首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
The microvascular endothelial surface expresses multiple molecules whose sialylation state regulates multiple aspects of endothelial function. To better regulate these sialoproteins, we asked whether endothelial cells (ECs) might express one or more catalytically active sialidases. Human lung microvascular EC lysates contained heat-labile sialidase activity for a fluorogenic substrate, 2'-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid (4-MU-NANA), that was dose-dependently inhibited by the competitive sialidase inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid but not its negative control. The EC lysates also contained sialidase activity for a ganglioside mixture. Using real time RT-PCR to detect mRNAs for the four known mammalian sialidases, NEU1, -2, -3, and -4, NEU1 mRNA was expressed at levels 2700-fold higher that those found for NEU2, -3, or -4. Western analyses indicated NEU1 and -3 protein expression. Using confocal microscopy and flow cytometry, NEU1 was immunolocalized to both the plasma membrane and the perinuclear region. NEU3 was detected both in the cytosol and nucleus. Prior siRNA-mediated knockdown of NEU1 and NEU3 each decreased EC sialidase activity for 4-MU-NANA by >65 and >17%, respectively, and for the ganglioside mixture by 0 and 40%, respectively. NEU1 overexpression in ECs reduced their migration into a wound by >40%, whereas NEU3 overexpression did not. Immunohistochemical studies of normal human tissues immunolocalized NEU1 and NEU3 proteins to both pulmonary and extrapulmonary vascular endothelia. These combined data indicate that human lung microvascular ECs as well as other endothelia express catalytically active NEU1 and NEU3. NEU1 restrains EC migration, whereas NEU3 does not.  相似文献   

2.
Adhesion molecules on endothelial cells are known to be important ligands for malaria infected red blood cells (PRBC) [Mol Biochem Parasitol, 76, (1996) 1], and may be involved in the pathogenic process of cerebral malaria (CM) which is the most serious complication of falciparum malaria, through enhancing micro embolism or sequestration in the capillaries of the brain. PECAM-1/CD31 is one of these candidate ligands and is coded by a polymorphic gene. Two hundred and ten Thai malaria patients (43 cerebral, 89 severe and 78 uncomplicated) were analyzed for their genetic polymorphism of CD31 to examine the clinical relationship between the disease and specific genotypes. Four alleles were defined 125 valine (V)-563 asparagine (N); 125V-563 serine (S); 125 leucine (L)-563N; and 125L-563S. We found that the frequency of the 125 V/V 563 N/N genotype was significantly high in CM patients as compared with severe cases without CM (P<0.01, OR=2.92), suggesting that this genotype is one of the risk factors for CM.  相似文献   

3.
Epithelial cells (ECs) lining the airways provide a protective barrier between the external environment and the internal host milieu. These same airway epithelia express receptors that respond to danger signals and initiate repair programs. Because the sialylation state of a receptor can influence its function and is dictated in part by sialidase activity, we asked whether airway epithelia express catalytically active sialidase(s). Human primary small airway and A549 ECs expressed NEU1 sialidase at the mRNA and protein levels, and NEU1 accounted for >70% of EC sialidase activity. Blotting with Maackia amurensis and peanut agglutinin lectins established epidermal growth factor receptor (EGFR) and MUC1 as in vivo substrates for NEU1. NEU1 associated with EGFR and MUC1, and NEU1-EGFR association was regulated by EGF stimulation. NEU1 overexpression diminished EGF-stimulated EGFR Tyr-1068 autophosphorylation by up to 44% but enhanced MUC1-dependent Pseudomonas aeruginosa adhesion by 1.6-1.7-fold and flagellin-stimulated ERK1/2 activation by 1.7-1.9-fold. In contrast, NEU1 depletion increased EGFR activation (1.5-fold) and diminished MUC1-mediated bacterial adhesion (38-56%) and signaling (73%). These data indicate for the first time that human airway epithelia express catalytically active NEU1 sialidase that regulates EGFR- and MUC1-dependent signaling and bacterial adhesion. NEU1 catalytic activity may offer an additional level of regulation over the airway epithelial response to ligands, pathogens, and injurious stimuli.  相似文献   

4.
目的:探讨PECAM-1在肝细胞肝癌(Hepatocellular carcinoma,HCC)组织中的表达及意义。方法:选择2013年5月-2015年6月在我院接受治疗的HCC患者100例,收集肝癌患者HCC组织及癌旁组织,另选取100例正常肝脏组织作为对照组。应用免疫组织化学法检测PECAM-1在肝癌组织、癌旁组织以及正常肝脏组织中的阳性表达。利用小分子干扰RNA技术(si RNA)构建低表达的PECAM-1,并转染至肝癌细胞中抑制PECAM-1的表达。应用Transwell小室法检测肝癌细胞的侵袭能力,CCK-8法检测肝癌细胞的增殖能力。结果:PECAM-1在肝癌组织、癌旁组织及正常肝脏组织中呈不同程度阳性表达(P0.05);PECAM-1在肝癌组织及癌旁组织中的表达显著高于正常肝脏组织,差异具有统计学意义(P0.05);PECAM-1在肝癌组织中的表达显著高于癌旁组织,差异具有统计学意义(P0.05);转染si RNA PECAM-1后,肝癌细胞中PECAM-1 m RNA的表达水平明显下降,PECAM-1蛋白表达也明显降低,差异具有统计学意义(P0.05);转染si RNA PECAM-1后,肝癌细胞侵袭及增殖能力明显降低,差异具有统计学意义(P0.001)。结论:PECAM-1在肝癌患者血清中高表达,PECAM-1 si RNA能够抑制肝癌细胞的侵袭及增殖能力,提示PECAM-1可作为预测肝癌发生及发展的临床指标。  相似文献   

5.
Platelet endothelial cell adhesion molecule-1 (PECAM-1) binds tyrosine-phosphorylated beta-catenin and modulates beta-catenin localization and sequestration. The biological significance of this interaction, while still unclear, it has been postulated to be involved in modulating adherens junction dynamics in response to perturbants [J. Clin. Invest. 109 (2002) 383]. Here we demonstrate that tyrosine-phosphorylated beta-catenin, and to a lesser extent unphosphorylated beta-catenin, interact with a portion of the cytoplasmic domain of PECAM-1 encoded by exon 15. Using RT-PCR, we obtained products representing alternatively spliced PECAM-1 isoforms from mouse kidney total mRNA and generated PECAM-1-GST constructs expressing full length and naturally occurring alternatively spliced PECAM-1 variants. Co-precipitation assays revealed that the protein sequence encoded by exon 15 is necessary for beta-catenin binding. Transfections using deletion mutants confirmed the importance of the exon 15 sequence in this interaction. In contrast, gamma-catenin-PECAM-1 interactions are thought to be modulated by an as yet undefined PECAM-1 serine phosphorylation and appear to mediate dynamic PECAM-1 intermediate filament cytoskeletal interactions [J. Biol. Chem. 275 (2000) 21435]. Here we demonstrate that the PECAM-1-gamma-catenin interaction occurs via an exon 13-mediated process. GST-pull-down assays illustrated the importance of the exon 13 sequence in this interaction. Further, using site-directed mutagenesis of S(673) to C and D and S(669 and 670) to C, we confirmed the importance of S(673) and its phosphorylation state as a mediator of gamma-catenin-PECAM-1 binding. Our studies define the exons of the PECAM-1 cytoplasmic domain that is involved in mediating these PECAM-1-catenin family member interactions and will allow investigators to better define the biological functions resulting from these interactions.  相似文献   

6.
Mammals have several major histocompatibility complex (MHC) class-I-like genes. Although some of them are assumed to have originated before the emergence of mammals, the origin of class-I-like genes is poorly understood. We analyzed here the recently released chicken draft genome sequence and identified two families of class-I-like genes: CD1 and PROCR (the gene for the endothelial protein C receptor). Chickens have two CD1 genes, designated CD1.1 and CD1.2, located in tandem approximately 840 bp apart from each other. Chicken CD1.1 and CD1.2 are neither group 1- nor group 2-like, indicating that the two groups of CD1 emerged in a mammalian lineage. Although the database provides no information as to their chromosomal localization, we found that chicken CD1 genes are located adjacent to the previously characterized MHC B system contig on chromosome 16. We confirmed the linkage of CD1 to the B system by dual-color fluorescence in situ hybridization. Chickens have a single copy of PROCR. Among known class-I-like genes, PROCR is most closely related to CD1, indicating that CD1 and PROCR constitute a distinct subfamily of class-I-like genes that predates the emergence of mammals.  相似文献   

7.
BACKGROUND: Cleft lip with or without cleft palate is the most common congenital anomaly in the craniofacial region. Knowledge of the molecular mechanisms behind normal lip fusion can contribute to better intervention and improved functional clinical outcome. Transforming growth factor-beta3 (TGF-beta3) has been implicated in lip morphogenesis. Therefore, we hypothesized that TGF-beta3 functions during lip fusion through regulation of angiogenesis and mesenchymal cell cycle progression during early developmental stages. METHODS: To test this hypothesis we used the CL/Fraser mouse model, which has a high incidence of cleft lip. Lips isolated from embryonic day (ED) 11.5 mouse embryos were allowed to develop in serum-free organ cultures in the presence or absence of TGF-beta3. The lips that developed in these cultures fused in 2 days. RESULTS: During normal development, we detected positive immunoreactions for TGF-beta3 at the site of fusion. We also detected mesenchymal cells that were immunopositive for Flk-1 and CD31, which are markers for endothelial cell precursors. Exogenous TGF-beta3 accelerated lip fusion in culture. This enhancement was associated with an increase in the number of capillary blood vessels in the lips cultured in the presence of TGF-beta3, in comparison with controls. In tandem, TGF-beta3 increased the level of expression of both Flk-1 and CD31. Our data suggest that an elevated level of TGF-beta3 may promote angiogenesis in developing lips that is mediated by increased Flk-1 and CD31 expression. We also detected increased cyclin D1 expression (a marker for cell proliferation) in the presence of TGF-beta3, which suggests that TGF-beta3 promoted cell proliferation. CONCLUSIONS: TGF-beta3 promoted cell proliferation and angiogenesis in lip mesenchymal tissues. These events led to enhanced lip fusion in the presence of TGF-beta3.  相似文献   

8.
The liver has a high potential to regenerate however, the relation between oval cells and endothelial cells in the portal area during liver regeneration has not been adequately described. We have focused on sca-1+ endothelial cells (SPEC: sca-1+CD31+CD45− cells) and analyzed their localization, growth potential, and the role of these cells in damaged liver. SPECs are localized in the portal area and comprise approximately 20-30% of CD31+CD45− cells. These cells have higher growth potential than sca-1− endothelial cells and grow aggressively when the liver is severely damaged on the lateral side of the oval cells. In an in vivo study we show that when the liver is severely damaged in the presence of a VEGF (vascular endothelial growth factor)-inhibitor, the frequency of SPECs decreased and the recovery of liver volume was also delayed. These results strongly suggest that SPECs play important roles in the recovery of severely damaged liver.  相似文献   

9.
Microglia are the immune cells of the CNS. Brain injury triggers phenotypic changes in microglia including regulation of surface antigens. The serine proteinase α-thrombin can induce profound changes in neural cell physiology via cleavage of proteinase-activated receptors (PARs). We recently demonstrated that pharmaceutical-grade recombinant human α-thrombin (rh-thr) induces a restricted set of proteolysis-dependent changes in microglia. CD95(Fas) is a cell-death receptor that is up-regulated in microglia by inflammatory stimuli. Here we characterized the effect of rh-thr on CD95(Fas) expression in the N9 microglial cell line. Dose–response and time course studies demonstrated maximal effects at 100 U/ml and 24 h, respectively. Regulation of expression was seen at both the surface protein and steady-state mRNA levels. The rh-thr-induced effects were mimicked by PAR1 agonist peptides and blocked by pharmacologic inhibitors selective for extracellular signal-regulated kinase 1/2 (ERK 1/2). Rh-thr also induced a rapid and sustained phosphorylation of ERK 1/2. Thrombin-induced regulation of CD95(Fas) could modulate the neuroinflammatory response in a variety of neurological disorders.  相似文献   

10.
Fas (CD95/Apo-1) exists both in membrane-bound and in biologically active soluble (s) forms. Ligation of membrane-expressed Fas can induce apoptosis, and Fas-mediated signaling seems to be involved in T-cell-induced apoptosis of human acute myelogenous leukemia (AML) blasts. The local release of sFas by AML blasts may then function as a protective mechanism by competing with membrane-bound Fas for binding sites on the common Fas ligand (FasL). sFas was released by AML blasts during in vitro culture, and this release was modulated by several cytokines that can be secreted by activated T cells. Increased levels of sFas could be detected during in vitro activation of T cells in the presence of native AML accessory cells, and this was observed both for (i) mitogenic activation of CD4+ and CD8+ T cell clones derived from acute leukemia patients with therapy-induced leukopenia and (ii) allostimulated activation of T cells derived from normal donors. However, local in vivo levels of sFas will also be influenced by variations in systemic levels. High serum levels of sFas were detected in acute leukemia patients during chemotherapy-induced cytopenia, but these levels decreased during complicating bacterial infections. In contrast, serum levels of sFasL were normal in leukopenic patients. The present results support the hypothesis that local release of sFas can function as a protective mechanism against AML-reactive T cells, but the effects of this local release are, in addition, modulated by variations in systemic levels of sFas (but not sFasL). Received: 9 March 2000 / Accepted: 25 May 2000  相似文献   

11.
The F11 receptor (F11R) (a.k.a. Junctional Adhesion Molecule, JAM) was first identified in human platelets as a 32/35 kDa protein duplex that serves as receptor for a functional monoclonal antibody that activates platelets. We have sequenced and cloned the F11R and determined that it is a member of the immunoglobulin (Ig) superfamily of cell adhesion molecules. The signaling pathways involved in F11R-induced platelet activation were examined in this investigation. The binding of M.Ab.F11 to the platelet F11R resulted in granule secretion and aggregation. These processes were found to be dependent on the crosslinking of F11R with the FcγRII by M.Ab.F11. This crosslinking induced actin filament assembly with the conversion of discoidal platelets to activated shapes, leading to the formation of platelet aggregates. We demonstrate that platelet secretion and aggregation through the F11R involves actin filament assembly that is dependent on phosphoinositide-3 kinase activation, and inhibitable by wortmannin. Furthermore, such activation results in an increase in the level of free intracellular calcium, phosphorylation of the 32 and 35 kDa forms of the F11R, F11R dimerization coincident with a decrease in monomeric F11R, and association of the F11R with the integrin GPIIIa and with CD9. On the other hand, F11R-mediated events resulting from the binding of platelets to an immobilized surface of M.Ab.F11 lead to platelet adhesion and spreading through the development of filopodia and lammelipodia. These adhesive processes are induced directly by interaction of M.Ab.F11 with the platelet F11R and are not dependent on the FcγRII. We also report here that the stimulation of the F11R in the presence of nonaggregating (subthreshold) concentrations of the physiological agonists thrombin and collagen, results in supersensitivity of platelets to natural agonists by a F11R-mediated process independent of the FcγRII. The delineation of the two separate F11R-mediated pathways is anticipated to reveal significant information on the role of this cell adhesion molecule in platelet adhesion, aggregation and secretion, and F11R-dependent potentiation of agonist-induced platelet aggregation. The participation of F11R in the formation and growth of platelet aggregates and plaques in cardiovascular disorders, resulting in enhanced platelet adhesiveness and hyperaggregability, may serve in the generation of novel therapies in the treatment of inflammatory thrombosis, heart attack and stroke, and other cardiovascular disorders.  相似文献   

12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号