首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pattern in the developing limb depends on signaling by polarizing region mesenchyme cells, which are located at the posterior margin of the bud tip. Here we address the underlying cellular mechanisms. We show in the intact bud that connexin 43 (Cx43) and Cx32 gap junctions are at higher density between distal posterior mesenchyme cells at the tip of the bud than between either distal anterior or proximal mesenchyme cells. These gradients disappear when the apical ectodermal ridge (AER) is removed. Fibroblast growth factor 4 (FGF4) produced by posterior AER cells controls signaling by polarizing cells. We find that FGF4 doubles gap junction density and substantially improves functional coupling between cultured posterior mesenchyme cells. FGF4 has no effect on cultured anterior mesenchyme, suggesting that any effects of FGF4 on responding anterior mesenchyme cells are not mediated by a change in gap junction density or functional communication through gap junctions. In condensing mesenchyme cells, connexin expression is not affected by FGF4. We show that posterior mesenchyme cells maintained in FGF4 under conditions that increase functional coupling maintain polarizing activity at in vivo levels. Without FGF4, polarizing activity is reduced and the signaling mechanism changes. We conclude that FGF4 regulation of cell–cell communication and polarizing signaling are intimately connected.  相似文献   

2.
Epithelial-mesenchymal interactions are essential for both limb outgrowth and pattern formation in the limb. Molecules capable of communication between these two tissues are known and include the signaling molecules SHH and FGF4, FGF8 and FGF10. Evidence suggests that the pattern and maintenance of expression of these genes are dependent on a number of factors including regulatory loops between genes expressed in the AER and those in the underlying mesenchyme. We show here that the mouse mutation dominant hemimelia (Dh) alters the pattern of gene expression in the AER such that Fgf4, which is normally expressed in a posterior domain, and Fgf8, which is expressed throughout are expressed in anterior patterns. We show that maintenance of Shh expression in the posterior mesenchyme is not dependent on either expression of Fgf4 or normal levels of Fgf8 in the overlying AER. Conversely, AER expression of Fgf4 is not directly dependent on Shh expression. Also the reciprocal regulatory loop proposed for Fgf8 in the AER and Fgf10 in the underlying mesenchyme is also uncoupled by this mutation. Early during the process of limb initiation, Dh is involved in regulating the width of the limb bud, the mutation resulting in selective loss of anterior mesenchyme. The Dh gene functions in the initial stages of limb development and we suggest that these initial roles are linked to mechanisms that pattern gene expression in the AER.  相似文献   

3.
Proximal-to-distal growth of the embryonic limbs requires Fgf10 in the mesenchyme to activate Fgf8 in the apical ectodermal ridge (AER), which in turn promotes mesenchymal outgrowth. We show here that the growth arrest specific gene 1 (Gas1) is required in the mesenchyme for the normal regulation of Fgf10/Fgf8. Gas1 mutant limbs have defects in the proliferation of the AER and the mesenchyme and develop with small autopods, missing phalanges and anterior digit syndactyly. At the molecular level, Fgf10 expression at the distal tip mesenchyme immediately underneath the AER is preferentially affected in the mutant limb, coinciding with the loss of Fgf8 expression in the AER. To test whether FGF10 deficiency is an underlying cause of the Gas1 mutant phenotype, we employed a limb culture system in conjunction with microinjection of recombinant proteins. In this system, FGF10 but not FGF8 protein injected into the mutant distal tip mesenchyme restores Fgf8 expression in the AER. Our data provide evidence that Gas1 acts to maintain high levels of FGF10 at the tip mesenchyme and support the proposal that Fgf10 expression in this region is crucial for maintaining Fgf8 expression in the AER.  相似文献   

4.
The formation of cartilage elements in the developing vertebrate limb, where they serve as primordia for the appendicular skeleton, is preceded by the appearance of discrete cellular condensations. Control of the size and spacing of these condensations is a key aspect of skeletal pattern formation. Limb bud cell cultures grown in the absence of ectoderm formed continuous sheet-like masses of cartilage. With the inclusion of ectoderm, these cultures produced one or more cartilage nodules surrounded by zones of noncartilaginous mesenchyme. Ectodermal fibroblast growth factors (FGF2 and FGF8), but not a mesodermal FGF (FGF7), substituted for ectoderm in inhibiting chondrogenic gene expression, with some combinations of the two ectodermal factors leading to well-spaced cartilage nodules of relatively uniform size. Treatment of cultures with SU5402, an inhibitor FGF receptor tyrosine kinase activity, rendered FGFs ineffective in inducing perinodular inhibition. Inhibition of production of FGF receptor 2 (FGFR2) by transfection of wing and leg cell cultures with antisense oligodeoxynucleotides blocked appearance of ectoderm- or FGF-induced zones of perinodular inhibition of chondrogenesis and, when introduced into the limb buds of developing embryos, led to shorter, thicker, and fused cartilage elements. Because FGFR2 is expressed mainly at sites of precartilage condensation during limb development in vivo and in vitro, these results suggest that activation of FGFR2 by FGFs during development elicits a lateral inhibitor of chondrogenesis that limits the expansion of developing skeletal elements.  相似文献   

5.
A major function of the limb bud apical ectodermal ridge (AER) is to produce fibroblast growth factors (FGFs) that signal to the underlying mesenchyme. Previous studies have suggested that of the four FGF genes specifically expressed in the mouse AER, Fgf8 is unique not only in its expression pattern, but also because it is the only such FGF gene that causes limb skeletal abnormalities when individually inactivated. However, when both Fgf8 and Fgf4 are simultaneously inactivated in the AER, the limb does not develop. One possible explanation for these observations is that although both of these FGF family members contribute to limb development, Fgf8 has functions that Fgf4 cannot perform. To test this hypothesis, we used a novel method to substitute Fgf4 for Fgf8 expression in the developing limb bud by concomitantly activating a conditional Fgf4 gain-of-function allele and inactivating an Fgf8 loss-of-function allele in the same cells via Cre-mediated recombination. Our data show that when Fgf4 is expressed in place of Fgf8, all of the skeletal defects caused by inactivation of Fgf8 are rescued, conclusively demonstrating that FGF4 can functionally replace FGF8 in limb skeletal development. We also show that the increase in FGF signaling that occurs when the Fgf4 gain-of-function allele is activated in a wild-type limb bud causes formation of a supernumerary posterior digit (postaxial polydactyly), as well as cutaneous syndactyly between all the digits. These data underscore the importance of controlling the level of FGF gene expression for normal limb development.  相似文献   

6.
In the developing limb bud, mesenchymal cells show position-specific affinity, suggesting that the positional identity of the cells is represented as their surface properties. Since the affinity is regulated by glycosylphosphatidylinositol (GPI)-anchored cell surface proteins, and by EphA4 receptor tyrosine kinase, we hypothesized that the GPI-anchored ligand, the ephrin-A family, also contributes to the affinity. Here, we describe the role of ephrin-A2 in the chick limb bud. Ephrin-A2 protein is uniformly distributed in the limb bud during early limb development. As the limb bud grows, expression of ephrin-A2 is strong in its proximal-to-intermediate regions, but weak distally. The position-dependent expression is maintained in vitro, and is regulated by FGF protein, which is produced in the apical ectodermal ridge. To investigate the role of ephrin-A2 in affinity and in cartilage morphogenesis of limb mesenchyme, we ectopically expressed ephrin-A2 in the limb bud using the retrovirus vector, RCAS. Overexpressed ephrin-A2 modulated the affinity of the mesenchymal cells that differentiate into autopod elements. It also caused malformation of the autopod skeleton and interfered with cartilage nodule formation in vitro without inhibiting chondrogenesis. These results suggest that ephrin-A2 regulates the position-specific affinity of limb mesenchyme and is involved in cartilage pattern formation in the limb.  相似文献   

7.
8.
The limb bud has a thickened epithelium at the dorsal-ventral boundary, the apical ectodermal ridge (AER), which sustains limb outgrowth and patterning. A secreted molecule fibroblast growth factor (FGF)10 is involved in inducing Fgf8 expression in the prospective AER and mutual interaction between mesenchymal FGF10 and FGF8 in the AER is essential for limb outgrowth. A secreted factor Wnt7a and a homeobox protein Lmx1 are involved in the dorsal patterning of the limb, whereas a homeobox protein Engrailed 1 (En1) is involved in the dorsal-ventral patterning as well as AER formation. Radical fringe (R-fng), a vertebrate homolog of Drosophila fringe was also found to elaborate AER formation in chicks. However, little is known about the molecular interactions between these factors during AER formation. The present study clarified the relationship between FGF10, Wnt7a, Lmx1, R-fng and En1 during limb development using a foil-barrier insertion experiment. It was found that a foil-barrier inserted into the chick prospective wing mesenchyme lateral to the mesonephric duct blocks AER induction. This experiment was expanded by implanting Fgf10-expressing cells lateral to the barrier and examined whether FGF10 could rescue the expression of the limb-patterning genes reported in AER formation. It was found that FGF10 is sufficient to induce Fgf8 expression in the ectoderm of the foil-inserted limb bud, concomitantly with R-fng and En1 expression. However, FGF10 could not rescue the expression of the dorsal marker genes, Wnt7a or Lmx1. Thus, it is suggested that epithelial factors of En1 and R-fng can induce Fgf8 expression in the limb ectoderm in cooperation with a mesenchymal factor FGF10. Some factor(s) other than FGF10, possibly from the paraxial structures medial to the limb mesoderm, is responsible for the initial dorsal-ventral specification of the limb bud.  相似文献   

9.
10.
In the ascidian embryo, a fibroblast growth factor (FGF)-like signal from presumptive endoderm blastomeres between the 32-cell and early 64-cell stages induces the formation of notochord and mesenchyme cells. However, it has not been known whether endogenous FGF signaling is involved in the process. Here it is shown that 64-cell embryos exhibit a marked increase in endogenous extracellular signal-regulated kinase (ERK/MAPK) activity. The increase in ERK activity was reduced by treatment with an FGF receptor 1 inhibitor, SU5402, and a MEK (ERK kinase/MAPKK) inhibitor, U0126. Both drugs blocked the formation of notochord and mesenchyme when embryos were treated at the 32-cell stage, but not at the 2- or 110-cell stages. The dominant-negative form of Ras also suppressed notochord and mesenchyme formation. Both inhibitors suppressed induction by exogenous basic FGF. These results suggest that the FGF signaling cascade is indeed necessary for the formation of notochord and mesenchyme cells during ascidian embryogenesis. It is also shown that FGF signaling is required for formation of the secondary notochord, secondary muscle and neural tissues, and at least ERK activity is necessary for the formation of trunk lateral cells and posterior endoderm. Therefore, FGF and MEK signaling are required for the formation of various tissues in the ascidian embryo.  相似文献   

11.
It has been shown experimentally that lung epithelial explants have an ability to undergo branching morphogenesis without mesenchyme. However, the mechanisms of this phenomenon remain to be elucidated. In the present study, we construct a mathematical model that can reproduce the dynamics of in vitro branching morphogenesis. We show that the system is essentially governed by three variables--c(0) which is the initial fibroblast growth factor (FGF) concentration, D which is the diffusion coefficient of FGF, and beta which describes the mechanical strength of the cytoskeleton. It is confirmed by numerical simulations that this model can reproduce the experimentally obtained patterns qualitatively. Finally, we experimentally verify two predictions from the model: effects of very high FGF concentration and effects of small mechanical contributions of the cytoskeleton. The theoretical predictions match well with the experimental results.  相似文献   

12.
We describe a 'reactor-diffusion' mechanism for precartilage condensation based on recent experiments on chondrogenesis in the early vertebrate limb and additional hypotheses. Cellular differentiation of mesenchymal cells into subtypes with different fibroblast growth factor (FGF) receptors occurs in the presence of spatio-temporal variations of FGFs and transforming growth factor-betas (TGF-betas). One class of differentiated cells produces elevated quantities of the extracellular matrix protein fibronectin, which initiates adhesion-mediated preskeletal mesenchymal condensation. The same class of cells also produces an FGF-dependent laterally acting inhibitor that keeps condensations from expanding beyond a critical size. We show that this 'reactor-diffusion' mechanism leads naturally to patterning consistent with skeletal form, and describe simulations of spatio-temporal distribution of these differentiated cell types and the TGF-beta and inhibitor concentrations in the developing limb bud.  相似文献   

13.
A central feature of the tetrapod body plan is that two pairs of limbs develop at specific positions along the head-to-tail axis. However, the potential to form limbs in chick embryos is more widespread. This could have implications for understanding the basis of limb abnormalities. Here we extend the analysis to mouse embryos and examine systematically the potential of tissues in different regions outside the limbs to contribute to limb structures. We show that the ability of ectoderm to form an apical ridge in response to FGF4 in both mouse and chick embryos exists throughout the flank as does ability of mesenchyme to provide a polarizing region signal. In addition, neck tissue has weak polarizing activity. We show, in chick embryos, that polarizing activity of tissues correlates with the ability either to express Shh or to induce Shh expression. We also show that cells from chick tail can give rise to limb structures. Taken together these observations suggest that naturally occurring polydactyly could involve recruitment of cells from regions adjacent to the limb buds. We show that cells from neck, flank and tail can migrate into limb buds in response to FGF4, which mimics extension of the apical ectodermal ridge. Furthermore, when we apply simultaneously a polarizing signal and a limb induction signal to early chick flank, this leads to limb duplications.  相似文献   

14.
Ascidian larvae develop mesenchyme cells in their trunk. A fibroblast growth factor (FGF9/16/20) is essential and sufficient for induction of the mesenchyme in Ciona savignyi. We have identified two basic helix-loop-helix (bHLH) genes named Twist-like1 and Twist-like2 as downstream factors of this FGF. These two genes are phylogenetically closely related to each other, and were expressed specifically in the mesenchymal cells after the 110-cell stage. Gene-knockdown experiments using a specific morpholino oligonucleotide demonstrated that Twist-like1 plays an essential role in determination of the mesenchyme and that Twist-like2 is a downstream factor of Twist-like1. In addition, both overexpression and misexpression of Twist-like1 converts non-mesenchymal cells to mesenchymal cells. We also demonstrate that the upstream regulatory mechanisms of Twist-like1 are different between B-line mesenchymal cells and the A-line mesenchymal cells called 'trunk lateral cells'. FGF9/16/20 is required for the expression of Twist-like1 in B-line mesenchymal precursor cells, whereas FGF, FoxD and another novel bHLH factor called NoTrlc are required for Twist-like1 to be expressed in the A-line mesenchymal precursor cells. Therefore, two different but partially overlapping mechanisms are required for the expression of Twist-like1 in the mesenchymal precursors, which triggers the differentiation of the mesenchyme in Ciona embryos.  相似文献   

15.
16.
The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol-3-OH kinase (PI3K)/Akt pathways are involved in the regulatory mechanisms of several cellular processes including proliferation, differentiation and apoptosis. Here we show that during chick, mouse and zebrafish limb/fin development, a known MAPK/ERK regulator, Mkp3, is induced in the mesenchyme by fibroblast growth factor 8 (FGF8) signalling, through the PI3K/Akt pathway. This correlates with a high level of phosphorylated ERK in the apical ectodermal ridge (AER), where Mkp3 expression is excluded. Conversely, phosphorylated Akt is detected only in the mesenchyme. Constitutively active Mek1, as well as the downregulation of Mkp3 by small interfering RNA (siRNA), induced apoptosis in the mesenchyme. This suggests that MKP3 has a key role in mediating the proliferative, anti-apoptotic signalling of AER-derived FGF8.  相似文献   

17.
Limb muscles of vertebrates are derived from migratory dermomyotomal cells which emanate from a limited number of somites located adjacent to the developing limb buds. We have generated additional limb buds in chicken embryos by implantation of FGF-beads into the interlimb region in order to analyze whether these somites can be programmed to supply ectopic limbs with myogenic precursor cells. We show that migrating myogenic precursor cells are released from somites at the level of the newly formed limb, even when cell migration into the natural limb has been completed. The implantation of FGF beads in the lateral plate mesoderm rapidly induces SF/HGF expression. FGF beads implanted between HH stages 10 and 12 inhibit limb bud formation or shift the normal limb position. When an additional FGF bead was implanted at the original limb position at HH stage 15, SF/HGF expression was transiently induced to low levels without inducing a new limb. This demonstrates that the initial induction of SF/HGF by FGF does not require limb formation. Expression of SF/HGF during early limb bud stages was found in the entire developing bud and the adjacent lateral plate mesoderm with direct contacts to the lateral edge of the dermomyotome. Later, the SF/HGF expression domain retracts to a distal region below the apical ectodermal ridge. To investigate the role of SF/HGF in the migratory process, we implanted beads soaked in SF/HGF-alone or together with FGF into different locations of the developing chick embryo. In the experiments SF/HGF caused delamination of migratory cells from the dermomyotomal epithelium but no chemotactic attraction of migrating cells toward the SF/HGF source.  相似文献   

18.
Morphogenesis of the lung is regulated by reciprocal signaling between epithelium and mesenchyme. In previous studies, we have shown that FGF9 signals are essential for lung mesenchyme development. Using Fgf9 loss-of-function and inducible gain-of-function mouse models, we show that lung mesenchyme can be divided into two distinct regions: the sub-mesothelial and sub-epithelial compartments, which proliferate in response to unique growth factor signals. Fibroblast growth factor (FGF) 9 signals from the mesothelium (the future pleura) to sub-mesothelial mesenchyme through both FGF receptor (FGFR) 1 and FGFR2 to induce proliferation. FGF9 also signals from the epithelium to the sub-epithelial mesenchyme to maintain SHH signaling, which regulates cell proliferation, survival and the expression of mesenchymal to epithelial signals. We further show that FGF9 represses peribronchiolar smooth muscle differentiation and stimulates vascular development in vivo. We propose a model in which FGF9 and SHH signals cooperate to regulate mesenchymal proliferation in distinct submesothelial and subepithelial regions. These data provide a molecular mechanism by which mesothelial and epithelial FGF9 directs lung development by regulating mesenchymal growth, and the pattern and expression levels of mesenchymal growth factors that signal back to the epithelium.  相似文献   

19.
To elucidate roles of fibroblast growth factors (FGF)18 during vertebrate development, we examined expression patterns of Fgf18 in chick embryos and observed effects of FGF18 protein on the Hensen's node, isthmus, and limb buds. Fgf18 is expressed on the right side of the node before the expression of Fgf8 starts. FGF18 protein can induce expression of Fgf8 on the left side of the node, indicating involvement of both FGFs in specification of left-right asymmetry. In the developing brain, Fgf18 is expressed in the isthmus, following the Fgf8 expression. Since Fgf18 is induced ectopically during formation of the second midbrain by FGF8 protein, both FGFs also elaborate midbrain development. In the limb bud, Fgf18 is expressed in the mesenchyme and ectopic application of FGF18 protein inhibits bone growth in the limb. FGF18 is thus likely an endogenous ligand of FGF receptor 3, whose mutation causes bone dysplasia in humans. These results demonstrate that the FGF18-FGF8 signaling is involved in various organizing activities and the signaling hierarchies between FGF18 and FGF8 seem to change during patterning of different structures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号