首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insects obtain energy and nutrients via feeding to support growth and development. The insulin signaling pathway is involved in the regulation of feeding; however, the underlying mechanisms are not fully understood. Here, we show that insulin signaling regulates food intake via crosstalk with neuropeptide sulfakinin in the red flour beetle, Tribolium castaneum. Silencing of the insulin receptor (InR) decreased the food intake in the penultimate and final instar stages, leading to a decrease of weight gain and mortality during larval-pupal metamorphosis. Interestingly, the knockdown of InR co-occurred with an increased expression of sulfakinin (sk), a gene encoding neuropeptide SK functioning as a satiety signal. In parallel, double silencing of sk and InR eliminated the inhibitory effect on food intake as induced by silencing of InR and the larvae died as prepupae. In conclusion, this study shows, for the first time, that the insulin/InR signaling regulates food intake through the sulfakinin signaling pathway in the larval stages of this important model and pest insect, indicating a novel target for pest control.  相似文献   

2.
3.
4.
Dopamine is an important neurotransmitter in the central nervous system of vertebrates and invertebrates. Despite their evolutionary distance, striking parallels exist between deuterostomian and protostomian dopaminergic systems. In both, signalling is achieved via a complement of functionally distinct dopamine receptors. In this study, we investigated the sequence, pharmacology and tissue distribution of a D2-like dopamine receptor from the red flour beetle Tribolium castaneum (TricaDop3) and compared it with related G protein-coupled receptors in other invertebrate species.The TricaDop3 receptor-encoding cDNA shows considerable sequence similarity with members of the Dop3 receptor class. Real time qRT-PCR showed high expression in both the central brain and the optic lobes, consistent with the role of dopamine as neurotransmitter. Activation of TricaDop3 expressed in mammalian cells increased intracellular Ca2+ signalling and decreased NKH-477 (a forskolin analogue)-stimulated cyclic AMP levels in a dose-dependent manner. We studied the pharmacological profile of the TricaDop3 receptor and demonstrated that the synthetic vertebrate dopamine receptor agonists, 2 – amino- 6,7 – dihydroxy – 1,2,3,4 – tetrahydronaphthalene hydrobromide (6,7-ADTN) and bromocriptine acted as agonists. Methysergide was the most potent of the antagonists tested and showed competitive inhibition in the presence of dopamine. This study offers important information on the Dop3 receptor from Tribolium castaneum that will facilitate functional analyses of dopamine receptors in insects and other invertebrates.  相似文献   

5.
Crustacean cardioactive peptide (CCAP) is a nonapeptide originally isolated from the shore crab, Carcinus maenas, based on its cardioacceleratory activity. This peptide is highly conserved in insects and other arthropods. In insects CCAP also has an essential role in ecdysis behavior. We previously identified two homologous genes, ccapr-1 and ccapr-2, encoding putative CCAP receptors in the red flour beetle, Tribolium castaneum. In contrast, some insects, including Drosophila melanogaster, carry only one gene encoding a CCAP receptor. Phylogenetic analysis of putative CCAP receptor orthologs reveals a number of independent gene duplications in several insect lineages. In this study, we confirmed that CCAP activates both putative T. castaneum receptors in a heterologous expression system. RNA interference (RNAi) of ccapr-1 and ccapr-2 revealed that ccapr-2 is essential for eclosion behavior in T. castaneum, while RNAi for ccapr-1 did not result in any abnormal phenotype. In vivo cardioacceleratory activity of exogenously applied CCAP was abolished by RNAi of ccapr-2, but not by that of ccapr-1. Thus, only ccapr-2 mediates the cardioacceleratory function, ccapr-1 having apparently lost both functions for eclosion behavior and for cardioacceleration since the recent gene duplication event.  相似文献   

6.
7.
A key characteristic of G protein-coupled receptors (GPCRs) is that they activate a plethora of signaling pathways. It is now clear that a GPCR coupling to these pathways can be regulated selectively by ligands that differentially drive signaling down one pathway in preference to another. This concept, termed stimulus bias, is revolutionizing receptor biology and drug discovery by providing a means of selectively targeting receptor signaling pathways that have therapeutic impact. Herein, we utilized a novel quantitative method that determines stimulus bias of synthetic GPCR ligands in a manner that nullifies the impact of both the cellular background and the “natural bias” of the endogenous ligand. By applying this method to the M2 muscarinic acetylcholine receptor, a prototypical GPCR, we found that mutation of key residues (Tyr-802.61 and Trp-993.28) in an allosteric binding pocket introduces stimulus bias in response to the atypical ligands AC-42 (4-n-butyl-1-(4-(2-methylphenyl)-4-oxo-1-butyl)piperidine HCl) and 77-LH-28-1 (1-(3-(4-butyl-1-piperidinyl)propyl)- 3,3-dihydro-2(1H)-quinolinone). By comparing stimulus bias factors among receptor internalization, G protein activation, extracellular-regulated protein kinase 1/2 (ERK1/2) signaling, and receptor phosphorylation, we provide evidence that Tyr-802.61 and Trp-993.28 act either as molecular switches or as gatekeeper residues that introduce constraints limiting the active conformation of the M2 muscarinic acetylcholine receptor and thereby regulate stimulus bias. Furthermore, we provide evidence that downstream signaling pathways previously considered to be related to each other (i.e. receptor phosphorylation, internalization, and activation of ERK1/2) can act independently.  相似文献   

8.
One year ago, we discovered a new family of insect RYamide neuropeptides, which has the C-terminal consensus sequence FFXXXRYamide, and which is widely occurring in most insects, including the fruitfly Drosophila melanogaster and the red flour beetle Tribolium castaneum (F. Hauser et al., J. Proteome Res. 9 (2010) 5296–5310). Here, we identify a Drosophila G-protein-coupled receptor (GPCR) coded for by gene CG5811 and its Tribolium GPCR ortholog as insect RYamide receptors. The Drosophila RYamide receptor is equally well activated (EC50, 1 × 10−9 M) by the two Drosophila RYamide neuropeptides: RYamide-1 (PVFFVASRYamide) and RYamide-2 (NEHFFLGSRYamide), both contained in a preprohormone coded for by gene CG40733. The Tribolium receptor shows a somewhat higher affinity to Tribolium RYamide-2 (ADAFFLGPRYamide; EC50, 5 × 10−9 M) than to Tribolium RYamide-1 (VQNLATFKTMMRYamide; EC50, 7 × 10−8 M), which might be due to the fact that the last peptide does not completely follow the RYamide consensus sequence rule. There are other neuropeptides in insects that have similar C-terminal sequences (RWamide or RFamide), such as the FMRFamides, sulfakinins, myosuppressins, neuropeptides F, and the various short neuropeptides F. Amazingly, these neuropeptides show no cross-reactivity to the Tribolium RYamide receptor, while the Drosophila RYamide receptor is only very slightly activated by high concentrations (>10−6 M) of neuropeptide F and short neuropeptide F-1, showing that the two RYamide receptors are quite specific for activation by insect RYamides, and that the sequence FFXXXRYamide is needed for effective insect RYamide receptor activation. Phylogenetic tree analyses and other amino acid sequence comparisons show that the insect RYamide receptors are not closely related to any other known insect or invertebrate/vertebrate receptors, including mammalian neuropeptide Y and insect neuropeptide F and short neuropeptide F receptors. Gene expression data published in Flybase (www.flybase.org) show that the Drosophila CG5811 gene is significantly expressed in the hindgut of adult flies, suggesting a role of insect RYamides in digestion or water reabsorption.  相似文献   

9.
The availability of sequenced insect genomes has allowed for discovery and functional characterization of novel genes and proteins. We report use of the Tribolium castaneum (Herbst) (red flour beetle) genome to identify, clone, express, and characterize a novel endo-β-1,4-glucanase we named TcEG1 (T. castaneum endoglucanase 1). Sequence analysis of a full-length TcEG1 cDNA clone (1356 bp) revealed sequence homology to enzymes in glycosyl hydrolase family 9 (GHF9), and verified presence of a change (Gly for Ser) in the conserved catalytic domain for GHF9 cellulases. This TcEG1 cDNA clone was predicted to encode a 49.5 kDa protein with a calculated pI of 5.39. Heterologous expression of TcEG1 in Drosophila S2 cell cultures resulted in secretion of a 51-kDa protein, as determined by Western blotting. The expressed protein was used to characterize TcEG1 enzymatic activity against two cellulose substrates to determine its specificity and stability. Our data support that TcEG1 as a novel endo-β-1,4-glucanase, the first functional characterization of a cellulase enzyme derived from an insect genome with potential applications in the biofuel industry due to its high relative activity at alkaline pH.  相似文献   

10.
Chemokines are chemotactic cytokines comprised of 70–100 amino acids. The chemokines CXCL12 and CCL5 are the endogenous ligands of the CXCR4 and CCR5 G protein-coupled receptors that are also HIV co-receptors. Biochemical, structural and functional studies of receptors are ligand-consuming and the cost of commercial chemokines hinders their use in such studies. Here, we describe methods for the expression, refolding, purification, and functional characterization of CXCL12 and CCL5 constructs incorporating C-terminal epitope tags. The model tags used were hexahistidines and Strep-Tag for affinity purification, and the double lanthanoid binding tag for fluorescence imaging and crystal structure resolution. The ability of modified and purified chemokines to bind and activate CXCR4 and CCR5 receptors was tested in Xenopus oocytes expressing the receptors, together with a Kir3 G-protein activated K+ channel that served as a reporter of receptor activation. Results demonstrate that tags greatly influence the biochemical properties of the recombinant chemokines. Besides, despite the absence of any evidence for CXCL12 or CCL5 C-terminus involvement in receptor binding and activation, we demonstrated unpredictable effects of tag insertion on the ligand apparent affinity and efficacy or on the ligand dissociation. These tagged chemokines should constitute useful tools for the selective purification of properly-folded chemokines receptors and the study of their native quaternary structures.  相似文献   

11.
Elucidation of the molecular mechanisms of activation of G protein-coupled receptors (GPCRs) is among the most challenging tasks for modern membrane biology. For studies by high resolution analytical methods, these integral membrane receptors have to be expressed in large quantities, solubilized from cell membranes and purified in detergent micelles, which may result in a severe destabilization and a loss of function. Here, we report insights into differential effects of detergents, lipids and cannabinoid ligands on stability of the recombinant cannabinoid receptor CB2, and provide guidelines for preparation and handling of the fully functional receptor suitable for a wide array of downstream applications. While we previously described the expression in Escherichia coli, purification and liposome-reconstitution of multi-milligram quantities of CB2, here we report an efficient stabilization of the recombinant receptor in micelles - crucial for functional and structural characterization. The effects of detergents, lipids and specific ligands on structural stability of CB2 were assessed by studying activation of G proteins by the purified receptor reconstituted into liposomes. Functional structure of the ligand binding pocket of the receptor was confirmed by binding of 2H-labeled ligand measured by solid-state NMR. We demonstrate that a concerted action of an anionic cholesterol derivative, cholesteryl hemisuccinate (CHS) and high affinity cannabinoid ligands CP-55,940 or SR-144,528 are required for efficient stabilization of the functional fold of CB2 in dodecyl maltoside (DDM)/CHAPS detergent solutions. Similar to CHS, the negatively charged phospholipids with the serine headgroup (PS) exerted significant stabilizing effects in micelles while uncharged phospholipids were not effective. The purified CB2 reconstituted into lipid bilayers retained functionality for up to several weeks enabling high resolution structural studies of this GPCR at physiologically relevant conditions.  相似文献   

12.
Octopamine (OA) is thought to be the invertebrate counterpart of noradrenaline and regulates various behavioral patterns of invertebrates by activating OA receptors. As a typical G protein-coupled receptor, BmOAR1, a Bombyx mori α-adrenergic-like OA receptor, is coupled to both Gs and Gq proteins to induce the release of the intracellular second messengers cAMP and Ca2+. In this study, we examined the pharmacological and functional properties of the cloned OA receptor, using OA enantiomers. The wild-type OA receptor exhibited significant stereoselectivity for OA enantiomers in cAMP production and binding affinity, but not in calcium signaling response. On the contrary, the Y412F mutant abolished the discrimination between OA enantiomers in the binding affinity and did not evoke any cAMP signaling response. This mutant exhibited levels of potency and efficacy similar to those of the wild-type receptor in the calcium assays. Taken together, these results suggest that Tyr412 might act as a molecular switch to regulate distinct G protein couplings, and a sequential activation model is proposed for such specific-residue-dependent, selective activation in receptors that are coupled to multiple G proteins.  相似文献   

13.
14.
Insects face several (environmental) abiotic stressors, including low temperature, which cause the failure of neuromuscular function. Such exposure leads insects toa reversible comatose state termed chill-coma, but the consequences of this state for the organism biology were little explored. Here, the consequences of the chill-coma phase were investigated in two of the main stored product pest species – the red flour beetle Tribolium castaneum (larvae and adults) and the rice weevil Sitophilus oryzae (adults). For this purpose, a series of low-temperature shocks were used to estimate the chill-coma recovery time (CCRT), survival, nutrition and weight gain/growth of T. castaneum (larvae and adults) and S. oryzae, as well as the development of T. castaneum life stages. The relatively long CCRT was characteristic of beetle larvae, at different low-temperature shocks, and CCRT increased with decreasing temperatures and increasing exposure intervals for both pest species. The survival was little affected by the low-temperature shocks applied, but such shocks affected insect feeding and growth. Tribolium castaneum larvae was more sensitive than adults of both insect species. Moreover, the relative consumption and weight gain of S. oryzae adults were lower than those of T. castaneum adults and mainly larvae, while feeding deterrence was not affected by low temperature shocks, unlike food conversion efficiency. Low-temperature shocks, even under short duration at some temperatures, significantly delayed development. The lower the temperature and the higher the exposure period, the more delayed the development. Thus, the physiological costs of chill-coma are translated into life-history consequences, with potential implications for the management of this insect pest species in stored products and even more so on red flour beetles and rice weevils.  相似文献   

15.
16.
17.
The goal of our work was a throughout characterization of the pharmacology of the TIPP-analog, Tyr-Tic-(2S,3R)-β-MePhe-Phe-OH and see if putative δ-opioid receptor subtypes can be distinguished. Analgesic latencies were assessed in mouse tail-flick assays after intrathecal administration. In vitro receptor autoradiography, binding and ligand-stimulated [35S]GTPγS functional assays were performed in the presence of putative δ1-(DPDPE: agonist, BNTX: antagonist), δ2-(agonist: deltorphin II, Ile5,6-deltorphin II, antagonist: naltriben) and μ-(DAMGO: agonist) opioid ligands. The examined antagonist inhibited the effect of DPDPE by 60%, but did not antagonize δ2- and μ-agonist induced analgesia. The radiolabeled form identified binding sites with KD = 0.18 nM and receptor densities of 102.7 fmol/mg protein in mouse brain membranes. The binding site distribution of the [3H]Tyr-Tic-(2S,3R)-β-MePhe-Phe-OH agreed well with that of [3H]Ile5,6-deltorphin II as revealed by receptor autoradiography. Tyr-Tic-(2S,3R)-β-MePhe-Phe-OH displayed 2.49 ± 0.06 and 0.30 ± 0.01 nM potency against DPDPE and deltorphin II in the [35S]GTPγS functional assay, respectively. The rank order of potency of putative δ1- and δ2-antagonists against DPDPE and deltorphin was similar in brain and CHO cells expressing human δ-opioid receptors. Deletion of the DOR-1 gene resulted in no residual binding of the radioligand and no significant DPDPE effect on G-protein activation. Tyr-Tic-(2S,3R)-β-MePhe-Phe-OH is a highly potent and δ-opioid specific antagonist both in vivo and in vitro. However, the putative δ1- and δ2-opioid receptors could not be unequivocally distinguished in vitro.  相似文献   

18.
Insect pests are the major cause of damage to commercially important agricultural crops. The continuous application of synthetic pesticides resulted in severe insect resistance by plants. This causes irreversible damage to the environment. Bacillus thuringiensis (Bt) emerged as a valuable biological alternative in pest control. However, insect resistance against Bt has been reported in many cases. Insects develop resistance to insecticides through mechanisms that reduce the binding of toxins to gut receptors. Nonetheless, the molecular mechanism of insect resistance is not fully understood. Therefore, it is important to study the mechanism of toxin resistance by analyzing amino‐peptidase‐N (APN) receptor of the insect M. sexta. A homology model of APN was constructed using Insight II molecular modeling software and the model was further evaluated using the PROCHECK program. Oligosaccharides participating in post translational modification were constructed and docked onto specific APN functional sites. Post analyses of the APN model provide insights on the functional properties of APN towards the understanding of receptor and toxin interactions. We also discuss the predicted binding sites for ligands, metals and Bt toxins in M. sexta APN receptor. These data help in the development of a roadmap for the design and synthesis of novel insect resistant Cry toxins.  相似文献   

19.
20.
The concept of functional selectivity offers great potential for the development of drugs that selectively activate a specific intracellular signaling pathway. During the last few years, it has become possible to systematically analyse compound libraries on G protein-coupled receptors (GPCRs) for this ‘biased’ form of signaling. We screened over 800 compounds targeting the class of adenosine A1 receptors using a β-arrestin-mediated signaling assay in U2OS cells as a G protein-independent readout for GPCR activation. A selection of compounds was further analysed in a G protein-mediated GTPγS assay. Additionally, receptor affinity of these compounds was determined in a radioligand binding assay with the agonist [3H]CCPA. Of all compounds tested, only LUF5589 9 might be considered as functionally selective for the G protein-dependent pathway, particularly in view of a likely overestimation of β-arrestin signaling in the U2OS cells. Altogether, our study shows that functionally selective ligands for the adenosine A1 receptor are rare, if existing at all. A thorough analysis of biased signaling on other GPCRs also reveals that only very few compounds can be considered functionally selective. This might indicate that the concept of functional selectivity is less common than speculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号