首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 320 毫秒
1.
Germline mutations in the BRCA1 or BRCA2 genes are associated with an increased risk of breast and ovarian cancer development. Both genes are involved in DNA repair, and tumors harboring genetic defects in them are thought to be more sensitive to DNA-damaging agents used in chemotherapy. However, as only a minority of breast and ovarian cancer patients carry BRCA1 or BRCA2 mutations, few patients are likely to benefit from these pharmacogenetic biomarkers. Herein, we show that, in cancer cell lines and xenografted tumors, BRCA1 CpG island promoter hypermethylation-associated silencing also predicts enhanced sensitivity to platinum-derived drugs to the same extent as BRCA1 mutations. Most importantly, BRCA1 hypermethylation proves to be a predictor of longer time to relapse and improved overall survival in ovarian cancer patients undergoing chemotherapy with cisplatin.  相似文献   

2.
The Cdk12/CycK complex promotes expression of a subset of RNA polymerase II genes, including those of the DNA damage response. CDK12 is among only nine genes with recurrent somatic mutations in high-grade serous ovarian carcinoma. However, the influence of these mutations on the Cdk12/CycK complex and their link to cancerogenesis remain ill-defined. Here, we show that most mutations prevent formation of the Cdk12/CycK complex, rendering the kinase inactive. By examining the mutations within the Cdk12/CycK structure, we find that they likely provoke structural rearrangements detrimental to Cdk12 activation. Our mRNA expression analysis of the patient samples containing the CDK12 mutations reveals coordinated downregulation of genes critical to the homologous recombination DNA repair pathway. Moreover, we establish that the Cdk12/CycK complex occupies these genes and promotes phosphorylation of RNA polymerase II at Ser2. Accordingly, we demonstrate that the mutant Cdk12 proteins fail to stimulate the faithful DNA double strand break repair via homologous recombination. Together, we provide the molecular basis of how mutated CDK12 ceases to function in ovarian carcinoma. We propose that CDK12 is a tumor suppressor of which the loss-of-function mutations may elicit defects in multiple DNA repair pathways, leading to genomic instability underlying the genesis of the cancer.  相似文献   

3.
《Epigenetics》2013,8(11):1225-1229
Germline mutations in the BRCA1 or BRCA2 genes are associated with an increased risk of breast and ovarian cancer development. Both genes are involved in DNA repair, and tumors harboring genetic defects in them are thought to be more sensitive to DNA-damaging agents used in chemotherapy. However, as only a minority of breast and ovarian cancer patients carry BRCA1 or BRCA2 mutations, few patients are likely to benefit from these pharmacogenetic biomarkers. Herein, we show that, in cancer cell lines and xenografted tumors, BRCA1 CpG island promoter hypermethylation-associated silencing also predicts enhanced sensitivity to platinum-derived drugs to the same extent as BRCA1 mutations. Most importantly, BRCA1 hypermethylation proves to be a predictor of longer time to relapse and improved overall survival in ovarian cancer patients undergoing chemotherapy with cisplatin.  相似文献   

4.
Germline mutations in the BRCA1 and BRCA2 genes contribute to approximately 18% of hereditary ovarian cancers conferring an estimated lifetime risk from 15% to 50%. A variable incidence of mutations has been reported for these genes in ovarian cancer cases from different populations. In Greece, six mutations in BRCA1 account for 63% of all mutations detected in both BRCA1 and BRCA2 genes. This study aimed to determine the prevalence of BRCA1 mutations in a Greek cohort of 106 familial ovarian cancer patients that had strong family history or metachronous breast cancer and 592 sporadic ovarian cancer cases. All 698 patients were screened for the six recurrent Greek mutations (including founder mutations c.5266dupC, p.G1738R and the three large deletions of exon 20, exons 23–24 and exon 24). In familial cases, the BRCA1 gene was consequently screened for exons 5, 11, 12, 20, 21, 22, 23, 24. A deleterious BRCA1 mutation was found in 43/106 (40.6%) of familial cancer cases and in 27/592 (4.6%) of sporadic cases. The variant of unknown clinical significance p.V1833M was identified in 9/698 patients (1.3%). The majority of BRCA1 carriers (71.2%) presented a high-grade serous phenotype. Identifying a mutation in the BRCA1 gene among breast and/or ovarian cancer families is important, as it enables carriers to take preventive measures. All ovarian cancer patients with a serous phenotype should be considered for genetic testing. Further studies are warranted to determine the prevalence of mutations in the rest of the BRCA1 gene, in the BRCA2 gene, and other novel predisposing genes for breast and ovarian cancer.  相似文献   

5.
Detecting mutation in BRCA1/2 is a generally accepted strategy for screening ovarian cancers that have impaired homologous recombination (HR) ability and improved sensitivity to PARP inhibitor. However, a substantial subset of BRCA-mutant ovarian cancer patients shows less impaired or unimpaired HR ability, resulting in nonequivalent outcome after ovarian cancer development. We hypothesize that genomic instability provides a lifetime record of DNA repair deficiency and predicts ovarian cancer outcome. Based on the multi-dimensional TCGA ovarian cancer data, we developed a biological rationale-driven genomic instability score integrating somatic mutation and copy number change in a tumor genome. The score successfully divided BRCA-mutant ovarian tumors into cases of significantly improved outcome and cases of unimproved outcome. The score was also capable of discriminating HR-deficiency indicated by BRCA1 epigenetically silencing, EMSY amplification and homozygous deletion of core HR genes. We further found that the score was positively correlated with the complete response rate of chemotherapy and the rate of platinum-sensitivity, and predicted improved outcome of ovarian cancer, regardless of BRCA-mutation status. The score may have important value in outcome prediction and clinical trial design.  相似文献   

6.
To determine early somatic changes in high-grade serous ovarian cancer (HGSOC), we performed whole genome sequencing on a rare collection of 16 low stage HGSOCs. The majority showed extensive structural alterations (one had an ultramutated profile), exhibited high levels of p53 immunoreactivity, and harboured a TP53 mutation, deletion or inactivation. BRCA1 and BRCA2 mutations were observed in two tumors, with nine showing evidence of a homologous recombination (HR) defect. Combined Analysis with The Cancer Genome Atlas (TCGA) indicated that low and late stage HGSOCs have similar mutation and copy number profiles. We also found evidence that deleterious TP53 mutations are the earliest events, followed by deletions or loss of heterozygosity (LOH) of chromosomes carrying TP53, BRCA1 or BRCA2. Inactivation of HR appears to be an early event, as 62.5% of tumours showed a LOH pattern suggestive of HR defects. Three tumours with the highest ploidy had little genome-wide LOH, yet one of these had a homozygous somatic frame-shift BRCA2 mutation, suggesting that some carcinomas begin as tetraploid then descend into diploidy accompanied by genome-wide LOH. Lastly, we found evidence that structural variants (SV) cluster in HGSOC, but are absent in one ultramutated tumor, providing insights into the pathogenesis of low stage HGSOC.  相似文献   

7.
BRCA1 and BRCA2 are two major genes associated with familial breast and ovarian cancer susceptibility. In Poland standard BRCA gene test is usually limited to Polish founder BRCA1 mutations: 5382insC, C61G and 4153delA. To date, just a few single large genomic rearrangements (LGRs) of BRCA1 gene have been reported in Poland. Here we report the first comprehensive analysis of large mutations in BRCA1 and BRCA2 genes in this country. We screened LGRs in BRCA1 and BRCA2 genes by multiplex ligation-dependent probe amplification in 200 unrelated patients with strong family history of breast/ovarian cancers and negative for BRCA1 Polish founder mutations. We identified three different LGRs in BRCA1 gene: exons 13-19 deletion, exon 17 deletion and exon 22 deletion. No LGR was detected in BRCA2 genes. Overall, large rearrangements accounted for 3.7 % of all BRCA1 mutation positive families in our population and 1.5 % in high-risk families negative for Polish founder mutation.  相似文献   

8.
9.
The most important cause of developing hereditary breast cancer is germline mutations occurring in breast cancer (BCs) susceptibility genes, for example, BRCA1, BRCA2, TP53, CHEK2, PTEN, ATM, and PPM1D. Many BC susceptibility genes can be grouped into two classes, high- and low-penetrance genes, each of which interact with multiple genes and environmental factors. However, the penetrance of genes can also be represented by a spectrum, which ranges between high and low. Two of the most common susceptibility genes are BRCA1 and BRCA2, which perform vital cellular functions for repair of homologous DNA. Loss of heterozygosity accompanied by hereditary mutations in BRCA1 or BRCA2 increases chromosomal instability and the likelihood of cancer, as well as playing a key role in stimulating malignant transformation. With regard to pathological features, familial breast cancers caused by BRCA1 mutations usually differ from those caused by BRCA2 mutations and nonfamilial BCs. It is essential to acquire an understanding of these pathological features along with the genetic history of the patient to offer an individualized treatment. Germline mutations in BRCA1 and BRCA2 genes are the main genetic and inherited factors for breast and ovarian cancer. In fact, these mutations are very important in developing early onset and increasing the risk of familial breast and ovarian cancer and responsible for 90% of hereditary BC cases. Therefore, according to the conducted studies, screening of BRCA1 and BRCA2 genes is recommended as an important marker for early detection of all patients with breast or ovarian cancer risk with family history of the disease. In this review, we summarize the role of hereditary genes, mainly BRCA1 and BRCA2, in BC.  相似文献   

10.
Mutations in the BRCA1 and BRCA2 genes profoundly increase the risk of developing breast and/or ovarian cancer among women. To explore the contribution of BRCA1 and BRCA2 mutations in the development of hereditary breast cancer among Indian women, we carried out mutation analysis of the BRCA1 and BRCA2 genes in 61 breast or ovarian cancer patients from south India with a positive family history of breast and/or ovarian cancer. Mutation analysis was carried out using conformation-sensitive gel electrophoresis (CSGE) followed by sequencing. Mutations were identified in 17 patients (28.0%); 15 (24.6%) had BRCA1 mutations and two (3.28%) had BRCA2 mutations. While no specific association between BRCA1 or BRCA2 mutations with cancer type was seen, mutations were more often seen in families with ovarian cancer. While 40% (4/10) and 30.8% (4/12) of families with ovarian or breast and ovarian cancer had mutations, only 23.1% (9/39) of families with breast cancer carried mutations in the BRCA1 and BRCA2 genes. In addition, while BRCA1 mutations were found in all age groups, BRCA2 mutations were found only in the age group of ≤40 years. Of the BRCA1 mutations, there were three novel mutations (295delCA; 4213T→A; 5267T→G) and three mutations that have been reported earlier. Interestingly, 185delAG, a BRCA1 mutation which occurs at a very high frequency in Ashkenazi Jews, was found at a frequency of 16.4% (10/61). There was one novel mutation (4866insT) and one reported mutation in BRCA2. Thus, our study emphasizes the importance of mutation screening in familial breast and/or ovarian cancers, and the potential implications of these findings in genetic counselling and preventive therapy.  相似文献   

11.
Identifying and characterizing novel genetic risk factors for BRCA1/2 negative breast cancers is highly relevant for early diagnosis and development of a management plan. Mutations in a number of DNA repair genes have been associated with genomic instability and development of breast and various other cancers. Whole exome sequencing efforts by 2 groups have led to the discovery in distinct populations of multiple breast cancer susceptibility mutations in RECQL, a gene that encodes a DNA helicase involved in homologous recombination repair and response to replication stress. RECQL pathogenic mutations were identified that truncated or disrupted the RECQL protein or introduced missense mutations in its helicase domain. RECQL mutations may serve as a useful biomarker for breast cancer. Targeting RECQL associated tumors with novel DNA repair inhibitors may provide a new strategy for anti-cancer therapy.  相似文献   

12.

Background

Increased number of single nucleotide substitutions is seen in breast and ovarian cancer genomes carrying disease-associated mutations in BRCA1 or BRCA2. The significance of these genome-wide mutations is unknown. We hypothesize genome-wide mutation burden mirrors deficiencies in DNA repair and is associated with treatment outcome in ovarian cancer.

Methods and Results

The total number of synonymous and non-synonymous exome mutations (Nmut), and the presence of germline or somatic mutation in BRCA1 or BRCA2 (mBRCA) were extracted from whole-exome sequences of high-grade serous ovarian cancers from The Cancer Genome Atlas (TCGA). Cox regression and Kaplan-Meier methods were used to correlate Nmut with chemotherapy response and outcome. Higher Nmut correlated with a better response to chemotherapy after surgery. In patients with mBRCA-associated cancer, low Nmut was associated with shorter progression-free survival (PFS) and overall survival (OS), independent of other prognostic factors in multivariate analysis. Patients with mBRCA-associated cancers and a high Nmut had remarkably favorable PFS and OS. The association with survival was similar in cancers with either BRCA1 or BRCA2 mutations. In cancers with wild-type BRCA, tumor Nmut was associated with treatment response in patients with no residual disease after surgery.

Conclusions

Tumor Nmut was associated with treatment response and with both PFS and OS in patients with high-grade serous ovarian cancer carrying BRCA1 or BRCA2 mutations. In the TCGA cohort, low Nmut predicted resistance to chemotherapy, and for shorter PFS and OS, while high Nmut forecasts a remarkably favorable outcome in mBRCA-associated ovarian cancer. Our observations suggest that the total mutation burden coupled with BRCA1 or BRCA2 mutations in ovarian cancer is a genomic marker of prognosis and predictor of treatment response. This marker may reflect the degree of deficiency in BRCA-mediated pathways, or the extent of compensation for the deficiency by alternative mechanisms.  相似文献   

13.

Purpose

This study sought to assess the prevalence of common germline mutations in several genes engaged in the repair of DNA double-strand break by homologous recombination in patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers. Tumors deficient in this type of DNA damage repair are known to be especially sensitive to DNA cross-linking agents (e.g., platinum drugs) and to poly(ADP-ribose) polymerase (PARP) inhibitors.

Methods

Genetic testing was performed for 36 common germline mutations in genes engaged in the repair of DNA by homologous recombination, i.e., BRCA1, BRCA2, CHEK2, NBN, ATM, PALB2, BARD1, and RAD51D, in 202 consecutive patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers.

Results

Thirty five (22.2%) of 158 patients in the triple-negative group carried mutations in genes involved in DNA repair by homologous recombination, while 10 (22.7%) of the 44 patients in the hereditary non-triple-negative group carried such mutations. Mutations in BRCA1 were most frequent in patients with triple-negative breast cancer (18.4%), and mutations in CHEK2 were most frequent in patients with hereditary non-triple-negative breast cancers (15.9%). In addition, in the triple-negative group, mutations in CHEK2, NBN, and ATM (3.8% combined) were found, while mutations in BRCA1, NBN, and PALB2 (6.8% combined) were identified in the hereditary non-triple-negative group.

Conclusions

Identifying mutations in genes engaged in DNA damage repair by homologous recombination other than BRCA1/2 can substantially increase the proportion of patients with triple-negative breast cancer and hereditary non-triple-negative breast cancer who may be eligible for therapy using PARP inhibitors and platinum drugs.  相似文献   

14.
Although germline mutations in BRCA1 highly predispose women towards breast and ovarian cancer, few substantial improvements in preventing or treating such cancers have been made. Importantly, BRCA1 function is closely associated with DNA damage repair, which is required for genetic stability. Here, we examined the efficacy of radiotherapy, assessing the accumulation of genetic instabilities, in the treatment of BRCA1-associated breast cancer using a Brca1-mutant mouse model. Treatment of Brca1-mutant tumor-engrafted mice with X-rays reduced tumor progression by 27.9% compared with untreated controls. A correlation analysis of irradiation responses and biomarker profiles in tumors at baseline identified differences between responders and non-responders at the protein level (pERα, pCHK2, p53, and EpCAM) and at the SOX2 target expression level. We further demonstrated that combined treatment of Brca1-mutant mammary tumors with irradiation and AZD2281, which inhibits PARP, significantly reduced tumor progression and extended survival. Our findings enhance the understanding of DNA damage and biomarker responses in BRCA1-associated mammary tumors and provide preclinical evidence that radiotherapy with synthetic DNA damage is a potential strategy for the therapeutic management of BRCA1-associated breast cancer.  相似文献   

15.
Breast cancers related to BRCA mutations are associated with particular biological features. Here we report the clinical and pathological characteristics of breast cancer in Chinese women with and without BRCA mutations and of carriers of BRCA1 mutations compared to BRCA2 mutations. Two hundred and 26 high-risk Hong Kong Chinese women were tested for BRCA mutations, medical information was obtained from medical records, and risk and demographic information was obtained from personal interviews. In this cohort, 28 (12.4%) women were BRCA mutation carriers and among these carriers, 39.3% were BRCA1 and 60.7% were BRCA2 mutations. Mutation carriers were more likely to have a familial history of breast and ovarian cancer, high-grade cancers, and triple negative (TN) cancers. Prevalence of TN was 48.3% in BRCA carriers and 25.6% in non-carriers and was 67.7% in BRCA1 and 35.3% in BRCA2 carriers. Estrogen receptor (ER) negative cancer was significantly associated with BRCA1 mutations, especially in those under 40 years of age. BRCA-related breast cancer in this Chinese population is associated with family history and adverse pathological/prognostic features, with BRCA2 mutations being more prevalent but BRCA1 carriers having more aggressive and TN cancers. Compared to Caucasian populations, prevalence of BRCA2 mutations and TN cancer in BRCA2 mutation carriers in Chinese population are elevated.  相似文献   

16.
Homologous recombination deficiency (HRD) is a predictive marker for response to poly (ADP-ribose) polymerase inhibitors (PARPi) in ovarian carcinoma. HRD scores have entered routine diagnostics, but the influence of algorithms, parameters and confounders has not been analyzed comprehensively.A series of 100 poorly differentiated ovarian carcinoma samples was analyzed using whole exome sequencing (WES) and genotyping. Tumor purity was determined using conventional pathology, digital pathology, and two bioinformatic methods. HRD scores were calculated from copy number profiles determined by Sequenza and by Sclust either with or without fixed tumor purity. Tumor purity determination by digital pathology combined with a tumory purity informed variant of Sequenza served as reference method for HRD scoring.Seven tumors had deleterious mutations in BRCA1/2, 12 tumors had deleterious mutations in other homologous recombination repair (HRR) genes, 18 tumors had variants of unknown significance (VUS) in BRCA1/2 or other HRR genes, while the remaining 63 tumors had no relevant alterations. Using the reference method for HRD scoring, 68 tumors were HRD-positive. HRDsum determined by WES correlated strongly with HRDsum determined by single nucleotide polymorphism (SNP) arrays (R = 0.85). Conventional pathology systematically overestimated tumor purity by 8% compared to digital pathology. All investigated methods agreed on classifying the deleterious BRCA1/2-mutated tumors as HRD-positive, but discrepancies were observed for some of the remaining tumors. Discordant HRD classification of 11% of the tumors was observed comparing the tumor purity uninformed default of Sequenza and the reference method.In conclusion, tumor purity is a critical factor for the determination of HRD scores. Assistance by digital pathology helps to improve accuracy and imprecision of its estimation.  相似文献   

17.
18.
Sporadic basal-like cancers (BLCs) are a common subtype of breast cancer that share multiple biological properties with BRCA1-mutated breast tumors. Despite being BRCA1+/+, sporadic BLCs are widely viewed as phenocopies of BRCA1-mutated breast cancers, because they are hypothesized to manifest a BRCA1 functional defect or breakdown of a pathway(s) in which BRCA1 plays a major role. The role of BRCA1 in the repair of double-strand DNA breaks by homologous recombination (HR) is its best understood function and the function most often implicated in BRCA1 breast cancer suppression. Therefore, it is suspected that sporadic BLCs exhibit a defect in HR. To test this hypothesis, multiple DNA damage repair assays focused on several types of repair were performed on a group of cell lines classified as sporadic BLCs and on controls. The sporadic BLC cell lines failed to exhibit an overt HR defect. Rather, they exhibited defects in the repair of stalled replication forks, another BRCA1 function. These results provide insight into why clinical trials of poly(ADP-ribose) polymerase (PARP) inhibitors, which require an HR defect for efficacy, have been unsuccessful in sporadic BLCs, unlike cisplatin, which elicits DNA damage that requires stalled fork repair and has shown efficacy in sporadic BLCs.  相似文献   

19.
20.
Loss of heterozygosity atBRCA1/2 loci in breast and ovarian tumors is a suggested risk factor for germlineBRCA1/2 mutation status. We evaluated the presence of losses of selected microsatellite markers localized on chromosomes 17 and 13q in hereditary and sporadic ovarian tumors. 151 consecutive primary ovarian tumors (including 21 withBRCA1/2 mutations and 130 without the mutations) were screened for loss of heterozygosity at loci on chromosomes 17 and 13q. Losses of heterozygosity of at least one microsatellite marker localized on chromosomes 17 and 13q were revealed in 123 (81.5%) and 104 (68.9%) tumors, respectively. Losses of all informative markers on chromosomes 17 and 13 occurred in 30 (19.9%) and 31 (20.5%) tumors, respectively. There was no difference in the frequency of losses atBRCA1 intragenic markers (D17S855 and D17S1323) between BRCA1-positive and BRCA1-negative patients. The frequency of losses on chromosome 17 was higher in high-grade than in low-grade carcinomas. Loss of heterozygosity on chromosomes 17 and 13q is a frequent phenomenon in both hereditary and sporadic ovarian cancers. The frequency of losses atBRCA1 intragenic markers in the ovarian tumor tissue is not strongly related to the presence ofBRCA1 germline mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号