity in human embryonic kidney 293 (HEK-293) cells. Excision footprints obtained from HEK-293 cells contained small insertions and deletions consistent with a hAT-type repair mechanism of hairpin formation and non-homologous end-joining. Genome-wide analysis of 23,417 piggyBac, 30,303 Sleeping Beauty, and 27,985 TcBuster integrations in HEK-293 cells revealed a uniquely different integration pattern when compared to other transposon systems with regards to genomic elements. TcBuster experimental conditions were optimized to assay TcBuster activity in HEK-293 cells by colony assay selection for a neomycin-containing transposon. Increasing transposon plasmid increased the number of colonies, whereas gene transfer activity dependent on codon-optimized transposase plasmid peaked at 100 ng with decreased colonies at the highest doses of transposase DNA. Expression of the related human proteins Buster1, Buster3, and SCAND3 in HEK-293 cells did not result in genomic integration of the TcBuster transposon. TcBuster, Tol2, and piggyBac were compared directly at different ratios of transposon to transposase and found to be approximately comparable while having their own ratio preferences.

Conclusions/Significance

TcBuster was found to be highly active in mammalian HEK-293 cells and represents a promising tool for mammalian genome engineering.  相似文献   

2.
3.
Although prolonged transgene expression in progenitor cells might be desirable for modified cell therapy, the viral promoter-based expression vector tends to promote transgene expression only for a limited period. Here, we examined the ability of cellular promoters from elongation factor-1alpha (EF-1alpha) and ubiquitin C to drive gene expression in hematopoietic TF-1 and mesenchymal progenitor cells. We compared the expression levels and duration of a model gene, interleukin-2, generated by the cellular promoters to those by the cytomegalovirus (CMV) promoter. The EF-1alpha and ubiquitin C promoters drove prolonged gene expression in hematopoietic TF-1 and mesenchymal progenitor cells, whereas the CMV promoter did not. At day 7 after transfection in TF-1 cells, the mRNA expression levels of interleukin-2 driven by the EF-1alpha and ubiquitin C promoters were 118- and 56-fold higher, respectively, than those driven by the CMV promoter. Similarly, in mesenchymal progenitor cells, the expression levels of interleukin-2 driven by the EF-1alpha and ubiquitin C promoters were 98- and 20-fold higher, respectively, than that driven by the CMV promoter-encoding plasmid. Moreover, the ubiquitin C promoter directed higher levels of green fluorescence protein expression in mesenchymal progenitor cells than did the CMV promoter. These results indicate that the use of cellular promoters such as those for EF-1alpha and ubiquitin C might direct prolonged gene expression in hematopoietic and mesenchymal progenitor cells.  相似文献   

4.
Many promoters have been used to drive expression of heterologous transgenes in insects. One major obstacle in the study of non-model insects is the dearth of useful promoters for analysis of gene function. Here, we investigated whether the promoter of the immediate-early gene, ie1, from the Bombyx mori nucleopolyhedrovirus (BmNPV) could be used to drive efficient transgene expression in a wide variety of insects. We used a piggyBac-based vector with a 3xP3-DsRed transformation marker to generate a reporter construct; this construct was used to determine the expression patterns driven by the BmNPV ie1 promoter; we performed a detailed investigation of the promoter in transgene expression pattern in Drosophila melanogaster and in B. mori. Drosophila and Bombyx belong to different insect orders (Diptera and Lepidoptera, respectively); however, and to our surprise, ie1 promoter-driven expression was evident in several tissues (e.g., prothoracic gland, midgut, and tracheole) in both insects. Furthermore, in both species, the ie1 promoter drove expression of the reporter gene from a relatively early embryonic stage, and strong ubiquitous ie1 promoter-driven expression continued throughout the larval, pupal, and adult stages by surface observation. Therefore, we suggest that the ie1 promoter can be used as an efficient expression driver in a diverse range of insect species.  相似文献   

5.
6.
7.
Mesenchymal stem cells (MSCs) of nonembryortic origins possess the proliferation and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms could be critical for determining the fate of stem ceils, and MSCs derived from different origins exhibited different expression profiles individually to a certain extent. In this study, ChiP-on-chip was used to generate genome-wide historic H3-Lys9 acetylation and dimethylation profiles at gene promoters in human bone marrow MSCs. We showed that modifications of histone H3-Lys9 at gene promoters correlated well with mRNA expression in human bone marrow MSCs. Functional analysis revealed that many key cellular pathways in human bone marrow MSC self-renewal, such as the canonical signaling pathways,cell cycle pathways and cytokine related pathways may be regulated by H3-Lys9 modifications. These data suggest that gene activation and silencing affected by H3-Lys9 acetylation and dimethylation, respectively, may be essential to the maintenance of human bone marrow MSC self-renewal and multi-potency.  相似文献   

8.
9.
Duan B  Cheng L  Gao Y  Yin FX  Su GH  Shen QY  Liu K  Hu X  Liu X  Li GP 《Theriogenology》2012,78(4):793-802
The fat-1 gene was isolated from roundworm Caenorhabditis elegans, and built into pIRES2-EGFP expression vectors driven by cytomegalovirus (CMV) promoter or cytomegalovirus enhancer and chickenβ-actin (CAG) promoter. Both CMV- and CAG-driven expression vectors were transfected to sheep fetal fibroblast cells. Positive transfected cells were used as donors for somatic cell nuclear transfer (SCNT) and the cloned embryos were transferred into the oviducts of synchronized recipient sheep. Two lambs derived from CMV vector and three lambs derived from CAG vector developed to term. Although Southern analyses using tissues from the two lambs derived from CMV vectors indicated integration of fat-1 gene into the genome, fat-1 mRNAs were not detected by RT-PCR. However, there was fat-1 expression (detected by RT-PCR) in tissues from transgenic lambs driven by CAG vectors. To investigate potential mechanisms involved in the two transgene models, methylation state of the vector promoters were examined. In CMV-driven transgenics, CMV promoters had almost no methylation in transfected cells and the resultant cloned embryos, whereas high methylations were detected in tissues and organs in transgenic lambs. In the CAG-driven transgenics, there were almost no methylations in transgenic cells and transgenic cloned embryos, and cloned lambs expressed fat-1 mRNA (detected by RT-PCR). Moreover, although SV40 promoters which drove neo/kan marker gene in CMV vectors were highly methylated in tissues from transgenic lambs, they were without methylation in cells and embryos. Therefore, we concluded that highly methylated CMV promoters induced the silence of fat-1 transgene expression in sheep. Furthermore, CAG promoter, but not CMV promoter was suitable for generation of fat-1 transgenic sheep.  相似文献   

10.
11.
Plant transgenesis often requires the use of tissue-specific promoters to drive the transgene expression exclusively in targeted tissues. Although the eukaryotic promoters are expected to stay silent in Escherichia coli, when the promoter-transgene units within the plant transformation vectors are constructed and propagated, some eukaryotic promoters have been reported to be active in prokaryotes. The potential activity of plant promoter in E. coli cells should be considered in cases of expression of proteins that are toxic for host cells, environmental risk assessment or the stability in E. coli of plant vectors for specific Cre/loxP applications. In this study, DNA fragments harbouring four embryo- and/or pollen-specific Arabidopsis thaliana promoters were investigated for their ability to drive heterologous gene expression in E. coli cells. For this, they were fused to gfp:gus reporter genes in the pCAMBIA1304 vector. Although BPROM, bacterial sigma70 promoter recognition program identified several sequences with characteristics similar to bacterial promoters including -10 and -35 sequences in each of tested fragments, the experimental approach showed that only one promoter fragment was able to drive relatively strong- and one promoter fragment relatively weak-GUS expression in E. coli cells. Remaining two tested promoters did not drive any transgene expression in bacteria. Our results also showed that cloning of a shorter plant promoter sequence into vectors containing lacZ α-complementation system can increase the probability of gene expression driven by upstream located lac promoter. This should be considered when cloning of plant expression units, the expression of which is unwanted in E. coli.  相似文献   

12.
13.
14.
Viral vectors have been used for hemophilia A gene therapy. However, due to its large size, full-length Factor VIII (FVIII) cDNA has not been successfully delivered using conventional viral vectors. Moreover, viral vectors may pose safety risks, e.g., adverse immunological reactions or virus-mediated cytotoxicity. Here, we took advantages of the non-viral vector gene delivery system based on piggyBac DNA transposon to transfer the full-length FVIII cDNA, for the purpose of treating hemophilia A. We tested the efficiency of this new vector system in human 293T cells and iPS cells, and confirmed the expression of the full-length FVIII in culture media using activity-sensitive coagulation assays. Hydrodynamic injection of the piggyBac vectors into hemophilia A mice temporally treated with an immunosuppressant resulted in stable production of circulating FVIII for over 300 days without development of anti-FVIII antibodies. Furthermore, tail-clip assay revealed significant improvement of blood coagulation time in the treated mice.piggyBac transposon vectors can facilitate the long-term expression of therapeutic transgenes in vitro and in vivo. This novel gene transfer strategy should provide safe and efficient delivery of FVIII.  相似文献   

15.
Integrating and expressing stably a transgene into the cellular genome remain major challenges for gene-based therapies and for bioproduction purposes. While transposon vectors mediate efficient transgene integration, expression may be limited by epigenetic silencing, and persistent transposase expression may mediate multiple transposition cycles. Here, we evaluated the delivery of the piggyBac transposase messenger RNA combined with genetically insulated transposons to isolate the transgene from neighboring regulatory elements and stabilize expression. A comparison of piggyBac transposase expression from messenger RNA and DNA vectors was carried out in terms of expression levels, transposition efficiency, transgene expression and genotoxic effects, in order to calibrate and secure the transposition-based delivery system. Messenger RNA reduced the persistence of the transposase to a narrow window, thus decreasing side effects such as superfluous genomic DNA cleavage. Both the CTF/NF1 and the D4Z4 insulators were found to mediate more efficient expression from a few transposition events. We conclude that the use of engineered piggyBac transposase mRNA and insulated transposons offer promising ways of improving the quality of the integration process and sustaining the expression of transposon vectors.  相似文献   

16.
The piggyBac transposon has recently attracted attention as a tool for transgene integration in mammalian cells. However, previous studies involving piggyBac investigated only transposition from circular DNA, although some linear DNA vectors are used to transfect mammalian cells. In this study, we compared the transposition efficiency of piggyBac between linear and circular DNA. Colony counting assay, luciferase assay, and plasmid rescue assay showed that piggyBac transposon can transpose from linear DNA, but its efficiency is lower than the transposition efficiency from circular DNA. These results suggest that circular DNA is more suitable as donor vectors of piggyBac than linear DNA.  相似文献   

17.
A newly isolated Pacific white shrimp (Litopenaeus vannamei) beta-actin promoter SbaP and its derivative compact construct SbaP (ENX) have recently been demonstrated to promote ectopic gene expression in vitro and in vivo. To further explore the potential transduction application, this newly isolated shrimp promoter SbaP was comparatively tested with cytomegalovirus (CMV), simian virus 40 (SV40), polyhedrin (Polh), and white spot syndrome virus immediate early gene 1 (WSSV ie1) four constitutive promoters and a beta-actin promoter (TbaP) from tilapia fish to characterize its promoting function in eight different cell lines. Luciferase quantitation assays revealed that SbaP can drive luciferase gene expression in all eight cell lines including sf21 (insect), PAC2 (zebrafish), EPC (carp), CHSE-214 (chinook salmon), GSTEF (green sea turtle), MS-1 (monk seal), 293T (human), and HeLa (human), but at different levels. Comparative analysis revealed that the promoting activity of SbaP was lower (≤10-fold) than CMV but higher (2–20 folds) than Polh in most of these cell lines tested. Whereas, SbaP mediated luciferase expression in sf21 cells was over 20-fold higher than CMV, SV40, Polh, and TbaP promoter. Compared to the SbaP, SbaP (ENX), which was constructed on the basis of SbaP by deletion of two “negative” regulatory elements, exhibited no significant change of promoting activity in EPC and PAC2 cells, but a 5 and 16 % lower promoting effect in 293T and HeLa cells, respectively. Additionally, a recombinant baculovirus was constructed under the control of SbaP (ENX), and efficient promoter activity of newly generated baculoviral vector was detected both in vitro of infected sf21 cells and in vivo of injected indicator shrimp. These results warrant the potential application of SbaP, particularly SbaP (ENX) in ectopic gene expression in future.  相似文献   

18.
19.
20.
The AAV9 capsid displays a high natural affinity for the heart following a single intravenous (IV) administration in both newborn and adult mice. It also results in substantial albeit relatively lower expression levels in many other tissues. To increase the overall safety of this gene delivery method we sought to identify which one of a group of promoters is able to confer the highest level of cardiac specific expression and concurrently, which is able to provide a broad biodistribution of expression across both cardiac and skeletal muscle. The in vivo behavior of five different promoters was compared: CMV, desmin (Des), alpha-myosin heavy chain (α-MHC), myosin light chain 2 (MLC-2) and cardiac troponin C (cTnC). Following IV administration to newborn mice, LacZ expression was measured by enzyme activity assays. Results showed that rAAV2/9-mediated gene delivery using the α-MHC promoter is effective for focal transgene expression in the heart and the Des promoter is highly suitable for achieving gene expression in cardiac and skeletal muscle following systemic vector administration. Importantly, these promoters provide an added layer of control over transgene activity following systemic gene delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号