首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nonsense-mediated mRNA decay (NMD) pathway, present in most eukaryotic cells, is a specialized pathway that leads to the recognition and rapid degradation of mRNAs with premature termination codons and, importantly, some wild-type mRNAs. Earlier studies demonstrated that aberrant mRNAs with artificially extended 3′-untranslated regions (3′-UTRs) are degraded by NMD. However, the extent to which wild-type mRNAs with long 3′-UTRs are degraded by NMD is not known. We used a global approach to identify wild-type mRNAs in Saccharomyces cerevisiae that have longer than expected 3′-UTRs, and of these mRNAs tested, 91% were degraded by NMD. We demonstrate for the first time that replacement of the natural, long 3′-UTR from wild-type PGA1 mRNA, which encodes a protein that is important for cell wall biosynthesis, with a short 3′-UTR renders it immune to NMD. The natural PGA1 3′-UTR is sufficient to target a NMD insensitive mRNA for decay by the NMD pathway. Finally, we show that nmd mutants are sensitive to Calcofluor White, which suggests that the regulation of PGA1 and other cell wall biosynthesis proteins by NMD is physiologically significant.  相似文献   

2.
1. Diacetates of the four possible racemates of 4′,7-dimethoxyflavan-3,4-diol have been synthesized. 2. Comparison of their nuclear-magnetic-resonance spectra and the ionophoretic mobilities of the diols in borate buffer with those of the corresponding derivatives of guibourtacacidin shows that the natural 4′,7-dihydroxyflavan-3,4-diol has a 2,3-cis–3,4-trans configuration, but is accompanied by 2,3-trans–3,4-trans and 2,3-trans–3,4-cis isomers. These occur in the approximate proportions 5:1:1. 3. The occurrence of guibourtacacidins in Guibourtia coleosperma appears to be of taxonomic significance. Their association with a large excess of related tannins in the heartwood suggests that flavan-3,4-diols with these configurations are suitable precursors in tannin biosynthesis.  相似文献   

3.
Chlorella virus DNA ligase is the smallest eukaryotic ATP-dependent DNA ligase known; it suffices for yeast cell growth in lieu of the essential yeast DNA ligase Cdc9. The Chlorella virus ligase–adenylate intermediate has an intrinsic nick sensing function and its DNA footprint extends 8–9 nt on the 3′-hydroxyl (3′-OH) side of the nick and 11–12 nt on the 5′-phosphate (5′-PO4) side. Here we establish the minimal length requirements for ligatable 3′-OH and 5′-PO4 strands at the nick (6 nt) and describe a new crystal structure of the ligase–adenylate in a state construed to reflect the configuration of the active site prior to nick recognition. Comparison with a previous structure of the ligase–adenylate bound to sulfate (a mimetic of the nick 5′-PO4) suggests how the positions and contacts of the active site components and the bound adenylate are remodeled by DNA binding. We find that the minimal Chlorella virus ligase is capable of catalyzing non-homologous end-joining reactions in vivo in yeast, a process normally executed by the structurally more complex cellular Lig4 enzyme. Our results suggest a model of ligase evolution in which: (i) a small ‘pluripotent’ ligase is the progenitor of the much larger ligases found presently in eukaryotic cells and (ii) gene duplications, variations within the core ligase structure and the fusion of new domains to the core structure (affording new protein–protein interactions) led to the compartmentalization of eukaryotic ligase function, i.e. by enhancing some components of the functional repertoire of the ancestral ligase while disabling others.  相似文献   

4.
To investigate the binding of 5′–CpG–3′ sequences by small molecules, two pyrrole (Py)–imidazole (Im) hairpin polyamides, PyImPyIm–γPyImPyIm–βDp (1) and PyIm–βIm–γPyIm–β–Im–β–Dp (2), which recognize the sequence 5′–CGCG–3′, were synthesized. The binding affinities of the 5′–CGCG–3′ sequence to the Py–Im hairpin polyamides were measured by surface plasmon resonance (SPR) analysis. SPR data revealed that dissociation equilibrium constants (Kd) of polyamides 1 and 2 were 1.1 (± 0.3) × 10–6 M and 1.7 (± 0.4) × 10–8 M, respectively. Polyamide 2 possesses great binding affinity for this sequence, 65-fold higher than polyamide 1. Moreover, when all cytosines in 5′–CpGpCpG–3′ were replaced with 5-methylcytosines (mCs), the Kd value of polyamide 2 increased to 5.8 (± 0.7) × 10–9 (M), which indicated about 3-fold higher binding than the unmethylated 5′–CGCG–3′ sequence. These results suggest that polyamide 2 would be suitable to target CpG-rich sequences in the genome.  相似文献   

5.
The fungal cyclohexadepsipeptides destruxins (DTXs), isaridins (ISDs), and isariins (ISRs) are nonribosomal peptides whose structures include a 19-membered ring composed of five amino acid residues and one α- or β-hydroxy acid residue. These cyclohexadepsipeptides contain unusual nonproteinogenic amino acid–building blocks and possess a range of antiviral, antibacterial, and other activities. The biosynthetic gene clusters for ISDs and ISRs have not been identified, and the biosynthesis of the nonproteinogenic (3S)-methyl-l-proline residue, which is found in DTXs, ISDs, and many other natural products, lacks full characterization. In an ongoing effort to identify compounds that can inhibit the Zika virus (ZIKV), we examined the extract of marine-derived fungus Beauveria felina SX-6-22 and discovered 30 DTXs, ISDs, and ISRs (1–30) including seven new compounds (1–7). The anti-ZIKV assays showed that 9–12 and 16–18 possess inhibitory activities against ZIKV RNA replication and NS5 (nonstructural protein 5) production in ZIKV-infected A549 cells. We sequenced the genome of B. felina SX-6-22 and identified three biosynthetic gene clusters detx, isd and isr, which are responsible for the biosynthesis of DTXs, ISDs, and ISRs, respectively. Comparative analyses of the three gene clusters clarified the biosynthetic relationships among these cyclohexadepsipeptides. Finally, we characterized the entire biosynthesis of nonproteinogenic building block (3S)-methyl-l-proline. The Δ1-pyrroline-5-carboxylate reductases (P5CRs), also used in the biosynthesis of l-proline, were demonstrated to catalyze the final reduction step in (3S)-methyl-l-proline formation, suggesting potential cross talk between primary and secondary metabolisms. These results provide opportunities for biosynthetic pathway engineering to generate new anti-ZIKV cyclohexadepsipeptides.  相似文献   

6.
Decapping is a critical step in the conserved 5′-to-3′ mRNA decay pathway of eukaryotes. The hetero-octameric Lsm1-7–Pat1 complex is required for normal rates of decapping in this pathway. This complex also protects the mRNA 3′-ends from trimming in vivo. To elucidate the mechanism of decapping, we analyzed multiple lsm1 mutants, lsm1-6, lsm1-8, lsm1-9, and lsm1-14, all of which are defective in decapping and 3′-end protection but unaffected in Lsm1-7–Pat1 complex integrity. The RNA binding ability of the mutant complex was found to be almost completely lost in the lsm1-8 mutant but only partially impaired in the other mutants. Importantly, overproduction of the Lsm1-9p- or Lsm1-14p-containing (but not Lsm1-8p-containing) mutant complexes in wild-type cells led to a dominant inhibition of mRNA decay. Further, the mRNA 3′-end protection defect of lsm1-9 and lsm1-14 cells, but not the lsm1-8 cells, could be partly suppressed by overproduction of the corresponding mutant complexes in those cells. These results suggest the following: (1) Decapping requires both binding of the Lsm1-7–Pat1 complex to the mRNA and facilitation of the post-binding events, while binding per se is sufficient for 3′-end protection. (2) A major block exists at the post-binding steps in the lsm1-9 and lsm1-14 mutants and at the binding step in the lsm1-8 mutant. Consistent with these ideas, the lsm1-9, 14 allele generated by combining the mutations of lsm1-9 and lsm1-14 alleles had almost fully lost the RNA binding activity of the complex and behaved like the lsm1-8 mutant.  相似文献   

7.
Histones and many other proteins react with abundant endogenous DNA lesions, apurinic/apyrimidinic (abasic, AP) sites and/or 3′-phospho-α,β-unsaturated aldehyde (3′-PUA), to form unstable but long-lived Schiff base DNA–protein cross-links at 3′-DNA termini (3′-PUA–protein DPCs). Poly (ADP-ribose) polymerase 1 (PARP1) cross-links to the AP site in a similar manner but the Schiff base is reduced by PARP1’s intrinsic redox capacity, yielding a stable 3′-PUA–PARP1 DPC. Eradicating these DPCs is critical for maintaining the genome integrity because 3′-hydroxyl is required for DNA synthesis and ligation. But how they are repaired is not well understood. Herein, we chemically synthesized 3′-PUA-aminooxylysine-peptide adducts that closely resemble the proteolytic 3′-PUA–protein DPCs, and found that they can be repaired by human tyrosyl-DNA phosphodiesterase 1 (TDP1), AP endonuclease 1 (APE1) and three-prime repair exonuclease 1 (TREX1). We characterized these novel repair pathways by measuring the kinetic constants and determining the effect of cross-linked peptide length, flanking DNA structure, and the opposite nucleobase. We further found that these nucleases can directly repair 3′-PUA–histone DPCs, but not 3′-PUA–PARP1 DPCs unless proteolysis occurs initially. Collectively, we demonstrated that in vitro 3′-PUA–protein DPCs can be repaired by TDP1, APE1, and TREX1 following proteolysis, but the proteolysis is not absolutely required for smaller DPCs.  相似文献   

8.
Hua L  Qi WY  Hussain SH  Gao K  Arfan M 《Steroids》2012,77(7):811-818
Nine new highly oxygenated stigmastane-type steroids, vernoanthelcin A-I (1-9), and two new stigmastane-type steroidal glycosides, vernoantheloside A and B (10 and 11) were isolated from the aerial parts of Vernonia anthelmintica Willd. The structures of compounds 1-11 were determined on the basis of IR, MS, 1D-NMR, and 2D-NMR, and their absolute configurations were deduced using single-crystal X-ray diffraction and the CD exciton chirality method. Compounds 1, 5, 7, 9 and 10 were tested for their effects on estrogen biosynthesis in human ovarian granulosa-like cells (KGN cells).  相似文献   

9.
1. A number of compounds known to inhibit polyamine biosynthesis at various steps in the biosynthetic pathway were tested for their ability to inhibit growth and decrease polyamine concentrations in virally transformed mouse fibroblasts (SV-3T3 cells). 2. Virtually complete inhibition of growth was produced by the inhibitors of ornithine decarboxylase α-methylornithine and α-difluoromethylornithine and by the inhibitors of S-adenosylmethionine decarboxylase 1,1′-[(methylethanediylidene)dinitrilo]diguanidine and 1,1′-[(methylethanediylidene)dinitrilo]bis-(3-aminoguanidine). The former inhibitors decreased putrescine and spermidine contents in the cells to very low values, whereas the latter substantially increased putrescine but decreased spermidine concentrations. The inhibitory effects of all of these inhibitors on cell growth could be prevented by the addition of spermidine, suggesting that spermidine depletion is the underlying cause of their inhibition of growth. 3. α-Difluoromethylornithine, which is an irreversible inhibitor of ornithine decarboxylase, was a more potent inhibitor of growth and polyamine production (depleting spermidine almost completely and spermine significantly) than α-methylornithine, which is a competitive inhibitor. This was not the case with the inhibitors of S-adenosylmethionine decarboxylase where 1,1′-[(methylethanediylidene)dinitrilo]diguanidine, a reversible inhibitor, was more active than 1,1′-[(methylethanediylidene)dinitrilo]bis-(3-aminoguanidine), an irreversible inhibitor. It is suggested that this effect may be due to the lesser uptake and/or greater chemical reactivity of the latter compound. 4. Various nucleoside derivatives of S-adenosylhomocysteine that inhibited spermidine synthase in vitro did not have significant inhibitory action against polyamine accumulation in the cell. These compounds, which included S-adenosylhomocysteine sulphone, decarboxylated S-adenosylhomocysteine sulphone, decarboxylated S-adenosylhomocysteine sulphoxide and S-adenosyl-4-thio-butyric acid sulphone did not inhibit cell growth or polyamine content until cytotoxic concentrations were added. 5. 5′-Methylthioadenosine, 5′-isobutylthioadenosine and 5′-methylthiotubercidin, which inhibit aminopropyltransferase activity in vitro, all inhibited cell growth and decreased spermidine content. Although these compounds were most active against spermine synthase in vitro, they acted in the cell primarily to decrease spermidine content. Cell growth could not be restored to normal values by addition of spermidine, suggesting that these nucleosides have another inhibitory action towards cellular proliferation. 6. 5′-Methylthioadenosine and 5′-isobutylthioadenosine are degraded by a phosphorylase present in SV3T3 cells, yielding 5-methylthioribose-1-phosphate and 5-isobutylthioribose-1-phosphate respectively, and adenine. This degradation appears to decrease the inhibitory action towards cell growth, suggesting that the nucleosides themselves are exerting the inhibitory action. 5′-Methylthiotubercidin, which is not a substrate for the phosphorylase and is a competitive inhibitor of it, was the most active of these nucleosides in inhibiting cell growth and spermidine content. 5′-Methylthiotubercidin and α-difluoromethylornithine had additive effects on retarding cell growth, but not on cellular spermine accumulation, also suggesting that the primary growth-inhibiting action of the nucleoside was not on polyamine production. 7. These results support the concept that 5′-methylthioadenosine phosphorylase plays an important role in permitting cell growth to continue by preventing the build-up of inhibitory intracellular concentrations of 5′-methylthioadenosine.  相似文献   

10.
Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) and thus they play a crucial role in the determination of flower colour. F3′H and F3′5′H mostly belong to CYP75B and CYP75A, respectively, except for the F3′5′Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3′5′H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3′5′H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3′5′H and F3′H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones.  相似文献   

11.
Recent studies demonstrate that several polyphenolic compounds produced from beyond the canonical monolignol biosynthetic pathways can behave as lignin monomers, participating in radical coupling reactions and being incorporated into lignin polymers. Here, we show various classes of flavonoids, the chalconoid naringenin chalcone, the flavanones naringenin and dihydrotricin, and the flavone tricin, incorporated into the lignin polymer of papyrus (Cyperus papyrus L.) rind. These flavonoids were released from the rind lignin by Derivatization Followed by Reductive Cleavage (DFRC), a chemical degradative method that cleaves the β-ether linkages, indicating that at least a fraction of each was integrated into the lignin as β-ether-linked structures. Due to the particular structure of tricin and dihydrotricin, whose C-3ʹ and C-5ʹ positions at their B-rings are occupied by methoxy groups, these compounds can only be incorporated into the lignin through 4ʹ–O–β bonds. However, naringenin chalcone and naringenin have no substituents at these positions and can therefore form additional carbon–carbon linkages, including 3ʹ– or 5ʹ–β linkages that form phenylcoumaran structures not susceptible to cleavage by DFRC. Furthermore, Nuclear Magnetic Resonance analysis indicated that naringenin chalcone can also form additional linkages through its conjugated double bond. The discovery expands the range of flavonoids incorporated into natural lignins, further broadens the traditional definition of lignin, and enhances the premise that any phenolic compound present at the cell wall during lignification could be oxidized and potentially integrated into the lignin structure, depending only on its chemical compatibility. This study indicates that papyrus lignin has a unique structure, as it is the only lignin known to date that integrates such a diversity of phenolic compounds from different classes of flavonoids. This discovery will open up new ways to engineer and design lignins with specific properties and for enhanced value.

A series of flavonoids incorporate into the rind lignin of papyrus, participating as monomers during lignification.  相似文献   

12.
A new series of 1H-pyrrole (6a–c, 8a–c), pyrrolo[3,2-d]pyrimidines (9a–c) and pyrrolo[3,2-e][1, 4]diazepines (11a–c) were designed and synthesised. These compounds were designed to have the essential pharmacophoric features of EGFR Inhibitors, they have shown anticancer activities against HCT116, MCF-7 and Hep3B cancer cells with IC50 values ranging from 0.009 to 2.195 µM. IC50 value of doxorubicin is 0.008 µM, compounds 9a and 9c showed IC50 values of 0.011 and 0.009 µM respectively against HCT-116 cells. Compound 8b exerted broad-spectrum activity against all tested cell lines with an IC50 value less than 0.05 µM. Compound 8b was evaluated against a panel of kinases. This compound potently inhibited CDK2/Cyclin A1, DYRK3 and GSK3 alpha kinases with 10–23% compared to imatinib (1–10%). It has also arrested the cell cycle of MCF-7 cells at the S phase. Its antiproliferative activity was further augmented by molecular docking into the active sites of EGFR and CDK2 cyclin A1.  相似文献   

13.
Ultrasonic-assisted extraction (UAE) was developed to extract phenolic and flavonoid antioxidants from Clerodendrum cyrtophyllum Turcz leaves. The optimal experimental parameters for antioxidant extraction from C. cyrtophyllum leaves were measured using single-factor experimentation combined with response surface methodology (RSM). Total phenolic content (TPC) and total flavonoid content (TFC) assays were used to quantify antioxidant compounds. Next, antioxidant radical scavenging capacity was measured using 2,2′-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′ -azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) radicals. Optimized extraction conditions for UAE from C. cyrtophyllum leaves were as follows: 60.9% ethanol, 85.4 min, and 63.3°C for maximal TPC extraction (16.8±0.2 mg GAE/g DW); 67.7% ethanol, 82.9 min, and 63.0°C for maximal TFC extraction (49.3±0.4 mg RT/g DW); 48.8% ethanol, 85.1 min, and 63.9°C for maximal DPPH radical-scavenging capacity (86.8±0.2%); and 50.6% ethanol, 81.3 min, and 63.4°C for maximal ABTS radical-scavenging capacity (92.9±0.5%). Ethanol concentration was the most important factor in the extraction process. Our work offers optimal extraction conditions for C. cyrtophyllum as a potential source of natural antioxidants.  相似文献   

14.
Biochemical analysis of human Dna2   总被引:1,自引:1,他引:0  
Yeast Dna2 helicase/nuclease is essential for DNA replication and assists FEN1 nuclease in processing a subset of Okazaki fragments that have long single-stranded 5′ flaps. It is also involved in the maintenance of telomeres. DNA2 is a gene conserved in eukaryotes, and a putative human ortholog of yeast DNA2 (ScDNA2) has been identified. Little is known about the role of human DNA2 (hDNA2), although complementation experiments have shown that it can function in yeast to replace ScDNA2. We have now characterized the biochemical properties of hDna2. Recombinant hDna2 has single-stranded DNA-dependent ATPase and DNA helicase activity. It also has 5′–3′ nuclease activity with preference for single-stranded 5′ flaps adjacent to a duplex DNA region. The nuclease activity is stimulated by RPA and suppressed by steric hindrance at the 5′ end. Moreover, hDna2 shows strong 3′–5′ nuclease activity. This activity cleaves single-stranded DNA in a fork structure and, like the 5′–3′ activity, is suppressed by steric hindrance at the 3′-end, suggesting that the 3′–5′ nuclease requires a 3′ single-stranded end for activation. These biochemical specificities are very similar to those of the ScDna2 protein, but suggest that the 3′–5′ nuclease activity may be more important than previously thought.  相似文献   

15.
We previously reported the in vitro selection of several Mg2+-dependent deoxyribozymes (DNA enzymes) that synthesize a 2′–5′ RNA linkage from a 2′,3′-cyclic phosphate and a 5′-hydroxyl. Here we subjected the 9A2 deoxyribozyme to re-selection for improved ligation rate. We found two new DNA enzymes (7Z81 and 7Z48) that contain the catalytic core of 7Q10, a previously reported small deoxyribozyme that is unrelated in sequence to 9A2. A third new DNA enzyme (7Z101) is unrelated to either 7Q10 or 9A2. The new 7Z81 and 7Z48 DNA enzymes have ligation rates over an order of magnitude higher than that of 7Q10 itself and they have additional sequence elements that correlate with these faster rates. Our findings provide insight into structure–function relationships of catalytic nucleic acids.  相似文献   

16.
17.
DNA topoisomerases and DNA site-specific recombinases are involved in a diverse set of cellular processes but both function by making transient breaks in DNA. Type IB topoisomerases and tyrosine recombinases cleave DNA by transesterification of an active site tyrosine to generate a DNA–3′-phosphotyrosyl–enzyme adduct and a free 5′-hydroxyl (5′-OH). Strand ligation results when the 5′-OH attacks the covalent complex and displaces the enzyme. We describe the synthesis of 3′-phospho-(para-nitrophenyl) oligonucleotides (3′-pNP DNAs), which mimic the natural 3′-phosphotyrosyl intermediate, and demonstrate that such pre-activated strands are substrates for DNA ligation by vaccinia topoisomerase and Cre recombinase. Ligation occurs by direct attack of a 5′-OH strand on the 3′-pNP DNA (i.e., without a covalent protein–DNA intermediate) and generates free para-nitrophenol as a product. The chromogenic DNA substrate allows ligation to be studied in real-time and in the absence of competing cleavage reactions and can be exploited for high-throughput screening of topoisomerase/recombinase inhibitors.  相似文献   

18.
Human (h) DNA repair enzyme thymine DNA glycosylase (hTDG) is a key DNA glycosylase in the base excision repair (BER) pathway that repairs deaminated cytosines and 5-methyl-cytosines. The cell cycle checkpoint protein Rad9–Rad1–Hus1 (the 9-1-1 complex) is the surveillance machinery involved in the preservation of genome stability. In this study, we show that hTDG interacts with hRad9, hRad1 and hHus1 as individual proteins and as a complex. The hHus1 interacting domain is mapped to residues 67–110 of hTDG, and Val74 of hTDG plays an important role in the TDG–Hus1 interaction. In contrast to the core domain of hTDG (residues 110–308), hTDG(67–308) removes U and T from U/G and T/G mispairs, respectively, with similar rates as native hTDG. Human TDG activity is significantly stimulated by hHus1, hRad1, hRad9 separately, and by the 9-1-1 complex. Interestingly, the interaction between hRad9 and hTDG, as detected by co-immunoprecipitation (Co-IP), is enhanced following N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) treatment. A significant fraction of the hTDG nuclear foci co-localize with hRad9 foci in cells treated with methylating agents. Thus, the 9-1-1 complex at the lesion sites serves as both a damage sensor to activate checkpoint control and a component of the BER.  相似文献   

19.
Loop–loop tertiary interactions play a key role in the folding and catalytic activity of natural hammerhead ribozymes. Using a combination of NMR spectroscopy, site-directed mutagenesis and kinetic and infectivity analyses, we have examined the structure and function of loops 1 and 2 of the (+) and (–) hammerheads of chrysanthemum chlorotic mottle viroid RNA. In both hammerheads, loop 1 is a heptanucleotide hairpin loop containing an exposed U at its 5′ side and an extrahelical U at its 3′-side critical for the catalytic activity of the ribozyme in vitro and for viroid infectivity in vivo, whereas loop 2 has a key opened A at its 3′-side. These structural features promote a specific loop–loop interaction motif across the major groove. The essential features of this tertiary structure element, base pairing between the 5′ U of loop 1 and the 3′ A of loop 2, and interaction of the extrahelical pyrimidine of loop 1 with loop 2, are likely shared by a significant fraction of natural hammerheads.  相似文献   

20.
The wild-type form of p53 contains an intrinsic 3′–5′-exonuclease activity. As p53 forms a complex with DNA polymerase α-primase (pol-prim) in vivo this finding suggests that p53 might cooperate with pol-prim to stabilize the genetic information of living cells. To test this hypothesis, exonuclease-free DNA pol-prim was expressed alone or together with p53 for purification. Pol-prim formed a complex with p53, which was purified by ion exchange and immunoaffinity chromatography from baculovirus-infected insect cells. The p53-containing pol-prim fractions removed a 3′-unpaired nucleotide with a 1.5–2-fold higher rate than a paired nucleotide, whereas the four subunit pol-prim did not have any exonuclase activity. Therefore, only p53/pol-prim was able to elongate a primer-template that contained a 3′-unpaired primer end in vitro. To achieve this, the 3′–5′-exonuclease activity of p53 excised the unpaired nucleotide at the 3′-end of the primer and created a paired 3′-end, which pol-prim was able to elongate. The exonuclease activity of p53 as well as the elongation of a primer with a mispaired 3′-end was inhibited specifically by the anti-p53 monoclonal antibodies PAb240 and PAb421.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号