首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Therapies for lung adenocarcinoma (LUAD) are mainly limited by drug resistance, metastasis or recurrence related to cancer stem cells (CSCs) with high proliferation and self-renewing. This research validated that miR-31 was over-expressed in LUAD by the analysis of generous clinical samples data. And the results of clinical data analysis showed that high expression of miR-31 was more common in patients with worse prognosis. The genes differentially expressed in LUAD tissues compared with normal tissues and A549CD133+ cells (LUAD CSCs) compared with A549 cells were separately screened from Gene Expression Profiling Interactive Analysis and GEO datasets. The target genes that may play a role in the regulation of lung adenocarcinoma was screened by comparison between the differential genes and the target genes of miR-31. The functional enrichment analysis of GO Biological Processes showed that the expression of target genes related to cell proliferation was increased, while the expression of target genes related to cell invasion and metastasis was decreased in LUAD tissues and A549CD133+ cells. The results suggested that miR-31 may have a significant inhibitory effect on the differentiation, invasion, metastasis and adhesion of LUAD CSCs, which was verified in vivo and in vitro experiments. Knock down of miR-31 accelerated xenograft tumor growth and liver metastasis in vivo. Likewise, the carcinogenicity, invasion and metastasis of A549CD133+ CSCs were promoted after miR-31 knockdown. The study validated that miR-31 was up regulated in LUAD and its expression may affect the survival time of patients with lung adenocarcinoma, which indicated that miR-31 may have potential value for diagnosis and prognosis of LUAD. However, the inhibitory effect of miR-31 on tumorigenesis, invasion and metastasis of lung adenocarcinoma CSCs suggested its complexity in the regulation of lung adenocarcinoma, which may be related to its extensive regulation of various target genes.  相似文献   

2.
MicroRNAs (miRNAs) are a family of small, non-coding RNA species functioning as negative regulators of multiple target genes including tumour suppressor genes and oncogenes. Many miRNA gene loci are located within cancer-associated genomic regions. To identify potential new amplified oncogenic and/or deleted tumour suppressing miRNAs in lung cancer, we inferred miRNA gene dosage from high dimensional arrayCGH data. From miRBase v9.0 (http://microrna.sanger.ac.uk), 474 human miRNA genes were physically mapped to regions of chromosomal loss or gain identified from a high-resolution genome-wide arrayCGH study of 132 primary non-small cell lung cancers (NSCLCs) (a training set of 60 squamous cell carcinomas and 72 adenocarcinomas). MiRNAs were selected as candidates if their immediately flanking probes or host gene were deleted or amplified in at least 25% of primary tumours using both Analysis of Copy Errors algorithm and fold change (≥±1.2) analyses. Using these criteria, 97 miRNAs mapped to regions of aberrant copy number. Analysis of three independent published lung cancer arrayCGH datasets confirmed that 22 of these miRNA loci showed directionally concordant copy number variation. MiR-218, encoded on 4p15.31 and 5q35.1 within two host genes (SLIT2 and SLIT3), in a region of copy number loss, was selected as a priority candidate for follow-up as it is reported as underexpressed in lung cancer. We confirmed decreased expression of mature miR-218 and its host genes by qRT-PCR in 39 NSCLCs relative to normal lung tissue. This downregulation of miR-218 was found to be associated with a history of cigarette smoking, but not human papilloma virus. Thus, we show for the first time that putative lung cancer-associated miRNAs can be identified from genome-wide arrayCGH datasets using a bioinformatics mapping approach, and report that miR-218 is a strong candidate tumour suppressing miRNA potentially involved in lung cancer.  相似文献   

3.
4.
MicroRNAs play key roles in tumor metastasis. Here, we describe the regulation and function of miR-218 in gastric cancer (GC) metastasis. miR-218 expression is decreased along with the expression of one of its host genes, Slit3 in metastatic GC. However, Robo1, one of several Slit receptors, is negatively regulated by miR-218, thus establishing a negative feedback loop. Decreased miR-218 levels eliminate Robo1 repression, which activates the Slit-Robo1 pathway through the interaction between Robo1 and Slit2, thus triggering tumor metastasis. The restoration of miR-218 suppresses Robo1 expression and inhibits tumor cell invasion and metastasis in vitro and in vivo. Taken together, our results describe a Slit-miR-218-Robo1 regulatory circuit whose disruption may contribute to GC metastasis. Targeting miR-218 may provide a strategy for blocking tumor metastasis.  相似文献   

5.
6.
Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is an important regulator of cell adhesion, invasion, and metastasis. The aim of this study was to evaluate the functional roles of CEACAM6 in lung adenocarcinoma and to identify miRNAs that inhibit the growth, migration, and invasion of lung adenocarcinoma cells by targeting CEACAM6. CEACAM6 expression is associated with poor prognosis of patients with lung adenocarcinoma, and CEACAM6 has important functional roles in controlling the growth, migration, and invasion of lung adenocarcinoma cells in vitro and in vivo. Furthermore, miR-29a can suppress the growth, migration, and invasion of lung adenocarcinoma cells by targeting CEACAM6. Therefore, miR-29a/CEACAM6 axis represents a potential therapeutic target for treatment of lung adenocarcinoma.  相似文献   

7.
MicroRNAs (miRNAs) regulate the progression of human malignancy by targeting oncogenes or tumor suppressors, which are 12 promising targets for cancer treatment. Increasing evidence has suggested the aberrant expression and tumor-suppressive function of miR-1298 in cancers, however, the regulatory mechanism of miR-1298 in breast cancer (BC) remains unclear. Here, our findings showed that miR-1298 was down-regulated in BC tissues and cell lines. Lower level of miR-1298 was significantly correlated with the advanced progression of BC patients. Experimental study showed that overexpression of miR-1298 inhibited the proliferation, induced apoptosis and cell cycle arrest in BC cells. The in vivo xenograft mice model showed that highly expressed miR-1298 significantly reduced the tumor growth and metastasis. Further mechanism analysis revealed that miR-1298 bound the 3′-untranslated region (UTR) of a disintegrin and metalloproteinase 9 domain (ADAM9) and suppressed the expression of ADAM9 in BC cells. ADAM9 was overexpressed in BC tissues and inversely correlated with miR-1298. Down-regulation of ADAM9 induced apoptosis and cell cycle arrest of BC cells. Moreover, ectopic expression of ADAM9 by transiently transfecting with vector encoding the full coding sequence of ADAM9 attenuated the inhibitory effects of miR-1298 on the proliferation and cell cycle progression of BC cells. Collectively, our results illustrated that miR-1298 played a suppressive role in regulating the phenotype of BC cells through directly repressing ADAM9, suggesting the potential application of miR-1298 in the therapy of BC.  相似文献   

8.
Circular RNAs (circRNAs) play critical roles in tumorigenesis and the progression of various cancers. We previously identified a novel upregulated circRNA, circBCBM1 (hsa_circ_0001944), in the context of breast cancer brain metastasis. However, the potential biological function and molecular mechanism of circBCBM1 in breast cancer brain metastasis remain largely unknown. In this study, we confirmed that circBCBM1 was a stable and cytoplasmic circRNA. Functionally, circBCBM1 promoted the proliferation and migration of 231-BR cells in vitro and growth and brain metastasis in vivo. Mechanistically, circBCBM1 acted as an endogenous miR-125a sponge to inhibit miR-125a activity, resulting in the upregulation of BRD4 (bromodomain containing 4) and subsequent upregulation of MMP9 (matrix metallopeptidase 9) through Sonic hedgehog (SHH) signaling pathway. Importantly, circBCBM1 was markedly upregulated in the breast cancer brain metastasis cells and clinical tissue and plasma samples; besides, circBCBM1 overexpression in primary cancerous tissues was associated with shorter brain metastasis-free survival (BMFS) of breast cancer patients. These findings indicate that circBCBM1 is involved in breast cancer brain metastasis via circBCBM1/miR-125a/BRD4 axis. CircBCBM1 may serve as a novel diagnostic and prognostic biomarker and potential therapeutic target for breast cancer brain metastasis.  相似文献   

9.
10.
The SARI (suppressor of AP-1, regulated by IFN) gene, which is also called BATF2, is associated with the risk of several kinds of cancer, and loss of SARI expression is frequently detected in aggressive and metastatic cancer. However, the functional role of SARI in lung adenocarcinoma remains unknown. We have shown that loss of SARI expression initiates epithelial-mesenchymal transition (EMT), which is visualized by repression of E-cadherin and up-regulation of vimentin in lung adenocarcinoma cell lines and in clinical lung adenocarcinoma specimens. Using a human lung xenograft-mouse model, we observed that knocking down endogenous SARI in human carcinoma cells leads to the development of multiple lymph node metastases. Moreover, we showed that SARI functions as a critical protein in regulating EMT by modulating the (GSK)-3β-β-catenin signaling pathway. These results demonstrate the mechanism of SARI function in EMT and suggest that assessment of SARI may serve as a prognostic biomarker and potential therapeutic target for lung adenocarcinoma metastasis.  相似文献   

11.
Preeclampsia (PE) is a major contributor to maternal morbidity and mortality. However, the molecular mechanisms underlying PE progression are not well characterized. Here, we investigated the role of miR-218 in PE development. The expression of miR-218 and its host genes SLIT2 and SLIT3 was up-regulated in preeclamptic placentae compared to normal placentae. miR-218 expression was induced by hypoxia and decreased after knockdown of HIF-1α in an extravillous trophoblast cell line (HTR-8/SVneo). Chromatin immunoprecipitation assays showed direct binding of HIF-1α to the promoters of SLIT2 and SLIT3. Bioinformatics analysis identified LASP1 as a direct target of miR-218. Overexpression of miR-218 repressed the expression of LASP1 at both the mRNA and protein level. Meanwhile, miR-218 repressed the activity of a luciferase reporter containing the 3′-untranslated region of the LASP1 gene. Furthermore, expression of LASP1 rescued the inhibitory effect of miR-218 on HTR-8/SVneo cell invasion. Together, these results indicated that miR-218 contributes to PE by targeting LASP1 to inhibit trophoblast invasion.  相似文献   

12.
Lung adenocarcinoma is the most common subtype of non-small-cell lung cancer affecting people all over the globe. Recent studies have indicated that long non-coding RNAs (lncRNAs) possess the ability to regulate gene expression. Initially, we uncovered increased LINC00355 expressions in lung adenocarcinoma tissues and cells. Functionally, our findings demonstrated that LINC00355 silencing suppressed the proliferation in vitro and in vivo. In addition, we found that LINC00355 negatively regulated miR-195 in lung adenocarcinoma cells. Simultaneously, silencing LINC00355 by shRNA resulted in suppressed proliferation, colony formation and promoted cell cycle arrest and apoptosis via miR-195. Moreover, silencing LINC00355 by shRNA inhibited the cyclin E1 (CCNE1) gene expression via miR-195 in lung adenocarcinoma cells. Collectively, this study demonstrates the novel lncRNA LINC00355 in regulatory network of CCNE1 via miR-195 in lung adenocarcinoma, highlighting LINC00355 as a new target for the treatment of lung adenocarcinoma.  相似文献   

13.
Aberrant expression of microRNAs has been implicated in many cancers. We recently demonstrated differential expression of several microRNAs in medulloblastoma. In this study, the regulation and function of microRNA 218 (miR-218), which is significantly underexpressed in medulloblastoma, was evaluated. Re-expression of miR-218 resulted in a significant decrease in medulloblastoma cell growth, cell colony formation, cell migration, invasion, and tumor sphere size. We used C17.2 neural stem cells as a model to show that increased miR-218 expression results in increased cell differentiation and also decreased malignant transformation when transfected with the oncogene REST. These results suggest that miR-218 acts as a tumor suppressor in medulloblastoma. MicroRNAs function by down-regulating translation of target mRNAs. Targets are determined by imperfect base pairing of the microRNA to the 3′-UTR of the mRNA. To comprehensively identify actual miR-218 targets, medulloblastoma cells overexpressing miR-218 and control cells were subjected to high throughput sequencing of RNA isolated by cross-linking immunoprecipitation, a technique that identifies the mRNAs bound to the RNA-induced silencing complex component protein Argonaute 2. High throughput sequencing of mRNAs identified 618 genes as targets of miR-218 and included both previously validated targets and many targets not predicted computationally. Additional work further confirmed CDK6, RICTOR, and CTSB (cathepsin B) as targets of miR-218 and examined the functional role of one of these targets, CDK6, in medulloblastoma.  相似文献   

14.
Recent findings have shown that SLIT2 appears to function as a novel tumor suppressor gene. In addition, hypermethylation of its promoter region has been detected in various cancers, including breast and lung cancer, colorectal carcinoma, and gliomas. Here, we report for the first time that there is epigenetic silencing of SLIT2 in human hepatocellular carcinoma (HCC). Downregulation of SLIT2 was detected in 6 of 8 (75%) HCC cell lines by quantitative real-time RT-PCR (qRT-PCR), and the downregulation of SLIT2 was generally dependent on the degree of methylation at the promoter region. Furthermore, expression of SLIT2 was restored in relatively low-expressing cell lines after treatment with 5-aza-2-deoxycytidine (5-Aza-dC). Downregulation of SLIT2 expression was also detected in 45 of 54 primary HCC samples (83.3%), and the decrease in expression was significantly correlated with CpG island hypermethylation. This decrease of SLIT2 expression was also associated with lymph node metastasis in HCC. Moreover, overexpression of SLIT2 in SMMC-7721 cells induced by recombinant adenovirus suppressed cell growth, migration, and invasion, These results suggest that epigenetic inactivation of SLIT2 in HCC may be important in the development and progression of HCC. Thus, SLIT2 may be useful as a therapeutic target in the treatment of HCC.  相似文献   

15.
Small cell lung cancer is the most aggressive histologic subtype of lung cancer, with a strong predilection for metastasizing to brain early. However, the cellular and molecular basis is poorly known. Here, we provided evidence to reveal the role of annexin A1 in small cell lung cancer metastasis to brain. Firstly, the elevated annexin A1 serum levels in small cell lung cancer patients were associated with brain metastasis. The levels of annexin A1 were also upregulated in NCI-H446 cells, a small cell lung cancer cell line, upon migration into the mice brain. More interestingly, annexin A1 was secreted by NCI-H446 cells in a time-dependent manner when co-culturing with human brain microvascular endothelial cells, which was identified with the detections of annexin A1 in the co-cultured cellular supernatants by ELISA and western blot. Further results showed that blockage of annexin A1 in the co-cultured cellular supernatants using a neutralized antibody significantly inhibited NCI-H446 cells adhesion to brain endothelium and its transendothelial migration. Conversely, the addition of Ac2-26, an annexin A1 mimic peptide, enhanced these effects. Furthermore, knockdown of annexin A1 in NCI-H446 cells prevented its transendothelial migration in vitro and metastasis to mice brain in vivo. Our data showed that small cell lung cancer cell in brain microvasculature microenvironment could express much more annexin A1 and release it outside, which facilitated small cell lung cancer cell to gain malignant properties of entry into brain. These findings provided a potential target for the management of SCLC brain metastasis.  相似文献   

16.
The epithelial-mesenchymal transition (EMT) is a critical step for pancreatic cancer cells as an entry of metastatic disease. Wide variety of cytokines and signaling pathways are involved in this complex process while the entire picture is still cryptic. Recently, miRNA was found to regulate cellular function including EMT by targeting multiple mRNAs. We conducted comprehensive analysis of miRNA expression profiles in invasive ductal adenocarcinoma (IDA), intraductal papillary mucinous adenoma, intraductal papillary mucinous carcinoma, and human pancreatic cancer cell line to elucidate essential miRNAs which regulate invasive growth of pancreatic cancer cells. Along with higher expression of miR-21 which has been shown to be highly expressed in IDA, reduced expression of miR-126 in IDA and pancreatic cancer cell line was detected. The miR-126 was found to target ADAM9 (disintegrin and metalloproteinase domain-containing protein 9) which is highly expressed in pancreatic cancer. The direct interaction between miR-126 and ADAM9 mRNA was confirmed by 3' untranslated region assay. Reexpression of miR-126 and siRNA-based knockdown of ADAM9 in pancreatic cancer cells resulted in reduced cellular migration, invasion, and induction of epithelial marker E-cadherin. We showed for the first time that the miR-126/ADAM9 axis plays essential role in the inhibition of invasive growth of pancreatic cancer cells.  相似文献   

17.
18.
Lung cancer is one of the deadliest cancers, in which non-small cell lung cancer (NSCLC) accounting for 85% and has a low survival rate of 5 years. Dysregulation of microRNAs (miRNAs) can participate in tumor regulation and many major diseases. In this study, we found that miR-199a-3p/5p were down-expressed in NSCLC tissue samples, cell lines, and the patient sample database. MiR-199a-3p/5p overexpression could significantly suppress cell proliferation, migration ability and promote apoptosis. Through software prediction, ras homolog enriched in brain (Rheb) was identified as a common target of miR-199a-3p and miR-199a-5p, which participated in regulating mTOR signaling pathway. The same effect of inhibiting NSCLC appeared after down-regulating the expression of Rheb. Furthermore, our findings revealed that miR-199a can significantly inhibit tumor growth and metastasis in vivo, which fully demonstrates that miR-199a plays a tumor suppressive role in NSCLC. In addition, miR-199a-3p/5p has been shown to enhance the sensitivity of gefitinib to EGFR-T790M in NSCLC. Collectively, these results prove that miR-199a-3p/5p can act as cancer suppressor genes to inhibit the mTOR signaling pathway by targeting Rheb, which in turn inhibits the regulatory process of NSCLC. Thus, to investigate the anti-cancer effect of pre-miR-199a/Rheb/mTOR axis in NSCLC, miR-199a-3p and miR-199a-5p have the potential to become an early diagnostic marker or therapeutic target for NSCLC.  相似文献   

19.
Lung adenocarcinoma is the most prevalent type of lung cancer with a high incidence and mortality worldwide. Metastasis is the major cause of high death rate in lung cancer and the potential mechanism of lung adenocarcinoma metastasis remains indistinct. Emerging investigations have demonstrated that long noncoding RNA is a kind of non–protein coding RNA and plays a critical role in cancer progression and metastasis. TTN antisense RNA 1 (TTN-AS1) has been reported to promote cell growth and metastasis in cancer. However, the function of TTN-AS1 in lung adenocarcinoma is still to be illustrated. In this study, we observed that TTN-AS1 was upregulated in tissues and cells of lung adenocarcinoma and associated with poor overall survival. TTN-AS1 promoted cell proliferation, migration, invasion, and epithelial-mesenchymal transition in lung cancer. TTN-AS1 directly bound with miR-4677-3p and negatively regulated miR-4677-3p. MiR-4677-3p rescued the inhibitive impacts of TTN-AS1 knockdown on lung adenocarcinoma. Furthermore, zinc finger E-box binding homeobox 1 (ZEB1) was the target of miR-4677-3p, and TTN-AS1 modulated ZEB1 by competing for miR-4677-3p. TTN-AS1 drove the invasion and migration of lung adenocarcinoma cells by targeting the miR-4677-3p/ZEB1 axis. To sum up, our study offers insights into the mechanism of TTN-AS1 in lung adenocarcinoma metastasis and targeting the TTN-AS1/miR-4677-3p/ZEB1 axis may be the potential innovate therapeutic strategy for the patients with lung adenocarcinoma.  相似文献   

20.
The major cause of cancer-related deaths in patients with lung adenocarcinoma (LAD) is due to distant metastasis. Many reports have indicated that miRNA plays a key role in tumour metastasis. The expression of miR-197 is correlated with LAD progression, however, the mechanism of miR-197 is still unknown in the processing of LAD. A Boyden chamber migration/invasion assay was used for the metastatic function study in vitro. Real-time PCR and Western blot assays were employed to analyse the EMT hallmark changes in both the mRNA and protein levels. \(3^{\prime }\)-UTR reporter luciferase assay was used to show that HIPK2 is a direct target of miR-197. miR-197 enhances LAD cell migration and invasion miR-197. The downregulation of miR-197 suppresses the EMT and migration ability. HIPK2 is a direct functional target of miR-197 in LAD metastasis. In summary, miR-197 controls EMT and metastasis by directly silencing HIPK2. The findings suggest that interfering with the miR-197-dependent regulation of HIPK2 could be a useful approach for the treatment of patients with late stage metastatic LAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号