首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The arbuscular mycorrhizal symbiosis can alleviate salt stress in plants by altering strigolactone levels in the host plant. The aim of this study was to investigate the mechanism by which strigolactones enhance salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. Strigolactone levels, as determined by means of germination bioassay, gradually increased with treatment time of NaCl applied. Inhibition of NADPH oxidase activity and chemical scavenging of H2O2 significantly reduced strigolactone-induced salt tolerance and decreased strigolactone levels. The H2O2-induced strigolactone accumulation was accompanied by increased tolerance to salt stress. These results strongly indicated that elevated H2O2 concentration resulting from enhanced NADPH oxidase activity regulated strigolactone-induced salt stress tolerance in arbuscular mycorrhizal S. cannabina seedlings.  相似文献   

2.
The marine red alga Pyropia haitanensis (Protoflorideophyceae, Bangiaceae) has a nonvascular and multicellular structure and emerged earlier in evolution than other cultivatable red algae. It has been reported that lipid mediators from both the eicosanoid and octadecanoid pathways are involved in the innate immunity of other marine algae. But the defense strategies of P. haitanensis are not clearly understood. Here, we investigated the lipid defense of P. haitanensis elicited by agaro-oligosaccharides. The results indicate that the resistance of P. haitanensis was elicited and hydrogen peroxide was released by agaro-oligosaccharides. In P. haitanensis, C20 fatty acids are the essential fatty acids. Phospholipase A2 was activated, and the free fatty acids decreased 3 h after treatment with agaro-oligosaccharides. Gas chromatography–mass spectrometry analyses revealed that the contents of volatile organic compounds increased after treatment for 3 h, which indicated that these free fatty acids were metabolized to volatile organic compounds. In conclusion, the lipid metabolic defense pathway of P. haitanensis was mainly via the C20 metabolism pathway. The C20 fatty acid was rapidly metabolized to volatile organic compounds, but not oxidized to oxylipins in response to agaro-oligosaccharides.  相似文献   

3.
Photosynthetic characteristics of four Porphyra yezoensis Ueda [a taxonomic synonym of Pyropia yezoensis (Ueda) M. S. Hwang et H. G. Choi] strains in conchocelis phase were investigated and compared with one wildtype of P. yezoensis and two strains of Porphyra haitanensis T. J. Chang et B. F. Zheng [a taxonomic synonym of Pyropia haitanensis (T. J. Chang et B. F. Zheng) N. Kikuchi et M. Miyata]. Results showed that experimental strains had higher contents of chl a and carotenoids, but a lower content of total phycobiliproteins than the wildtype. Meanwhile, photochemical efficiency of PSII was measured using pulse amplitude modulation (PAM) fluorometry technology. The value of PSII photosynthetic parameters of P. yezoensis strains were all higher than the wild strain, and the maximal quantum yields (Fv/Fm), effective quantum yields Y(II), and relative photosynthetic electron transport rates (rETR) of P. haitanensis were higher than those of P. yezoensis. The present study verified the possibility of selective breeding of P. yezoensis using the filamentous sporophyte instead of the gametophytic thallus, the advantages being (i) nonrequirement of control of life cycle and (ii) direct and rapid cultivar improvement by artificial selection. We consider the method to be a promising technique for selective breeding of P. yezoensis cultivars.  相似文献   

4.
PB90 is a novel protein elicitor isolated from Phytophthora boehmeriae. Here, we report that treatment of PB90 stimulates hypericin production and hydrogen peroxide (H2O2) generation in Hypericum perforatum L. cells and demonstrate that H2O2 is essential for PB90-induced hypericin production. To further study the source of PB90-triggered H2O2, we have investigated activities of plasma membrane NADPH oxidase in Hypericum perforatum L. cells subjected to PB90 treatment. It is revealed that treatment of the cells with PB90 significantly increases NADPH oxidase activity. NADPH oxidase inhibitors suppress not only the PB90-stimulated NADPH oxidase activity but also the PB90-triggered H2O2 generation and PB90-induced hypericin production, showing that NADPH oxidase is involved in PB90-triggered H2O2 generation and hypericin production. Moreover, the suppression of NADPH oxidase inhibitors on PB90-induced hypericin production can be reversed by H2O2, although H2O2 per se has no effects on hypericin production of the cells. Together, the data demonstrate that PB90 may induce hypericin production of H. perforatum cells through the NADPH oxidase-mediated H2O2 signaling pathway.  相似文献   

5.
It is postulated that the burst of oxygen consumption and H2O2 formation following phagocytosis by polymorphonuclear leukocytes is due to the action of an oxidase located in the plasma membrane. The cyanide-resistant oxygen consumption of resting polymorphonuclear leukocytes was also found to be stimulated by 2,4-dichlorophenol with H2O2 being the sole product formed. NADH and NADPH added to the leukocytes greatly enhanced the oxygen consumption and were oxidized in the process without penetrating the leukocytes. Mn2+ stimulated this oxidase activity. The apparent Km values for added NADH and NADPH were 50 and 40 μm, respectively, with a V of 300 nmol/mg protein/min. A stoichiometry of 1 mol H2O2 formed per mol of NAD(P)H was found. Whilst the oxidase is similar to the oxidase properties of a peroxidase, myeloperoxidase is not responsible for the activity.  相似文献   

6.
Thermotolerance is improved by heat stress (HS) acclimation, and the thermotolerance level is “remembered” by plants. However, the underlying signalling mechanisms remain largely unknown. Here, we showed NADPH oxidase‐mediated H2O2 (NADPH‐H2O2), and chloroplast‐H2O2 promoted the sustained expression of HS‐responsive genes and programmed cell death (PCD) genes, respectively, during recovery after HS acclimation. When spraying the NADPH oxidase inhibitor, diphenylene iodonium, after HS acclimation, the NADPH‐H2O2 level significantly decreased, resulting in a decrease in the expression of HS‐responsive genes and the loss of maintenance of acquired thermotolerance (MAT). In contrast, compared with HS acclimation, NADPH‐H2O2 declined but chloroplast‐H2O2 further enhanced during recovery after HS over‐acclimation, resulting in the reduced expression of HS‐responsive genes and substantial production of PCD. Notably, the further inhibition of NADPH‐H2O2 after HS over‐acclimation also inhibited chloroplast‐H2O2, alleviating the severe PCD and surpassing the MAT of HS over‐acclimation treatment. Due to the change in subcellular H2O2 after HS acclimation, the tomato seedlings maintained a constant H2O2 level during recovery, resulting in stable and lower total H2O2 levels during a tester HS challenge conducted after recovery. We conclude that tomato seedlings increase their MAT by enhancing NADPH‐H2O2 content and controlling chloroplast‐H2O2 production during recovery, which enhances the expression of HS‐responsive genes and balances PCD levels, respectively.  相似文献   

7.
The expression and activity of NADPH oxidase increase when HL‐60 cells are induced into terminally differentiated cells. However, the function of NADPH oxidase in differentiation is not well elucidated. With 150–500 μM H2O2 inducing differentiation of HL‐60 cells, we measured phagocytosis of latex beads and investigated cell electrophoresis. Two inhibitors of NADPH oxidase, DPI (diphenyleneiodonium) and APO (apocynin), blocked the differentiation potential of cells induced by 200 μM H2O2. However, H2O2 stimulated the generation of intracellular superoxide (O2 ? ?), which decreased in the presence of the two inhibitors. DPI also inhibited H2O2‐induced ERK (extracellular‐signal‐regulated kinase) activation, as detected by Western blotting. Furthermore, PD98059, the inhibitor of the ERK pathway, inhibited the differentiation of HL‐60 cells induced by H2O2. This shows that H2O2 can activate NADPH oxidase, leading to O2 ? ? production, followed by ERK activation and ultimately resulting in the differentiation of HL‐60 cells. The data indicate that NADPH oxidase is an important cell signal regulating cell differentiation.  相似文献   

8.
Glycerol‐3‐phosphate (G3P) has been suggested as a novel regulator of plant defense signaling, however, its role in algal resistance remains largely unknown. The glycerol kinase (also designated as NHO1) and NAD‐dependent G3P dehydrogenase (GPDH) are two key enzymes involved in the G3P biosynthesis. In our study, we cloned the full‐length cDNA of NHO1 (NHO1Ph) and GPDH (GPDHPh) from the red alga Pyropia haitanensis (denoted as NHO1Ph and GPDHPh) and examined their expression level under flagellin peptide 22 (flg22) stimulation or heat stress. We also measured the level of G3P and floridoside (a downstream product of G3P in P. haitanensis) under flg22 stimulation or heat stress. Both NHO1Ph and GPDHPh shared high sequence identity and structural conservation with their orthologs from different species, especially from red algae. Phylogenetic analysis showed that NHO1s and GPDHs from red algae were closely related to those from animals. Under flg22 stimulation or heat stress, the expression levels of NHO1Ph and GPDHPh were up‐regulated, G3P levels increased, and the contents of floridoside decreased. But the floridoside level increased in the recovery period after heat stress. Taken together, we found that G3P metabolism was associated with the flg22‐induced defense response and heat stress response in P. haitanensis, indicating the general conservation of defense response in angiosperms and algae. Furthermore, floridoside might also participate in the stress resistance of P. haitanensis.  相似文献   

9.
R‐phycoerythrin (R‐PE) was purified from leafy gametophyte of Porphyra haitanensis T. J. Chang et B. F. Zheng (Bangiales, Rhodophyta) by a simple, scaleable procedure. Initially, phycobiliproteins were extracted by repeated freeze‐thaw cycles, resulting in release from the algal cells by osmotic shock. Next, R‐PE was recovered by applying the crude extract with a high concentration of (NH4)2SO4 salt directly to the expanded‐bed columns loaded with phenyl‐sepharose. An expanded‐bed volume twice the settled‐bed volume was maintained; then low (NH4)2SO4 concentration was used to develop the column. After two rounds of hydrophobic interaction chromatography (HIC), R‐PE was purified by anion‐exchange column. The method was also successful with free‐living conchocelis of P. haitanensis. The purified R‐PE was identified with electrophoresis, and absorption and fluorescence emission spectroscopy. The results were in agreement with those previously reported. The yield with a spectroscopic purity (OD565/OD280) higher than 3.2 (the ratio of A565/A620 ≤ 0.02) was 1.4 mg · g?1 of leafy gametophyte of P. haitanensis. For the free‐living conchocelis of P. haitanensis extract, R‐PE could be purified successfully with only one round of HIC. The yield with a spectroscopic purity (OD565/OD280) higher than 3.2 (the ratio of A565/A620 ≤ 0.02) was 5.0 mg · g?1 of free‐living conchocelis of P. haitanensis. The method described here is a scaleable technology that allows a large quantity of R‐PE to be recovered from the unclarified P. haitanensis crude extract. It is also a high protein recovery technology, reducing both processing costs and times, which enhances the value of this endemic Porphyra of China.  相似文献   

10.
The relationship of H2O2 and jasmonic acid (JA) in wound-induced defense response was investigated in the leaves of pea (Pisum sativum L.) plants. The results showed that both wounding and JA treatment led to a significant increase in activities of plasma membrane NADPH oxidase and phenylalanine ammonialyase. However, such an increase was blocked by the pretreatment with plasma membrane NADPH oxidase inhibitors, O 2 ? scavengers, or H2O2 scavenger, implying that H2O2 functions downstream of JA. Furthermore, wounding treatment activated two key enzymes of JA biosynthesis, lipoxygenase and allene oxide synthase, while JA biosynthetic inhibitors impaired the wounding-induced H2O2 burst. Thus, it is suggested that H2O2 burst depends on JA production in plant wounding response.  相似文献   

11.
We have used HyPer, a ratiometric GFP-based biosensor, to follow H2O2 dynamics in live cells. We have found that activation of the EGF receptor in epithelial cells leads to sustained generation of intracellular H2O2, which is blocked by apocynin, an inhibitor of the plasma membrane NADPH oxidase assembly. Apocynin also blocked HeLa cell proliferation induced by EGF, indicating that NADPH oxidase is critically involved. However, apocynin failed to alter the kinetics of EGF-stimulated ERK1/2 activation. We conclude that NADPH oxidase and intracellular H2O2 are important downstream targets of EGF receptor that mediate the proliferation response by mechanisms distinct from activation of the classical ERK1/2 MAP-kinase pathway.  相似文献   

12.
Ethephon, an ethylene releasing compound, promoted leaf senescence, H2O2 elevation, and senescence-associated gene expression in sweet potato. It also affected the glutathione and ascorbate levels, which in turn perturbed H2O2 homeostasis. The decrease of reduced glutathione and the accumulation of dehydroascorbate correlated with leaf senescence and H2O2 elevation at 72 h in ethephon-treated leaves. Exogenous application of reduced glutathione caused quicker and significant increase of its intracellular level and resulted in the attenuation of leaf senescence and H2O2 elevation. A small H2O2 peak produced within the first 4 h after ethephon application was also eliminated by reduced glutathione. Diphenyleneiodonium (DPI), an NADPH oxidase inhibitor, delayed leaf senescence and H2O2 elevation at 72 h, and its influence was effective only within the first 4 h after ethephon treatment. Ethephon-induced senescence-associated gene expression was repressed by DPI and reduced glutathione at 72 h in pretreated leaves. Leaves treated with l-buthionine sulfoximine, an endogenous glutathione synthetase inhibitor, did enhance senescence-associated gene expression, and the activation was strongly repressed by reduced glutathione. In conclusion, ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression are all alleviated by reduced glutathione and NADPH oxidase inhibitor DPI. The speed and the amount of intracellular reduced glutathione accumulation influence its effectiveness of protection against ethephon-mediated effects. Reactive oxygen species generated from NADPH oxidase likely serves as an oxidative stress signal and participates in ethephon signaling. The possible roles of NADPH oxidase and reduced glutathione in the regulation of oxidative stress signal in ethephon are discussed.  相似文献   

13.
The stoichiometry of hydroxylation reactions catalyzed by cytochrome P-450 was studied in a reconstituted enzyme system containing the highly purified cytochrome from phenobarbital-induced rabbit liver microsomes. Hydrogen peroxide was shown to be formed in the reconstituted system in the presence of NADPH and oxygen; the amount of peroxide produced varied with the substrated added. NADPH oxidation, oxygen consumption, and total product formation (sum of hydroxylated compound and hydrogen peroxide) were shown to be equimolar when cyclohexane, benzphetamine, or dimethylaniline served as the substrate. The stoichiometry observed represents the sum of two activities associated with cytochrome P-450. These are (1) hydroxylase activity: NADPH + H+ + O2 + RH → NADP+ + H2O + ROH; and (2) oxidase activity: NADPH + H+ + O2 → NADP+ + H2O2. Benzylamphetamine (desmethylbenzphetamine) acts as a pseudosubstrate in that it stimulates peroxide formation to the same extent as the parent compound (benzphetamine), but does not undergo hydroxylation. Accordingly, when benzylamphetamine alone is added in control experiments to correct for the NADPH and O2 consumption not associated with benzphetamine hydroxylation, the expected 1:1:1 stoichiometry for NADPH oxidation, O2 consumption, and formaldehyde formation in the hydroxylation reaction is observed.  相似文献   

14.
ROS (reactive oxygen species) take an important signalling role in angiogenesis. Although there are several ways to produce ROS in cells, multicomponent non‐phagocytic NADPH oxidase is an important source of ROS that contribute to angiogenesis. In the present work, we examined the effects of H2O2 on angiogenesis including proliferation and migration in HUVECs (human umbilical vein endothelial cells), new vessel formation in chicken embryo CAM (chorioallantoic membrane) and endothelial cell apoptosis, which is closely related to anti‐angiogenesis. Our results showed that H2O2 dose‐dependently increased the generation of O2 ? (superoxide anion) in HUVECs, which was suppressed by DPI (diphenylene iodonium) and APO (apocynin), two inhibitors of NADPH oxidase. H2O2 at low concentrations (10 µM) stimulated cell proliferation and migration, but at higher concentrations, inhibited both. Similarly, H2O2 at 4 nmol/cm2 strongly induced new vessel formation in CAM, while it suppressed at high concentrations (higher than 4 nmol/cm2). Also, H2O2 (200~500 µM) could stimulate apoptosis in HUVECs. All the effects of H2O2 on angiogenesis could be suppressed by NADPH oxidase inhibitors, which suggests that NADPH oxidase acts downstream of H2O2 to produce O2 ? and then to regulate angiogenesis. In summary, our results suggest that H2O2 as well as O2 ? mediated by NADPH oxidase have biphasic effects on angiogenesis in vitro and in vivo.  相似文献   

15.
An oxidase activity utilizing reduced nicotinamide adenine dinucleotide phosphate (NADPH) and producing H2O2 was observed in intact adipocytes of rat, as well as in the isolated plasma membranes of these cells. A stoichiometry of 1 mol of H2O2 production per mole of NADPH disappearance was found with isolated plasma membranes. Activation of this enzyme (R) was produced by pretreatment of cells with insulin, dithiothreitol, or sulfhydryl inhibitors, e.g., p-chloromercuribenzoate or tosyl-l-lysine chloromethyl ketone. All of these agents also stimulated glucose oxidation via the hexose monophosphate shunt. Activation of R was also observed with biologically active derivatives of insulin, e.g., proinsulin or desalanine insulin, but not with an inactive derivative, desoctapeptide insulin. The enzyme could not be activated by exposing the cells to membrane perturbants, e.g., hypotonic conditions or Triton X-100 (0.01–0.1%). The enzyme activity in the plasma membrane had a pH optimum at 6.0 and, from the Lineweaver-Burke plot, V was determined at 230 nmol and Km for NADPH was at 5.8 × 10?5, m. The activity remained unaltered in the presence of sodium azide or cyanide. Preincubation of adipocytes with insulin or SH reagents or direct addition of oxidants, e.g., H2O2, potassium ferricyanide, or phenazine methosulfate, to the membranes also caused inhibition of adenylate cyclase (AC). This enzyme activity could be restored in these preparations by adding thiols. It is suggested that inhibition of AC in whole cells in response to insulin may be caused by oxidation of its SH groups by the H2O2 generated from the activated NADPH oxidase. Reversal of this inhibition may involve cellular reducing equivalents. The evidence suggests that the plasma membrane enzymes, i.e., NADPH oxidase and adenylate cyclase, are controlled, in part, by the intracellular redox potential.  相似文献   

16.
A. Ros Barceló 《Planta》1998,207(2):207-216
The nature of the enzymatic system responsible for the generation of H2O2 in the lignifying xylem of Zinnia elegans (L.) was studied using the starch/KI method for monitoring H2O2 production and the nitroblue tetrazolium method for monitoring superoxide production. The results showed that lignifying xylem tissues are able to accumulate H2O2 and to sustain H2O2 production. Hydrogen peroxide production in the xylem of Z. elegans was sensitive to pyridine, imidazole, quinacrine and diphenylene iodonium, which are inhibitors of phagocytic plasma-membrane NADPH oxidase. The sensitivity of H2O2 production to the inhibitor of phospholipase C, neomycin, and to the inhibitor of protein kinase, staurosporine, and its reversion by the inhibitor of protein phosphatases, cantharidin, pointed to the analogies existing between the mechanism of H2O2 production in lignifying xylem and the oxidative burst observed during the hypersensitive plant cell response. A further support for the participation of an NADPH-oxidase-like activity in H2O2 production in lignifying xylem was obtained from the observation that areas of H2O2 production were superimposed on areas producing superoxide anion, the suspected product of NADPH oxidase, although attempts to demonstrate the existence of superoxide dismutase activity in intercellular washing fluid from Z. elegans were unsuccessful. Even so, the levels of NADPH-oxidase-like activity in microsomal fractions, and of peroxidase in intercellular washing fluids, are consistent with a role for NADPH oxidase in the delivery of H2O2 which may be further used by xylem peroxidases for the synthesis of lignins. This hypothesis was further confirmed through a direct histochemical probe based on the H2O2-dependent oxidation of tetramethylbenzidine by xylem cell wall peroxidases. These results are the first evidence for the existence of an NADPH oxidase responsible for supplying H2O2 to peroxidase in the lignifying xylem of Z. elegans. Received: 6 February 1998 / Accepted: 14 August 1998  相似文献   

17.
Dual oxidases (DUOX) are enzymes that contain an NADPH oxidase domain that produces hydrogen peroxide (H2O2) and a peroxidase domain that can utilize H2O2 to carry out a variety of reactions. The model organism Caenorhabditis elegans produces the DUOX, BLI-3, which has roles in both cuticle development and in protection against infection. In previous work, we demonstrated that while certain peroxidases were protective against the human bacterial pathogen Enterococcus faecalis, the peroxidase domain of BLI-3 was not, leading to the postulate that the NADPH oxidase domain is the basis for BLI-3’s protective effects. In this work, we show that a strain carrying a mutation in the NADPH oxidase domain of BLI-3, bli-3(im10), is more susceptible to E. faecalis and the human fungal pathogen Candida albicans. Additionally, less H2O2 is produced in response to pathogen using both an established Amplex Red assay and a strain of C. albicans, WT-OXYellow, which acts as a biosensor of reactive oxygen species (ROS). Finally, a C. elegans line containing a BLI-3::mCherry transgene was generated. Previous work suggested that BLI-3 is produced in the hypodermis and the intestine. Expression of the transgene was observed in both these tissues, and additionally in the pharynx. The amount and pattern of localization of BLI-3 did not change in response to pathogen exposure.  相似文献   

18.
Reactive oxygen species (ROS) can trigger neuronal cell death and has been implicated in a variety of neurodegenerative diseases as well as brain ischemia. Here, we demonstrate that chronic (but not acute) glutamate toxicity in primary cortical neuronal cultures is associated with hydrogen peroxide (H2O2) accumulation in the culture medium and that neurotoxicity can be eliminated by external catalase treatment. Neuronal cultures in Ca2+-free medium or treated with BAPTA showed reduced glutamate-induced H2O2 generation, indicating that H2O2 generation is Ca2+-dependent. Pharmacological and genetic approaches revealed that NADPH oxidase plays a role in glutamate-induced H2O2 generation and that activation of NMDA and AMPA receptors is involved in this H2O2 generation. The Nox4 siRNA reduced NMDA-induced H2O2 production by 54% and cytotoxicity in parallel, suggesting that Nox4-containing NADPH oxidase functions NMDA receptor-mediated H2O2 production resulting in neurotoxicity. These findings suggest that the modulation of NADPH oxidase can be used as a new therapeutic strategy for glutamate-induced neuronal diseases.  相似文献   

19.
The role of H2O2 in salicylic acid (SA)-induced protection of rice leaves against subsequent Cd toxicity was investigated. SA pretreatment resulted in an increase in the contents of endogenous SA, as judged by the expression of OsWRKY45 (a SA responsive gene), and H2O2 in rice leaves. Diphenyleneiodonium (DPI) and imidazole (IMD), inhibitors of NADPH oxidase, prevented SA-increased H2O2 production, suggesting that NADPH oxidase is a H2O2-generating enzyme in SA-pretreated rice leaves. DPI and IMD also inhibited SA-increased activities of superoxide dismutase (SOD), ascorbate peroixdase (APX), and glutathione reductase (GR) activities, but had no effect on SA-increased catalase (CAT) activity. Moreover, SA-induced protection against subsequent Cd toxicity could also be prevented by DPI and IMD. The inhibitory effect of DPI and IMD on SA-induced protection against subsequent Cd toxicity could be reversed by exogenous H2O2. All these results suggested that SA-induced protection against subsequent Cd toxicity is mediated through H2O2. This conclusion is supported further by the observations that exogenous H2O2 application resulted in an increase in SOD, APX, and GR activities, but not CAT activity and a protection against subsequent Cd toxicity of rice leaves.  相似文献   

20.
Vasoactive intestinal peptide (VIP) attenuates experimental acute pancreatitis (AP) by inhibition of cytokine production from inflammatory cells. It has been suggested that reactive oxygen species (ROS) as well as cytokines play pivotal roles in the early pathophysiology of AP. This study aimed to clarify the effect of VIP on the oxidative condition in pancreas, especially pancreatic acinar cells (acini). Hydrogen peroxide (H2O2)-induced intracellular ROS, assessed with CM-H2DCFDA, increased time- and dose-dependently in acini isolated from rats. Cell viability due to ROS-induced cellular damage, evaluated by MTS assay, was decreased with ≥100 μmol/L H2O2. VIP significantly inhibited ROS production from acini and increased cell viability in a dose-dependent manner. Expression of antioxidants including catalase, glutathione reductase, superoxide dismutase (SOD) 1 and glutathione peroxidase was not altered by VIP except for SOD2. Furthermore, Nox1 and Nox2, major components of NADPH oxidase, were expressed in pancreatic acini, and significantly increased after H2O2 treatment. Also, NADPH oxidase activity was provoked by H2O2. VIP decreased NADPH oxidase activity, which was abolished by PKA inhibitor H89. These results suggested that VIP affected the mechanism of ROS production including NADPH oxidase through induction of a cAMP/PKA pathway. In conclusion, VIP reduces oxidative stress in acini through the inhibition of NADPH oxidase. These results combined with findings of our previous study suggest that VIP exerts its protective effect in pancreatic damage, not only through an inhibition of cytokine production, but also through a reduction of the injury caused by oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号