首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Mild therapeutic hypothermia following cardiac arrest is neuroprotective, but its effect on myocardial dysfunction that is a critical issue following resuscitation is not clear. This study sought to examine whether hypothermia and the combination of hypothermia and pharmacological postconditioning are cardioprotective in a model of cardiopulmonary resuscitation following acute myocardial ischemia.

Methodology/Principal Findings

Thirty pigs (28–34 kg) were subjected to cardiac arrest following left anterior descending coronary artery ischemia. After 7 minutes of ventricular fibrillation and 2 minutes of basic life support, advanced cardiac life support was started according to the current AHA guidelines. After successful return of spontaneous circulation (n = 21), coronary perfusion was reestablished after 60 minutes of occlusion, and animals were randomized to either normothermia at 38°C, hypothermia at 33°C or hypothermia at 33°C combined with sevoflurane (each group n = 7) for 24 hours. The effects on cardiac damage especially on inflammation, apoptosis, and remodeling were studied using cellular and molecular approaches. Five animals were sham operated. Animals treated with hypothermia had lower troponin T levels (p<0.01), reduced infarct size (34±7 versus 57±12%; p<0.05) and improved left ventricular function compared to normothermia (p<0.05). Hypothermia was associated with a reduction in: (i) immune cell infiltration, (ii) apoptosis, (iii) IL-1β and IL-6 mRNA up-regulation, and (iv) IL-1β protein expression (p<0.05). Moreover, decreased matrix metalloproteinase-9 activity was detected in the ischemic myocardium after treatment with mild hypothermia. Sevoflurane conferred additional protective effects although statistic significance was not reached.

Conclusions/Significance

Hypothermia reduced myocardial damage and dysfunction after cardiopulmonary resuscitation possible via a reduced rate of apoptosis and pro-inflammatory cytokine expression.  相似文献   

2.

Background

Whether additional benefit can be achieved with the use of trimetazidine (TMZ) in patients with chronic heart failure (CHF) remains controversial. We therefore performed a meta-analysis of randomized controlled trials (RCTs) to evaluate the effects of TMZ treatment in CHF patients.

Methods

We searched PubMed, EMBASE, and Cochrane databases through October 2013 and included 19 RCTs involving 994 CHF patients who underwent TMZ or placebo treatment. Risk ratio (RR) and weighted mean differences (WMD) were calculated using fixed or random effects models.

Results

TMZ therapy was associated with considerable improvement in left ventricular ejection fraction (WMD: 7.29%, 95% CI: 6.49 to 8.09, p<0.01) and New York Heart Association classification (WMD: −0.55, 95% CI: −0.81 to −0.28, p<0.01). Moreover, treatment with TMZ also resulted in significant decrease in left ventricular end-systolic volume (WMD: −17.09 ml, 95% CI: −20.15 to −14.04, p<0.01), left ventricular end-diastolic volume (WMD: −11.24 ml, 95% CI: −14.06 to −8.42, p<0.01), hospitalization for cardiac causes (RR: 0.43, 95% CI: 0.21 to 0.91, p = 0.03), B-type natriuretic peptide (BNP; WMD: −157.08 pg/ml, 95% CI: −176.55 to −137.62, p<0.01) and C-reactive protein (CRP; WMD: −1.86 mg/l, 95% CI: −2.81 to −0.90, p<0.01). However, there were no significant differences in exercise duration and all-cause mortality between patients treated with TMZ and placebo.

Conclusions

TMZ treatment in CHF patients may improve clinical symptoms and cardiac function, reduce hospitalization for cardiac causes, and decrease serum levels of BNP and CRP.  相似文献   

3.
Doxorubicin (DOX), an effective chemotherapeutic drug used in the treatment of various cancers, is limited in its clinical applications due to cardiotoxicity. Recent studies suggest that transplanted adult stem cells inhibit DOX-induced cardiotoxicity. However, the effects of transplanted embryonic stem (ES) and induced pluripotent stem (iPS) cells are completely unknown in DOX-induced left ventricular dysfunction following myocardial infarction (MI). In brief, C57BL/6 mice were divided into five groups: Sham, DOX-MI, DOX-MI+cell culture (CC) media, DOX-MI+ES cells, and DOX-MI+iPS cells. Mice were injected with cumulative dose of 12 mg/kg of DOX and 2 weeks later, MI was induced by coronary artery ligation. Following ligation, 5×104 ES or iPS cells were delivered into the peri-infarct region. At day 14 post-MI, echocardiography was performed, mice were sacrificed, and hearts were harvested for further analyses. Our data reveal apoptosis was significantly inhibited in ES and iPS cell transplanted hearts compared with respective controls (DOX-MI+ES: 0.48±0.06% and DOX-MI+iPS: 0.33±0.05% vs. DOX-MI: 1.04±0.07% and DOX-MI+CC: 0.96±0.21%; p<0.05). Furthermore, a significant increase in levels of Notch-1 (p<0.05), Hes1 (p<0.05), and pAkt (p<0.05) were observed whereas a decrease in the levels of PTEN (p<0.05), a negative regulator of Akt, was evident following stem cell transplantation. Moreover, hearts transplanted with stem cells demonstrated decreased vascular and interstitial fibrosis (p<0.05) as well as MMP-9 expression (p<0.01) compared with controls. Additionally, heart function was significantly improved (p<0.05) in both cell-transplanted groups. In conclusion, our data show that transplantation of ES and iPS cells blunt DOX-induced adverse cardiac remodeling, which is associated with improved cardiac function, and these effects are mediated by the Notch pathway.  相似文献   

4.
To investigate whether butyric acid could alleviate chronic intermittent hypoxia (CIH)-induced lipid formation in human preadipocytes-subcutaneous (HPA-s) through accumulation of human antigen R (HuR) and inactivation of AMP-activated protein kinase (AMPK) pathway, HPA-s were obtained and divided into three groups: Control group: cells were cultured under normal conditions; CIH group: cells were cultured in a three-gas incubator (10% O2); Butyric acid group: 10 mmol/l butyric acid added into cell culture medium. HuR-siRNA was futher transfected into CIH group for verification the function of HuR. Oil Red O was implemented for observation of lipid droplets within cells. Cell Counting Kit-8 (CCK8) assay was used for detecting cell viability. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-nick end labeling (TUNEL) assay as well as flow cytometry analysis was employed for determining cell apoptosis. Western blotting was used for measurement of protein expression levels. RT-qPCR analysis was used for detecting mRNA expression. CIH treatment increased adipocytes proliferation, while butyric acid inhibited cell proliferation and promoted cell apoptosis. The treatment of butyric acid in CIH group down-regulated expression of inflammatory factors and increased cell apoptotic rate. Butyric acid treatment increased HuR expression in both cytoplasm and nucleus and decreased the level of p-AMPK and p-ACC, while transfection of AMPK activator or HuR-siRNA would down-regulate HuR expression. Moreover, butyric acid alleviated CIH-induced cell proliferation, lipid formation and inflammatory status and promoted cell apoptosis through regulating related genes including p21, PPARγ, C/EBPa, IL-1β, IL-6, TLR4, caspase-8 and caspase-3. In conclusion, butyric acid could alleviate CIH-induced inflammation, cell proliferation and lipid formation through accumulation of HuR and inactivation of AMPK pathway.  相似文献   

5.
ObjectiveThe aim of this study was to prospectively investigate the long-term cardiovascular and pulmonary hemodynamic effects of surgical shunt for treatment of portal hypertension (PH) due to Schistosomiasis mansoni.LocationThe University of São Paulo Medical School, Brazil; Public Practice.MethodsHemodynamic evaluation was performed with transesophageal Doppler and contrast-enhanced echocardiography (ECHO) on twenty-eight participants with schistosomal portal hypertension. Participants were divided into two groups according to the surgical procedure used to treat their schistosomal portal hypertension within the last two years: group 1—distal splenorenal shunt (DSRS, n = 13) and group 2—esophagogastric devascularization and splenectomy (EGDS, n = 15).ResultsThe cardiac output (5.08 ± 0.91 L/min) and systolic volume (60.1 ± 5.6 ml) were increased (p = 0.001) in the DSRS group. DSRS participants had a significant increase (p < 0.0001) in their left ventricular end-systolic and end-diastolic diameters as well as in their left ventricular end-diastolic and end-systolic volumes (p < 0.001) compared with the preoperative period. No statistically significant difference was found in the patients who underwent EGDS. ECHO revealed intrapulmonary vasodilatation (IPV) in 18 participants (64%), 9 DSRS and 9 EGDS (p > 0.05).ConclusionsThe late increase in the cardiac output, stroke volume and left ventricular diameters demonstrated left ventricular dilatation after a distal splenorenal shunt. ECHO revealed a greater prevalence for IPV in patients with schistosomiasis than has previously been described in patients with PH from liver cirrhosis.  相似文献   

6.

Background

Genioglossal dysfunction is involved in the pathophysiology of obstructive sleep apnea hypoxia syndrome (OSAHS) characterized by nocturnal chronic intermittent hypoxia (CIH). The pathophysiology of genioglossal dysfunction and possible targeted pharmacotherapy for alleviation of genioglossal injury in CIH require further investigation.

Methodology/Principal Findings

Rats in the control group were exposed to normal air, while rats in the CIH group and CIH+adiponectin (AD) group were exposed to the same CIH condition (CIH 8 hr/day for 5 successive weeks). Furthermore, rats in CIH+AD group were administrated intravenous AD supplementation at the dosage of 10 µg, twice a week for 5 consecutive weeks. We found that CIH-induced genioglossus (GG) injury was correlated with mitochondrial dysfunction, reduction in the numbers of mitochondrias, impaired mitochondrial ultrastructure, and a reduction in type I fibers. Compared with the CIH group, impaired mitochondrial structure and function was significantly improved and a percentage of type I fiber was elevated in the CIH+AD group. Moreover, compared with the control group, the rats’ GG in the CIH group showed a significant decrease in phosphorylation of LKB1, AMPK, and PGC1-α, whereas there was significant rescue of such reduction in phosphorylation within the CIH+AD group.

Conclusions

CIH exposure reduces mitochondrial biogenesis and impairs mitochondrial function in GG, while AD supplementation increases mitochondrial contents and alleviates CIH-induced mitochondrial dysfunction possibly through the AMPK pathway.  相似文献   

7.
An accelerated progressive decline in renal function is a frequent accompaniment of myocardial infarction (MI). Indoxyl sulfate (IS), a uremic toxin that accumulates from the early stages of chronic kidney disease (CKD), is contributory to both renal and cardiac fibrosis. IS levels can be reduced by administration of the oral adsorbent AST-120, which has been shown to ameliorate pathological renal and cardiac fibrosis in moderate to severe CKD. However, the cardiorenal effect of AST-120 on less severe renal dysfunction in the post-MI setting has not previously been well studied. MI-induced Sprague-Dawley rats were randomized to receive either AST-120 (MI+AST-120) or were untreated (MI+Vehicle) for 16 weeks. Serum IS levels were measured at baseline, 8 and 16 weeks. Echocardiography and glomerular filtration rate (GFR) were assessed prior to sacrifice. Renal and cardiac tissues were assessed for pathological changes using histological and immunohistochemical methods, Western blot analysis and real-time PCR. Compared with sham, MI+Vehicle animals had a significant reduction in left ventricular ejection fraction (by 42%, p<0.001) and fractional shortening (by 52%, p<0.001) as well as lower GFR (p<0.05) and increased serum IS levels (p<0.05). A significant increase in interstitial fibrosis in the renal cortex was demonstrated in MI+Vehicle animals (p<0.001). Compared with MI+Vehicle, MI+AST-120 animals had increased GFR (by 13.35%, p<0.05) and reduced serum IS (p<0.001), renal interstitial fibrosis (p<0.05), and renal KIM-1, collagen-IV and TIMP-1 expression (p<0.05). Cardiac function did not change with AST-120 treatment, however gene expression of TGF-β1 and TNF-α as well as collagen-I and TIMP-1 protein expression was decreased in the non-infarcted myocardium (p<0.05). In conclusion, reduction of IS attenuates cardio-renal fibrotic processes in the post-MI kidney. KIM-1 appears to be a sensitive renal injury biomarker in this setting and is correlated with serum IS levels.  相似文献   

8.
Nebivolol, third-generation β-blocker, may activate β3-adrenergic receptor (AR), which has been emerged as a novel and potential therapeutic targets for cardiovascular diseases. However, it is not known whether nebivolol administration plays a cardioprotective effect against myocardial infarction (MI) injury. Therefore, the present study was designed to clarify the effects of nebivolol on MI injury and to elucidate the underlying mechanism. MI model was constructed by left anterior descending (LAD) artery ligation. Nebivolol, β3-AR antagonist (SR59230A), Nitro-L-arginine methylester (L-NAME) or vehicle was administered for 4 weeks after MI operation. Cardiac function was monitored by echocardiography. Moreover, the fibrosis and the apoptosis of myocardium were assessed by Masson''s trichrome stain and TUNEL assay respectively 4 weeks after MI. Nebivolol administration reduced scar area by 68% compared with MI group (p<0.05). Meanwhile, nebivolol also decreased the myocardial apoptosis and improved the heart function after MI (p<0.05 vs. MI). These effects were associated with increased β3-AR expression. Moreover, nebivolol treatment significantly increased the phosphorylation of endothelial NOS (eNOS) and the expression of neuronal NOS (nNOS). Conversely, the cardiac protective effects of nebivolol were abolished by SR and L-NAME. These results indicate that nebivolol protects against MI injury. Furthermore, the cardioprotective effects of nebivolol may be mediated by β3-AR-eNOS/nNOS pathway.  相似文献   

9.

Background

The association of right ventricular (RV) structure and function with symptoms in individuals without cardiopulmonary disease is unknown. We hypothesized that greater RV mass and RV end-diastolic volume (RVEDV), smaller RV stroke volume (RVSV), and lower RV ejection fraction (RVEF) measured by cardiac magnetic resonance imaging (MRI) in participants free of clinical cardiovascular disease at baseline would be associated with a greater risk of self-reported dyspnea.

Methods

The Multi-Ethnic Study of Atherosclerosis (MESA) performed cardiac MRIs on participants without clinical cardiovascular disease between 2000 and 2002. We excluded subjects who reported “prevalent” dyspnea at the first assessment (24 months). The presence of dyspnea was assessed at 24 months, 42 months, and 60 months from baseline. Cox proportional hazards models were used to examine the relationship between RV measures and incident dyspnea.

Results

In the final study sample (N = 2763), there were significant interactions between RV measures and sex in terms of the risk of dyspnea (p<0.05). Among men (N = 1453), lower RV mass (p = 0.003), smaller RVEDV (p<0.001), smaller RV end-systolic volume (RVESV) (p = 0.03) and decreased RVSV (p<0.001) were associated with an increased risk of developing dyspnea after adjusting for covariates. Associations remained after adjusting for left ventricular function and lung function. However, there were no significant associations between RV measures and the risk of dyspnea in women.

Conclusions

Lower RV mass and smaller RV volumes were associated with an increased risk of dyspnea in men, but not in women.  相似文献   

10.
Several endocrine factors, including sex-steroid hormones are known to influence adiponectin secretion. Our purpose was to evaluate the influence of testosterone and of the synthetic non-aromatizable/non-5α reducible androgen 17β-hydroxyestra-4,9,11-trien-3-one (trenbolone) on circulating adiponectin and adiponectin protein expression within visceral fat. Young male and female F344 rats underwent sham surgery (SHAM), gonadectomy (GX), or GX plus supraphysiologic testosterone-enanthate (TE) administration. Total circulating adiponectin was 39% higher in intact SHAM females than SHAM males (p<0.05). GX increased total adiponectin by 29–34% in both sexes (p<0.05), while TE reduced adiponectin to concentrations that were 46–53% below respective SHAMs (p≤0.001) and ablated the difference in adiponectin between sexes. No differences in high molecular weight (HMW) adiponectin were observed between sexes or treatments. Adiponectin concentrations were highly and negatively associated with serum testosterone (males: r = −0.746 and females: r = −0.742, p≤0.001); however, no association was present between adiponectin and estradiol. In separate experiments, trenbolone-enanthate (TREN) prevented the GX-induced increase in serum adiponectin (p≤0.001) in young animals, with Low-dose TREN restoring adiponectin to the level of SHAMs and higher doses of TREN reducing adiponectin to below SHAM concentrations (p≤0.001). Similarly, TREN reduced adiponectin protein expression within visceral fat (p<0.05). In adult GX males, Low-dose TREN also reduced total adiponectin and visceral fat mass to a similar magnitude as TE, while increasing serum HMW adiponectin above SHAM and GX animals (p<0.05). Serum adiponectin was positively associated with visceral fat mass in young (r = 0.596, p≤0.001) and adult animals (r = 0.657, p≤0.001). Our results indicate that androgens reduce circulating total adiponectin concentrations in a dose-dependent manner, while maintaining HMW adiponectin. This change is directionally similar to the androgen-induced lipolytic effects on visceral adiposity and equal in magnitude between TE and TREN, suggesting that neither the aromatization nor the 5α reduction of androgens is required for this effect.  相似文献   

11.

Background

Atrial fibrillation (AF) is the most common arrhythmia in humans, yet; treatment has remained sub-optimal due to poor understanding of the underlying mechanisms. Cardiac alternans precede AF episodes, suggesting an important arrhythmia substrate. Recently, we demonstrated ventricular SERCA2a overexpression suppresses cardiac alternans and arrhythmias. Therefore, we hypothesized that atrial SERCA2a overexpression will decrease cardiac alternans and arrhythmias.

Methods

Adult rat isolated atrial myocytes where divided into three treatment groups 1) Control, 2) SERCA2a overexpression (Ad.SERCA2a) and 3) SERCA2a inhibition (Thapsigargin, 1μm). Intracellular Ca2+ was measured using Indo-1AM and Ca2+ alternans (Ca-ALT) was induced with a standard ramp pacing protocol.

Results

As predicted, SR Ca2+ reuptake was enhanced with SERCA2a overexpression (p< 0.05) and reduced with SERCA2a inhibition (p<0.05). Surprisingly, there was no difference in susceptibility to Ca-ALT with either SERCA2a overexpression or inhibition when compared to controls (p = 0.73). In contrast, SERCA2a overexpression resulted in increased premature SR Ca2+ (SCR) release compared to control myocytes (28% and 0%, p < 0.05) and concomitant increase in SR Ca2+ load (p<0.05). Based on these observations we tested in-vivo atrial arrhythmia inducibility in control and Ad.SERCA2a animals using an esophageal atrial burst pacing protocol. There were no inducible atrial arrhythmias in Ad.GFP (n = 4) animals though 20% of Ad.SERCA2a (n = 5) animals had inducible atrial arrhythmias (p = 0.20).

Conclusions

Our findings suggest that unlike the ventricle, SERCA2a is not a key regulator of cardiac alternans in the atrium. Importantly, SERCA2a overexpression in atrial myocytes can increase SCR, which may be arrhythmogenic.  相似文献   

12.

Background

Surgical procedures in small animal models of heart disease might evoke alterations in cardiac morphology and function. The aim of this study was to reveal and quantify such potential artificial early or long term effects in vivo, which might account for a significant bias in basic cardiovascular research, and, therefore, could potentially question the meaning of respective studies.

Methods

Female Wistar rats (n = 6 per group) were matched for weight and assorted for sham left coronary artery ligation or control. Cardiac morphology and function was then investigated in vivo by cine magnetic resonance imaging at 7 Tesla 1 and 8 weeks after the surgical procedure. The time course of metabolic and inflammatory blood parameters was determined in addition.

Results

Compared to healthy controls, rats after sham surgery showed a lower body weight both 1 week (267.5±10.6 vs. 317.0±11.3 g, n<0.05) and 8 weeks (317.0±21.1 vs. 358.7±22.4 g, n<0.05) after the intervention. Left and right ventricular morphology and function were not different in absolute measures in both groups 1 week after surgery. However, there was a confined difference in several cardiac parameters normalized to the body weight (bw), such as myocardial mass (2.19±0.30/0.83±0.13 vs. 1.85±0.22/0.70±0.07 mg left/right per g bw, p<0.05), or enddiastolic ventricular volume (1.31±0.36/1.21±0.31 vs. 1.14±0.20/1.07±0.17 µl left/right per g bw, p<0.05). Vice versa, after 8 weeks, cardiac masses, volumes, and output showed a trend for lower values in sham operated rats compared to controls in absolute measures (782.2±57.2/260.2±33.2 vs. 805.9±84.8/310.4±48.5 mg, p<0.05 for left/right ventricular mass), but not normalized to body weight. Matching these findings, blood testing revealed only minor inflammatory but prolonged metabolic changes after surgery not related to cardiac disease.

Conclusion

Cardio-thoracic surgical procedures in experimental myocardial infarction cause distinct alterations upon the global integrity of the organism, which in the long term also induce circumscribed repercussions on cardiac morphology and function. This impact has to be considered when analyzing data from respective animal studies and transferring these findings to conditions in patients.  相似文献   

13.

Aims

There is controversy regarding the inclusion of patients with hypertension among cases of peripartum cardiomyopathy (PPCM), as the practice has contributed significantly to the discrepancy in reported characteristics of PPCM. We sought to determine whether hypertensive heart failure of pregnancy (HHFP) (i.e., peripartum cardiac failure associated with any form of hypertension) and PPCM have similar or different clinical features and outcome.

Methods and Results

We compared the time of onset of symptoms, clinical profile (including electrocardiographic [ECG] and echocardiographic features) and outcome of patients with HHFP (n = 53; age 29.6 ± 6.6 years) and PPCM (n = 30; age 31.5 ± 7.5 years). The onset of symptoms was postpartum in all PPCM patients, whereas it was antepartum in 85% of HHFP cases (p<0.001). PPCM was more significantly associated with the following features than HHFP (p<0.05): twin pregnancy, smoking, cardiomegaly with lower left ventricular ejection fraction on echocardiography, and longer QRS duration, QRS abnormalities, left atrial hypertrophy, left bundle branch block, T wave inversion and atrial fibrillation on ECG. By contrast, HHFP patients were significantly more likely (p<0.05) to have a family history of hypertension, hypertension and pre-eclampsia in a previous pregnancy, tachycardia at presentation on ECG, and left ventricular hypertrophy on echocardiography. Chronic heart failure, intra-cardiac thrombus and pulmonary hypertension were found significantly more commonly in PPCM than in HHFP (p<0.05). There were 5 deaths in the PPCM group compared to none among HHFP cases (p = 0.005) during follow-up.

Conclusion

There are significant differences in the time of onset of heart failure, clinical, ECG and echocardiographic features, and outcome of HHFP compared to PPCM, indicating that the presence of hypertension in pregnancy-associated heart failure may not fit the case definition of idiopathic PPCM.  相似文献   

14.
The aim of this study was to investigate the role of the programmed cell death factor 4 (PDCD4)/nuclear factor-κB (NF-κB) signaling pathway in coronary micro-embolism (CME)-induced inflammatory responses and cardiac dysfunction in a porcine model. Bama miniature pigs were randomly divided into four groups (n = 5 per group). Micro-embolization balls or saline were infused through a microcatheter in the left anterior descending (LAD) artery in the CME and Sham groups, respectively. PDCD4 siRNA or control siRNA mixed with transfection reagent was infused via the LAD artery 72 h before CME induction in the CME + siRNA-PDCD4 and siRNA-control groups, respectively. Cardiac function was evaluated with ultrasound. Tissue biopsy was stained with hematoxylin–eosin (HE) and hematoxylin basic fuchsin picric acid (HBFP) to measure infarction area. Myocardial PDCD4 and tumor necrosis factor-α (TNF-α) mRNA and protein expression were analyzed by quantitative PCR and Western blotting. NF-κB activity was evaluated in gel electrophoretic mobility shift assay. Echocardiographic parameters showed that compared with the sham group, the CME group had impaired heart function, manifested as systolic dysfunction and left ventricular dilatation (reduced left ventricular ejection fraction [LVEF], left ventricular fractional shortening [FS], and cardiac output [CO] [P < 0.05] and increased left ventricular end-diastolic diameter [LVEDd] [P < 0.05]). Compared with the CME group, the CME + siRNA-PDCD4 group had attenuated CME-induced cardiac function damage (increased LVEF, FS and CO [P < 0.05] and reduced LVEDd [P < 0.05]). Compared with the sham group, the CME group had significantly increased PDCD4 and TNF-α mRNA and protein expression and increased NF-κB activity (P < 0.05). These effects were significantly inhibited in the CME + siRNA-PDCD4 group (P < 0.05). In conclusion, PDCD4/NF-κB signaling pathway activation is an important mechanism for CME-induced cardiac dysfunction, suggesting that inhibition of PDCD4/NF-κB signaling pathway may be a potential target for the prevention and treatment of CME.  相似文献   

15.
There has been re-emerging interest and significant work dedicated to investigating the metabolic effects of high intensity interval training (HIIT) in recent years. HIIT is considered to be a time efficient alternative to classic endurance training (ET) that elicits similar metabolic responses in skeletal muscle. However, there is a lack of information on the impact of HIIT on cardiac muscle in disease. Therefore, we determined the efficacy of ET and HIIT to alter cardiac muscle characteristics involved in the development of diastolic dysfunction, such as ventricular hypertrophy, fibrosis and angiogenesis, in a well-established rodent model of hypertension-induced heart failure before the development of overt heart failure. ET decreased left ventricle fibrosis by ~40% (P < 0.05), and promoted a 20% (P<0.05) increase in the left ventricular capillary/fibre ratio, an increase in endothelial nitric oxide synthase protein (P<0.05), and a decrease in hypoxia inducible factor 1 alpha protein content (P<0.05). In contrast, HIIT did not decrease existing fibrosis, and HIIT animals displayed a 20% increase in left ventricular mass (P<0.05) and a 20% decrease in cross sectional area (P<0.05). HIIT also increased brain natriuretic peptide by 50% (P<0.05), in the absence of concomitant angiogenesis, strongly suggesting pathological cardiac remodeling. The current data support the longstanding belief in the effectiveness of ET in hypertension. However, HIIT promoted a pathological adaptation in the left ventricle in the presence of hypertension, highlighting the need for further research on the widespread effects of HIIT in the presence of disease.  相似文献   

16.
Hypertension is a cardiovascular disease associated with deleterious effects in skeletal and cardiac muscle. Autophagy is a degradative process essential to muscle health. Acute exercise can alter autophagic signaling. Therefore, we aimed to characterize the effects of chronic endurance exercise on autophagy in skeletal and cardiac muscle of normotensive and hypertensive rats. Male Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) were assigned to a sedentary condition or 6 weeks of treadmill running. White gastrocnemius (WG) of hypertensive rats had higher (p<0.05) caspase-3 and proteasome activity, as well as elevated calpain activity. In addition, skeletal muscle of hypertensive animals had elevated (p<0.05) ATG7 and LC3I protein, LAMP2 mRNA, and cathepsin activity, indicative of enhanced autophagic signaling. Interestingly, chronic exercise training increased (p<0.05) Beclin-1, LC3, and p62 mRNA as well as proteasome activity, but reduced (p<0.05) Beclin-1 and ATG7 protein, as well as decreased (p<0.05) caspase-3, calpain, and cathepsin activity. Left ventricle (LV) of hypertensive rats had reduced (p<0.05) AMPKα and LC3II protein, as well as elevated (p<0.05) p-AKT, p-p70S6K, LC3I and p62 protein, which collectively suggest reduced autophagic signaling. Exercise training had little effect on autophagy-related signaling factors in LV; however, exercise training increased (p<0.05) proteasome activity but reduced (p<0.05) caspase-3 and calpain activity. Our results suggest that autophagic signaling is altered in skeletal and cardiac muscle of hypertensive animals. Regular aerobic exercise can effectively alter the proteolytic environment in both cardiac and skeletal muscle, as well as influence several autophagy-related factors in skeletal muscle of normotensive and hypertensive rats.  相似文献   

17.
Inflammation has been implicated as a perpetrator of diabetes and its associated complications. Monocytes, key mediators of inflammation, differentiate into pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages upon infiltration of damaged tissue. However, the inflammatory cell types, which propagate diabetes progression and consequential adverse disorders, remain unclear. The current study was undertaken to assess monocyte infiltration and the role of fibroblast growth factor-9 (FGF-9) on monocyte to macrophage differentiation and cardioprotection in the diabetic infarcted heart. Db/db diabetic mice were assigned to sham, myocardial infarction (MI), and MI+FGF-9 groups. MI was induced by permanent coronary artery ligation and animals were subjected to 2D transthoracic echocardiography two weeks post-surgery. Immunohistochemical and immunoassay results from heart samples collected suggest significantly increased infiltration of monocytes (Mean ± SEM; MI: 2.02% ± 0.23% vs. Sham 0.75% ± 0.07%; p<0.05) and associated pro-inflammatory cytokines (TNF-α, MCP-1, and IL-6), adverse cardiac remodeling (Mean ± SEM; MI: 33% ± 3.04% vs. Sham 2.2% ± 0.33%; p<0.05), and left ventricular dysfunction (Mean ± SEM; MI: 35.4% ± 1.25% vs. Sham 49.19% ± 1.07%; p<0.05) in the MI group. Importantly, treatment of diabetic infarcted myocardium with FGF-9 resulted in significantly decreased monocyte infiltration (Mean ± SEM; MI+FGF-9: 1.39% ± 0.1% vs. MI: 2.02% ± 0.23%; p<0.05), increased M2 macrophage differentiation (Mean ± SEM; MI+FGF-9: 4.82% ± 0.86% vs. MI: 0.85% ± 0.3%; p<0.05) and associated anti-inflammatory cytokines (IL-10 and IL-1RA), reduced adverse remodeling (Mean ± SEM; MI+FGF-9: 11.59% ± 1.2% vs. MI: 33% ± 3.04%; p<0.05), and improved cardiac function (Fractional shortening, Mean ± SEM; MI+FGF-9: 41.51% ± 1.68% vs. MI: 35.4% ± 1.25%; p<0.05). In conclusion, our data suggest FGF-9 possesses novel therapeutic potential in its ability to mediate monocyte to M2 differentiation and confer cardiac protection in the post-MI diabetic heart.  相似文献   

18.
Contribution of individual adiponectin isoforms to lipolysis regulation remains unknown. We investigated the impact of full-length, trimeric and globular adiponectin isoforms on spontaneous lipolysis in subcutaneous abdominal (SCAAT) and visceral adipose tissues (VAT) of obese and non-obese subjects. Furthermore, we explored the role of AMPK (5''-AMP-activated protein kinase) in adiponectin-dependent lipolysis regulation and expression of adiponectin receptors type 1 and 2 (AdipoR1 and AdipoR2) in SCAAT and VAT. Primary adipocytes isolated from SCAAT and VAT of obese and non-obese women were incubated with 20 µg/ml of: A) full-length adiponectin (physiological mixture of all adiponectin isoforms), B) trimeric adiponectin isoform or C) globular adiponectin isoform. Glycerol released into media was used as a marker of lipolysis. While full-length adiponectin inhibited lipolysis by 22% in non-obese SCAAT, globular isoform inhibited lipolysis by 27% in obese SCAAT. No effect of either isoform was detected in non-obese VAT, however trimeric isoform inhibited lipolysis by 21% in obese VAT (all p<0.05). Trimeric isoform induced Thr172 p-AMPK in differentiated preadipocytes from a non-obese donor, while globular isoform induced Ser79 p-ACC by 32% (p<0.05) and Ser565 p-HSL by 52% (p = 0.08) in differentiated preadipocytes from an obese donor. AdipoR2 expression was 17% and 37% higher than AdipoR1 in SCAAT of obese and non-obese groups and by 23% higher in VAT of obese subjects (all p<0.05). In conclusion, the anti-lipolytic effect of adiponectin isoforms is modified with obesity: while full-length adiponectin exerts anti-lipolytic action in non-obese SCAAT, globular and trimeric isoforms show anti-lipolytic activity in obese SCAAT and VAT, respectively.  相似文献   

19.
Key circulating molecules that link vitamin D (VD) to pediatric obesity and its co-morbidities remain unclear. Using a proteomic approach, our objective was to identify key molecules in obese children dichotomized according to 25OH-vitamin D (25OHD) levels. A total of 42 obese children (M/F = 18/24) were divided according to their 25OHD3 levels into 25OHD3 deficient (VDD; n = 18; 25OHD<15 ng/ml) or normal subjects (NVD; n = 24; >30 ng/ml). Plasma proteomic analyses by two dimensional (2D)-electrophoresis were performed at baseline in all subjects. VDD subjects underwent a 12mo treatment with 3000 IU vitamin D3 once a week to confirm the proteomic analyses. The proteomic analyses identified 53 “spots” that differed between VDD and NVD (p<0.05), amongst which adiponectin was identified. Adiponectin was selected for confirmational studies due to its tight association with obesity and diabetes mellitus. Western Immunoblot (WIB) analyses of 2D-gels demonstrated a downregulation of adiponectin in VDD subjects, which was confirmed in the plasma from VDD with respect to NVD subjects (p<0.035) and increased following 12mo vitamin D3 supplementation in VDD subjects (p<0.02). High molecular weight (HMW) adiponectin, a surrogate indicator of insulin sensitivity, was significantly lower in VDD subjects (p<0.02) and improved with vitamin D3 supplementation (p<0.042). A direct effect in vitro of 1α,25-(OH)2D3 on adipocyte adiponectin synthesis was demonstrated, with adiponectin and its multimeric forms upregulated, even at low pharmacological doses (10−9 M) of 1α,25-(OH)2D3. This upregulation was paralleled by the adiponectin interactive protein, DsbA-L, suggesting that the VD regulation of adiponectin involves post-transciptional events. Using a proteomic approach, multimeric adiponectin has been identified as a key plasma protein that links VDD to pediatric obesity.  相似文献   

20.
IntroductionStudies on Mean Platelet Volume (MPV) in children with Sleep Disordered Breathing (SDB) report conflicting results and the hypothesis of an intermittent hypoxemia leading to a systemic inflammation is reaching consensus. Vitamin D exerts anti-inflammatory properties and its deficiency has been supposed to play a role in sleep disorders. Emerging interest is rising about Primary Snoring (PS) since it is reasonable that also undetectable alteration of hypoxia might predispose to an increased production of inflammatory mediators. In this perspective, in a group of children affected by SDB, our aim was to investigate MPV, vitamin D and C Reactive Protein (CRP) levels, which had been previously evaluated separately in different studies focused only on Obstructive Sleep Apnea Syndrome (OSAS).ResultsChildren affected by SDB had a mean age of 8.49±2.19 and were prevalently males (23 females, 34%; 44 males, 66%). MPV levels were higher in OSAS and PS when compared to HC; platelet count (PLT) and CRP levels were higher while Vitamin D levels were lower in children with SDB when compared to HC. MPV levels were correlated with PLT (r = -0.54; p<0.001), vitamin D (r = -0.39; p<0.001) and CRP (r = 0.21; p<0.01). A multiple regression was run to predict MPV levels from vitamin D, CRP and PLT and these variables significantly predicted MPV (F = 17.42, p<0.0001; adjusted R2 = 0.37). Only platelet count and vitamin D added statistically significantly to the prediction (p<0.05).ConclusionThe present study provides evidence of higher MPV and lower vitamin D levels in children with PS as well as in children with OSAS, and supports the underlying inflammation, hence, highlighting the importance of an early diagnosis of this previously considered benign form of SDB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号