首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
肌球蛋白轻链激酶及其抑制剂   总被引:2,自引:0,他引:2  
杨桂芝 《生命的化学》1999,19(6):279-281
肌球蛋白轻链激酶(MLCK)是三磷酸肌醇(IP3)、Ca2+-钙调蛋白(CaM)信息转导途径的一种重要蛋白质,也是第一个被发现的依赖于CaM的激酶,对肌肉收缩起着重要作用[1]。MLCK抑制剂从CaM水平或MLCK自身水平上抑制MLCK的活性,可抑制或减弱平滑肌的收缩。天然植物中的多种化合物对MLCK有较强的抑制作用,有吖啶类、黄酮类、蒽醌类、菲类和喹啉类化合物等,为植物资源的开发利用提供了有价值的依据。1.MLCK的结构和酶促反应动力学研究MLCK的活性型是由Ca2+、CaM和全酶组成的三元复…  相似文献   

3.
鸡肌球蛋白轻链激酶表达载体的构建   总被引:1,自引:0,他引:1  
鸡肌球蛋白轻链激酶(MLCK)在调节平滑肌细胞收缩中具有重要作用.用PCR产生构建所需的限制性内切酶SalⅠ位点,将鸡MLCKcDNA插入质粒pBKrsv中,构建成pBKrsv-MLCK,并通过酶切图谱、SalⅠ位点序列分析得到证实.重组质粒在大肠杆菌中获得表达.  相似文献   

4.
Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) phosphorylates smooth muscle myosin regulatory light chain (RLC) to initiate contraction. We used a tamoxifen-activated, smooth muscle-specific inactivation of MLCK expression in adult mice to determine whether MLCK was differentially limiting in distinct smooth muscles. A 50% decrease in MLCK in urinary bladder smooth muscle had no effect on RLC phosphorylation or on contractile responses, whereas an 80% decrease resulted in only a 20% decrease in RLC phosphorylation and contractile responses to the muscarinic agonist carbachol. Phosphorylation of the myosin light chain phosphatase regulatory subunit MYPT1 at Thr-696 and Thr-853 and the inhibitor protein CPI-17 were also stimulated with carbachol. These results are consistent with the previous findings that activation of a small fraction of MLCK by limiting amounts of free Ca2+/calmodulin combined with myosin light chain phosphatase inhibition is sufficient for robust RLC phosphorylation and contractile responses in bladder smooth muscle. In contrast, a 50% decrease in MLCK in aortic smooth muscle resulted in 40% inhibition of RLC phosphorylation and aorta contractile responses, whereas a 90% decrease profoundly inhibited both responses. Thus, MLCK content is limiting for contraction in aortic smooth muscle. Phosphorylation of CPI-17 and MYPT1 at Thr-696 and Thr-853 were also stimulated with phenylephrine but significantly less than in bladder tissue. These results indicate differential contributions of MLCK to signaling. Limiting MLCK activity combined with modest Ca2+ sensitization responses provide insights into how haploinsufficiency of MLCK may result in contractile dysfunction in vivo, leading to dissections of human thoracic aorta.  相似文献   

5.
6.
7.

Background

The enhancement of cell motility is a critical event during tumor cell spreading. Since myosin light chain kinase (MLCK) regulates cell behavior, it is regarded as a promising target in terms of preventing tumor invasion and metastasis. Since MLCK was identified to be associated with human arrest defective-1 (hARD1) through yeast two-hybrid screening, we here tested the possibility that hARD1 acts as a regulator of MLCK and by so doing controls tumor cell motility.

Methodology/Principal Findings

The physical interaction between MLCK and hARD1 was confirmed both in vivo and in vitro by immunoprecipitation assay and affinity chromatography. hARD1, which is known to have the activity of protein lysine ε-acetylation, bound to and acetylated MLCK activated by Ca2+ signaling, and by so doing deactivated MLCK, which led to a reduction in the phosphorylation of MLC. Furthermore, hARD1 inhibited tumor cell migration and invasion MLCK-dependently. Our mutation study revealed that hARD1 associated with an IgG motif of MLCK and acetylated the Lys608 residue in this motif. The K608A-mutated MLCK was neither acetylated nor inactivated by hARD1, and its stimulatory effect on cell motility was not inhibited by hARD1.

Conclusion/Significance

These results indicate that hARD1 is a bona fide regulator of MLCK, and that hARD1 plays a crucial role in the balance between tumor cell migration and stasis. Thus, hARD1 could be a therapeutic target in the context of preventing tumor invasion and metastasis.  相似文献   

8.
Nonmuscle myosin light chain kinase (nmMLCK), a multi-functional cytoskeletal protein critical to vascular homeostasis, is highly regulated by tyrosine phosphorylation. We identified multiple novel c-Abl–mediated nmMLCK phosphorylation sites by mass spectroscopy analysis (including Y231, Y464, Y556, Y846) and examined their influence on nmMLCK function and human lung endothelial cell (EC) barrier regulation. Tyrosine phosphorylation of nmMLCK increased kinase activity, reversed nmMLCK-mediated inhibition of Arp2/3-mediated actin polymerization, and enhanced binding to the critical actin-binding phosphotyrosine protein, cortactin. EC challenge with sphingosine 1-phosphate (S1P), a potent barrier-enhancing agonist, resulted in c-Abl and phosphorylated nmMLCK recruitment into caveolin-enriched microdomains, rapid increases in Abl kinase activity, and spatial targeting of c-Abl to barrier-promoting cortical actin structures. Conversely, reduced c-Abl expression in EC (siRNA) markedly attenuated S1P-mediated cortical actin formation, reduced the EC modulus of elasticity (assessed by atomic force microscopy), reduced nmMLCK and cortactin tyrosine phosphorylation, and attenuated S1P-mediated barrier enhancement. These studies indicate an essential role for Abl kinase in vascular barrier regulation via posttranslational modification of nmMLCK and strongly support c-Abl-cortactin-nmMLCK interaction as a novel determinant of cortical actin-based cytoskeletal rearrangement critical to S1P-mediated EC barrier enhancement.  相似文献   

9.
肌球蛋白轻链激酶(myosin light chain kinase, MLCK)具有激酶活性和非激酶活性,在平滑肌收缩过程中起着关键酶调控的作用.为探寻MLCK的非激酶活性区域对MLCK活性的影响,以进一步阐明MLCK的非激酶活性在调节平滑肌收缩过程中的分子机制.采用PCR技术构建MLCK部分氨基酸缺失的重组表达载体pGEX-F6-5/D,经大肠杆菌表达得到可溶性GST融合蛋白,利用SDS-PAGE及Western 印迹鉴定表达的MLCK在细胞中的分布,结果还显示,提取液的上清和沉淀中均有MLCK片段的表达.运用亲和层析技术分离并纯化删除前、后表达的MLCK片段(F6.5和F6-5/D),经谷胱甘肽琼脂糖凝胶 4B 纯化,SDS-PAGE鉴定显示为单一表达条带.应用EnzChek磷分析试剂盒和孔雀绿两种方法分别测定不同浓度的MLCK对非磷酸化肌球蛋白Mg2+-ATP酶活性的影响.两种MLCK的片段均具有激活ATP酶活性的作用,并随MLCK浓度的增加,酶的活性增加.比较删除前后不同MLCK片段对ATP酶活性的影响结果显示,删除MLCK片段1002位丙氨酸至1019位亮氨酸后,对ATP酶的激活作用较删除前明显降低,表明删除的部分氨基酸序列为MLCK非激酶活性所必需的区域.利用电镜技术观察到MLCK片段(F6.5)使非磷酸化肌球蛋白构象发生明显的变化.加入MLCK片段后肌球蛋白的构象由非活性型转化为活性型,并且MLCK片段还具有促进肌球蛋白单体形成肌丝的作用.  相似文献   

10.
Different interacting signaling modules involving Ca2+/calmodulin-dependent myosin light chain kinase, Ca2+-independent regulatory light chain phosphorylation, myosin phosphatase inhibition, and actin filament-based proteins are proposed as specific cellular mechanisms involved in the regulation of smooth muscle contraction. However, the relative importance of specific modules is not well defined. By using tamoxifen-activated and smooth muscle-specific knock-out of myosin light chain kinase in mice, we analyzed its role in tonic airway smooth muscle contraction. Knock-out of the kinase in both tracheal and bronchial smooth muscle significantly reduced contraction and myosin phosphorylation responses to K+-depolarization and acetylcholine. Kinase-deficient mice lacked bronchial constrictions in normal and asthmatic airways, whereas the asthmatic inflammation response was not affected. These results indicate that myosin light chain kinase acts as a central participant in the contractile signaling module of tonic smooth muscle. Importantly, contractile airway smooth muscles are necessary for physiological and asthmatic airway resistance.  相似文献   

11.
肌球蛋白轻链激酶 (MLCK)的活性片段 (MLCKF)能比完整的MLCK更有效地、以非钙依赖性的方式磷酸化肌球蛋白轻链 (MLC2 0 )。该片段是用胰蛋白酶水解MLCK ,再经DEAE 5 2柱层析分离而获得的 ,分子量约为 6 1kD。Western印迹已证实该MLCKF与完整的MLCK同源。MLCKF对肌球蛋白轻链的磷酸化作用及其作用特征通过甘油电泳及ScoinImage扫描软件检测 ,肌球蛋白ATP酶活性通过分光光度法检测。实验结果证实 ,MLCKF催化的MLC2 0 非钙依赖性磷酸化 (CIPM)比MLCK催化的CIPM效力高、耗能多 ,但比MLCK催化的MLC2 0 钙依赖性磷酸化 (CDPM)效力低、耗能少 ;MLCKF催化的CIPM与MLCK催化的CIPM均较MLCK催化的CDPM稳定 ,不易受温育温度、温育时间及离子浓度等变化的影响 ,且对MLCK抑制剂ML 9敏感性低。  相似文献   

12.
目的:构建重组平滑肌肌球蛋白轻链激酶(myosin light chain kinase,MLCK)N端删除栽体,为研究平滑肌MLCK的分子机制提供研究模型.方法:以重组质粒pCoid/155为模板,根据其待删除序列(N端1-41个氨基酸)设计上下游引物,行PCR扩增.将扩增片段以NdeI/EeoRl双酶切,产物行琼脂糖凝胶电泳回收得到目的基因.将目的基因与栽体连接,转化至大肠杆菌.筛选阳性克隆,并对阳性克隆进行测序.结果:用NdeI和EcoRI双酶切重组质粒pCold/155,琼脂糖凝胶电泳显示得到约4.4kb栽体和约3.4kb的MLCK片段.阳性克隆经测序证实MLCK的N端41个氨基酸序列已被成功删除.结论:成功构建了重组MLCK N端删除栽体 pCold/155/D41.  相似文献   

13.
K-Cl cotransport, KCC, is activated by swelling in many cells types, and promotes volume regulation by a KCl efflux osmotically coupled to water efflux. KCC is probably activated by swelling-inhibition of a kinase, permitting dephosphorylation, and activation of the cotransporter by a phosphatase. The myosin light chain kinase (MLCK) inhibitor ML-7 inhibits transporters activated by shrinkage. In red blood cells from three mammalian species, ML-7 stimulated KCC in a volume-dependent manner. Relative stimulation was greatest in more shrunken cells. Stimulation was reduced by moderate cell swelling and abolished by further swelling. The half-maximal stimulation is at ∼20 μm ML-7, 50-fold greater than the IC50 for inhibition of MLCK in vitro. Stimulation of KCC by ML-7 did not require cell Ca, while MLCK does. Therefore the target of ML-7 in stimulating KCC in red cells is probably not MLCK. The evidence favors stimulation of KCC by ML-7 by inhibiting the volume-sensitive kinase. Qualitatively similar effects of ML-7 on KCC in red cells from three mammalian species suggest a general mechanism. Received: 17 March 2000/Revised: 28 July 2000  相似文献   

14.
Myosin light chain kinase (MLCK) and the kinase-related protein (KRP), also known as telokin, are the major independent protein products of the smooth muscle/non-muscle MLCK genetic locus. They share a common C-terminal part and major sites phosphorylated in vivo. Whereas MLCK is critically involved in myosin activation and contraction initiation in smooth muscle, KRP is thought to antagonize MLCK and to exert relaxation activity. Phosphorylation controls the MLCK and KRP activities. We generated two phosphorylation and site-specific antibodies to individually monitor levels of MLCK and KRP phosphorylation on critical sites. We quantified the level of KRP phosphorylation in smooth muscle before and after an increase in intracellular free Ca2+ and stimulation of adenylate cyclase, protein kinase C, and mitogen-activated protein kinases (MAP-kinases). Forskolin and phorbol-12,13-dibutyrate increased KRP phosphorylation at Ser13 from 25 to 100% but did not produce contraction in rat ileum. The level of Ser13 phosphorylation was not altered during Ca2+-dependent contraction evoked by KCl depolarization or carbachol, but subsequently increased to maximum during forskolin-induced relaxation. These data suggest that several intracellular signaling pathways control phosphorylation of KRP on Ser13 in smooth muscle and thus may contribute to relaxation. In contrast, phosphorylation level of Ser19 of KRP increased only slightly (from 30 to 40-45%) and only in response to MAP-kinase activation, arguing against its regulatory function in smooth muscle.  相似文献   

15.
人心肌肌球蛋白轻链1与重链和肌动蛋白的结合   总被引:1,自引:0,他引:1  
在测得中国人心肌肌球蛋白轻链 1cDNA的核苷酸序列 ,并获得一株单克隆抗体 (HCMLC1 8)的基础上 ,用PCR方法 ,以中国人心肌肌球蛋白轻链 1的cDNA为模板 ,分别获得中国人心肌肌球蛋白轻链 1的各为 98个氨基酸的N端和C端片段cDNA的克隆并进行了表达。同时进行了其表达产物和大鼠心肌肌球蛋白重链和人心肌肌动蛋白以及单克隆抗体结合的研究 ,发现三者均和轻链 1的N端相结合 ,结合位点各不相同。这些结合位点可能均位于轻链 1的分子表面 ,而且如果轻链 1在实验状态下先与肌动蛋白结合 ,则有可能影响轻链与重链间的彼此结合。肌动蛋白在体外能以不同位点结合肌球蛋白重链和轻链 ,可能在肌肉收缩过程中具有重要的生理意义  相似文献   

16.
17.
Supraphysiological mechanical stretching in smooth muscle results in decreased contractile activity. However, the mechanism is unclear. Previous studies indicated that intestinal motility dysfunction after edema development is associated with increased smooth muscle stress and decreased myosin light chain (MLC) phosphorylation in vivo, providing an ideal model for studying mechanical stress-mediated decrease in smooth muscle contraction. Primary human intestinal smooth muscle cells (hISMCs) were subjected to either control cyclical stretch (CCS) or edema (increasing) cyclical stretch (ECS), mimicking the biophysical forces in non-edematous and edematous intestinal smooth muscle in vivo. ECS induced significant decreases in phosphorylation of MLC and MLC phosphatase targeting subunit (MYPT1) and a significant increase in p21-activated kinase (PAK) activity compared with CCS. PAK regulated MLC phosphorylation in an activity-dependent biphasic manner. PAK activation increased MLC and MYPT1 phosphorylation in CCS but decreased MLC and MYPT1 phosphorylation in hISMCs subjected to ECS. PAK inhibition had the opposite results. siRNA studies showed that PAK1 plays a critical role in regulating MLC phosphorylation in hISMCs. PAK1 enhanced MLC phosphorylation via phosphorylating MYPT1 on Thr-696, whereas PAK1 inhibited MLC phosphorylation via decreasing MYPT1 on both Thr-696 and Thr-853. Importantly, in vivo data indicated that PAK activity increased in edematous tissue, and inhibition of PAK in edematous intestine improved intestinal motility. We conclude that PAK1 positively regulates MLC phosphorylation in intestinal smooth muscle through increasing inhibitory phosphorylation of MYPT1 under physiologic conditions, whereas PAK1 negatively regulates MLC phosphorylation via inhibiting MYPT1 phosphorylation when PAK activity is increased under pathologic conditions.  相似文献   

18.
Ca2+ sensitization of smooth muscle contraction depends upon the activities of protein kinases, including Rho-associated kinase, that phosphorylate the myosin phosphatase targeting subunit (MYPT1) at Thr697 and/or Thr855 (rat sequence numbering) to inhibit phosphatase activity and increase contractile force. Both Thr residues are preceded by the sequence RRS, and it has been suggested that phosphorylation at Ser696 prevents phosphorylation at Thr697. However, the effects of Ser854 and dual Ser696–Thr697 and Ser854–Thr855 phosphorylations on myosin phosphatase activity and contraction are unknown. We characterized a suite of MYPT1 proteins and phosphospecific antibodies for specificity toward monophosphorylation events (Ser696, Thr697, Ser854, and Thr855), Ser phosphorylation events (Ser696/Ser854) and dual Ser/Thr phosphorylation events (Ser696–Thr697 and Ser854–Thr855). Dual phosphorylation at Ser696–Thr697 and Ser854–Thr855 by cyclic nucleotide-dependent protein kinases had no effect on myosin phosphatase activity, whereas phosphorylation at Thr697 and Thr855 by Rho-associated kinase inhibited phosphatase activity and prevented phosphorylation by cAMP-dependent protein kinase at the neighboring Ser residues. Forskolin induced phosphorylation at Ser696, Thr697, Ser854, and Thr855 in rat caudal artery, whereas U46619 induced Thr697 and Thr855 phosphorylation and prevented the Ser phosphorylation induced by forskolin. Furthermore, pretreatment with forskolin prevented U46619-induced Thr phosphorylations. We conclude that cross-talk between cyclic nucleotide and RhoA signaling pathways dictates the phosphorylation status of the Ser696–Thr697 and Ser854–Thr855 inhibitory regions of MYPT1 in situ, thereby regulating the activity of myosin phosphatase and contraction.  相似文献   

19.
Many tumors are stiffer than their surrounding tissue. This increase in stiffness has been attributed, in part, to a Rho-dependent elevation of myosin II light chain phosphorylation. To characterize this mechanism further, we studied myosin light chain kinase (MLCK), the main enzyme that phosphorylates myosin II light chains. We anticipated that increases in MLCK expression and activity would contribute to the increased stiffness of cancer cells. However, we find that MLCK mRNA and protein levels are substantially less in cancer cells and tissues than in normal cells. Consistent with this observation, cancer cells contract 3D collagen matrices much more slowly than normal cells. Interestingly, inhibiting MLCK or Rho kinase did not affect the 3D gel contractions while blebbistatin partially and cytochalasin D maximally inhibited contractions. Live cell imaging of cells in collagen gels showed that cytochalasin D inhibited filopodia-like projections that formed between cells while a MLCK inhibitor had no effect on these projections. These data suggest that myosin II phosphorylation is dispensable in regulating the mechanical properties of tumors.  相似文献   

20.
鸡平滑肌肌球蛋白轻链激酶在NIH 3T3细胞中的表达   总被引:2,自引:0,他引:2  
肌球蛋白轻链激酶(MLCK)在调节平骨肌细胞收缩过程中具有十分重要的作用。本言语通过将MLCKcDNA插到质粒pBKrsv中构建pBKrsv-MLCK,并转染至NIH3T3细胞中,DNA-PCR、RT-PCR和Western blot分析表达转染细胞可表达MLCK。活生分析表明所表达的MLCK具有生物学活性。为进一步研究MLCK在信号传导,调节平骨肌收缩等作用奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号