首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A fructosyltransferase that transfers the terminal (2 --> 1)-beta-linked D-fructosyl group of fructo-oligosaccharides (1(F)(1-beta-D-fructofuranosyl)(n) sucrose, n >/= 1) to HO-6 of the glucosyl residue and HO-1 of the fructosyl residue of similar saccharides (1(F)(1-beta-D-fructofuranosyl)(m) sucrose, m >/= 0) has been purified from an extract of the bulbs of onion (Allium cepa). Successive column chromatography using DEAE-Sepharose CL-6B, Toyopearl HW65, Toyopearl HW55, DEAE-Sepharose CL-6B (2nd time), Sephadex G-100, Concanavalin A Sepharose, and Toyopearl HW-65 (2nd time) were applied for protein purification. The general properties of the enzyme, were as follows: molecular masses of 66 kDa (gel filtration chromatography), and of 52 kDa and 25 kDa (SDS-PAGE); optimum pH of c. 5.68, stable at 20-40 degrees C for 15 min; stable in a range of pH 5.30-6.31 at 30 degrees C for 30 min, inhibited by Hg(2+), Ag(+), p-chloromercuribenzoic acid (p-CMB) and sodium dodecyl sulfate (SDS), activated by sodium deoxycholate, Triton X-100 and Tween-80. The amino acid sequence of the N-terminus moiety of the 52-kDa polypeptide was ADNEFPWTNDMLAWQRCGFHFRTVRNYMNDPSGPMYYKGWYHLFYQHNKDFAYXG and the amino acid sequence from the N-terminus of the 25-kDa polypeptide was ADVGYXCSTSGGAATRGTLGPFGLL VLANQDLTENTATYFYVSKGTDGALRTHFCQDET. The enzyme tentatively classified as fructan: fructan 6(G)-fructosyltransferase (6G-FFT). The enzyme is proposed to play an important role in the synthesis of inulin and inulinneo-series fructo-oligosaccharides in onion bulbs.  相似文献   

2.
A gene encoding inulin fructotransferase (di-D-fructofuranose 1,2': 2,3' dianhydride [DFA III]-producing IFTase, EC 4.2.2.18) from Bacillus sp. snu-7 was cloned. This gene was composed of a single, 1,353-bp open reading frame encoding a protein composed of a 40-amino acid signal peptide and a 410-amino acid mature protein. The deduced amino acid sequence was 98% identical to Arthrobacter globiformis C11-1 IFTase (DFA III-producing). The enzyme was successfully expressed in E. coli as a functionally active, His-tagged protein, and it was purified in a single step using immobilized metal affinity chromatography. The purified enzyme showed much higher specific activity (1,276units/mg protein) than other DFA III-producing IFTases. The recombinant and native enzymes were optimally active in very similar pH and temperature conditions. With a 103-min half-life at 60 degrees C, the recombinant enzyme was as stable as the native enzyme. Acidic residues and cysteines potentially involved in the catalytic mechanism are proposed based on an alignment with other IFTases and a DFA IIIase.  相似文献   

3.
Zhao M  Mu W  Jiang B  Zhou L  Zhang T  Lu Z  Jin Z  Yang R 《Bioresource technology》2011,102(2):1757-1764
The soil bacterium Arthrobacter aurescens SK 8.001 produces inulin fructotransferase (IFTase), and liquid chromatography-mass spectrometry (LC-MS) and carbon-13 nuclear magnetic resonance (13C NMR) analysis demonstrated that the main product of the enzyme was difructose anhydride III (DFA III). The IFTase was purified by ethanol precipitation, DEAE Sepharose Fast Flow, and Superdex 200 10/300 GL gel chromatography. Its molecular mass was estimated to be 40 kDa by SDS-PAGE and 35 kDa by gel filtration. The enzyme showed maximum activity at pH 5.5 and 60-70 °C, and retained 86.5% of its initial activity after incubation at 60 °C for 4 h. Chemical modification results suggested that a tryptophan residue is essential to enzyme activity. The N-terminal amino acid sequence was determined as AEGAKASPLNSPNVYDVT. The kinetic values, Km and Vmax, were estimated to be 0.52 mM and 0.3 μmol/ml min. Nystose was observed to be the smallest substrate for the produced IFTase. This IFTase provides a promising way to utilize inulin for the production of DFA III.  相似文献   

4.
Cordyceps militaris mycelium produced mainly Cu, Zn containing superoxide dismutase (Cu, Zn-SOD). Cu, Zn-SOD activity was detectable in the culture filtrates, and intracellular Cu, Zn-SOD activity as a proportion protein was highest in early log phase culture. The effects of Cu2+, Zn2+, Mn2+ and Fe2+ on enzyme biosynthesis were studied. The Cu, Zn-SOD was isolated and purified to homogeneity from C. militaris mycelium and partially characterized. The purification was performed through four steps: (NH4)2SO4 precipitation, DEAE-sepharose™ fast flow anion-exchange chromatography, CM-650 cation-exchange chromatography, and Sephadex G-100 gel filtration chromatography. The purified enzyme had a molecular weight of 35070 ± 400 Da and consisted of two equal-sized subunits each having a Cu and Zn element. Isoelectric point value of 7.0 was obtained for the purified enzyme. The N-terminal amino acid sequence of the purified enzyme was determined for 12 amino acid residues and the sequences was compared with other Cu, Zn-SODs. The optimum pH of the purified enzyme was obtained to be 8.2–8.8. The purified enzyme remained stable at pH 5.8–9.8, 25 °C and up to 50 °C at pH 7.8 for 1.5 h incubation. The purified enzyme was sensitive to H2O2, KCN. 2.5 mM NaN3, PMSF, Triton X-100, β-mercaptoethanol and DTT showed no significant inhibition effect on the purified enzyme within 5 h incubation period.  相似文献   

5.
Microbacterium sp. AL-210 producing a novel levan fructotransferase (LFTase) was screened from soil samples. The LFTase was purified to homogeneity by (NH4)2SO4 fractionation, column chromatography on Resource Q, and Superdex 200HR. The molecular weight of the purified enzyme was estimated to be approximately 46 kDa by both SDS-PAGE and gel filtration, and the enzyme's isoelectric point was pH 4.8. The major product produced from the levan hydrolysis by the enzyme reaction was identified by atmospheric pressure ionization mass spectrometry and NMR analysis as di-D-fructose-2,6':6,2'-dianhydride (DFA IV). The optimum pH and temperature for DFA IV production were 7.0 and 40 degrees C, respectively. The enzyme was stable at a pH range 7.0-8.0 and up to 40 degrees C. The enzyme activity was inhibited by FeCl2 and AgNO3. The enzyme converted the levan to DFA IV, with a conversion yield of approximately 44%. A gene encoding the LFTase (lftM) from Microbacterium sp. AL-210 was cloned and sequenced. The nucleotide sequence included an ORF of 1593 nucleotides, which is translated into a protein of 530 amino acid residues. The predicted amino acid sequence of the enzyme shared 79% of the identity and 86% of the homology with that of Arthrobacter nicotinovorans GS-9.  相似文献   

6.
A lipase gene lipA and its chaperone gene lipB were cloned from Burkholderia cepacia strain G63. The lipA was composed of 1092 bp, encoding 363 amino acid residues, and the lipB composed of 1035 bp, corresponding to 344 amino acid residues. The significant amino acid similarity with Pseudomonas cepacia lipase revealed that this enzyme could be classified into the lipolytic subfamily I.2. The lipA and lipB genes were cloned into pBBR1Tp vector and conjugated into B. cepacia strains G63 with the help of pRK2013. The recombinant strain was fermented in 10 l bioreactor and the lipase was purified by a combination of ammonium sulfate fractionation, DEAE ion-exchange chromatography and gel filtration. The purified lipase kept stable at a temperature range of 40–70 °C. After incubated at 70 °C, the optimal temperature of this enzyme, for 10 h it remained 86.1% of its activity. The enzyme was also highly tolerant to a series of organic solution. Incubated in 50% methanol solution up to 48 h, the enzyme still kept 98.3% of its activity. The transesterification activity of soybean oil to fatty acid methyl esters (FAMEs) reached 87.8% after 72 h, indicating that it is a potential biocatalyzer for biodiesel production.  相似文献   

7.
Cycloinulo-oligosaccharide fructanotransferase was purified from the cultured medium of Bacillus circulans OKUMZ 31B, to electrophoretic homogeneity, by anion-exchange column chromatography on DEAE-Toyopearl 650M, hydrophobic column chromatography on Butyl-Toyopearl 650M, gel-filtration column chromatography on Sephacryl S-2000HR and anion-exchenge column chromatography on SuperQ-Toyopearl 650M. The enzyme has a molecular weight of 132 000 and a pI of 4.1. The enzyme was most active at pH 7.5 and 40°C, and was stable at pH 6.0–9.0 and below 40°C. The enzyme catalyses the conversion of inulin into cycloinulohexaose and cycloinuloheptaose in the ratio of ca. 4:1, and a small amount of cycloinulo-octaose. The enzyme has an isoform which may be a proteolyticaly modified species of the CFTase because of its reduced molecular weight, 126 000.  相似文献   

8.
A gene encoding a nicotinamide mononucleotide (NMN) adenylyltransferase (NMNAT, EC 2.7.7.1) homologue was identified via genome sequencing in the anaerobic hyperthermophilic archaeon Pyrococcus horikoshii OT-3. The gene encoded a protein of 186 amino acids with a molecular weight of 21,391. The deduced amino acid sequence of the gene showed 59% identities to the NMNAT from Methanococcus jannaschii. The gene was overexpressed in Escherichia coli, and the produced enzyme was purified to homogeneity. Characterization of the enzyme revealed that it is an extremely thermostable NMNAT; the activity was not lost after incubation at 80 °C for 30 min. The native molecular mass was estimated to be 77 kDa. The Km values for ATP and NMN were calculated to be 0.056 and 0.061 mM, respectively. The optimum temperature of the reaction was estimated to be around 90 °C. The adenylyl group donor specificity was examined by high-performance liquid chromatography (HPLC). At 70 °C, ATP was a prominent donor. However, above 80 °C, a relatively small, but significant, NMNAT activity was detected when ATP was replaced by ADP or AMP in the reaction mixture. To date, an NMNAT that utilizes ADP or AMP as an adenylyl group donor has not been found. The present study provides interesting information in which a di- or mono-phosphate nucleotide can be utilized by adenylyltransferase at high temperature.  相似文献   

9.
A gene encoding glutamate dehydrogenase (GDH) was found in the genome sequence of a commensal thermophile, Symbiobacterium toebii. The amino acid sequence deduced from the gdh I of S. toebii was well conserved with other thermostable GDHs. The gdh I which encodes GDH consisting of 409 amino acids was cloned and expressed in E. coli DH5 under the control of a highly constitutive expression (HCE) promoter in a pHCE system. The recombinant GDH was expressed without addition of any inducers in a soluble form. The molecular mass of the GDH was estimated to be 263 kDa by Superose 6 HR gel filtration chromatography and 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicating that the GDH was composed of hexameric form. The optimal temperature and pH of the purified enzyme were 60 °C and 9.0, respectively, and the purified GDH retained more than 75% of its original activity after an incubation at 70 °C for 30 min. Although NADP(H) was the preferred cofactor, S. toebii GDH was able to utilize either NADP(H) or NAD(H) as coenzyme.  相似文献   

10.
Glycyl aminopeptidase was purified 600-fold from a cell extract of Actinomucor elegans by ammonium sulfate fractionation and sequential chromatography on DEAE-Toyopearl, Toyopearl HW65C, and FPLC-Superdex 200 HR, with recovery of 3.3% of the activity. The enzyme highly specifically hydrolyzed Gly-X (amino acid, peptide, or arylamide) bonds. The enzyme hydrolyzed other amino acid residues but at a rate of less than one fifth that with Gly. The order was Gly > Ala > Met > Arg > Ser > Leu. The Km value for glycyl-2-naphthylamide was 0.24 mM. The enzyme was most active at pH 8.0 with glycyl-2-naphthylamide as the substrate and its optimal temperature was 40 degrees C. The enzyme was inhibited by iodoacetic acid, and p-chloromercuribenzoate but not done by diisopropylfluorophosphate, o-phenanthroline, or EDTA. Magnesium and calcium had no effect on enzymic activity, but the activity was suppressed by cadmium, zinc, and copper ions. The molecular mass was estimated to be 320 kDa by gel filtration on FPLC-Superdex 200 HR and 56.5 kDa by SDS-PAGE, so the enzyme probably was a hexamer.  相似文献   

11.
An extracellular enzyme that produces di-D-fructofuranose 2′,1;2,1′-dianhydride (difructose anhydride I= DFA I) from inulin was purified from the culture broth of Streptomyces sp. MCI-2524. The purification enhanced the specific activity 7-fold with an overall yield of 17%. The purified enzyme, when electrophoresed on a SDS polyacrylamide gel, gave a single band corresponding to a molecular weight of 36 kDa. Gel filtration chromatography gave a single peak that eluted at a position corresponding to 70 kDa. The enzyme was active from pH 3.0 to pH 9.0, and at temperatures up to 65°C. Maximal activity was observed at pH 6.0, at 55°C. The enzyme was inhibited by Cu2+.  相似文献   

12.
Solid-state culture of the white-rot fungus Phanerochaete chrysosporium BKMF-1767 (ATCC 24725) has been carried out, using an inert support, polystyrene foam. Suitable medium and culture conditions have been chosen to favor the secretion of manganese peroxidase (MnP). The enzyme was isolated and purified from immobilized P. chrysosporium and partially characterized. Partial protein precipitation in crude enzyme was affected using ammonium sulphate, polyethylene glycol, methanol, and ethanol methods. Fractionation of MnP was performed by DEAE-Sepharose ion exchange chromatography followed by Ultragel AcA 54 gel filtration chromatography. This purification attained 23.08% activity yield with a purification factor of 5.8. According to data on gel filtration chromatography and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), the molecular weight of the enzyme was 45 000±1000 Da. The optimum pH and temperature of purified MnP were 4.5 and 30 °C, respectively. This enzyme was stable in the pH range 4.5–6.0, at 25 °C and also up to 35 °C at pH 4.5 for 1 h incubation period. MnP activity was inhibited by 2 mM NaN3, ascorbic acid, β-mercaptoethanol and dithreitol. The Km values of MnP for hydrogen peroxide and 2.6-dimetoxyphenol were 71.4 and 28.57 μM at pH 4.5, respectively. The effects of possible inhibitors and activators of enzyme activity were investigated.  相似文献   

13.
An extracellular protease from the marine bacterium Sphingomonas paucimobilis, strain 116, isolated from the stomach of Antarctic krill, Euphausia superba Dana, was purified and characterized. The excretion of protease was maximal at temperatures from 5 to 10°C, i.e. below the temperature optimum for the strain growth (15°C). The highly purified enzyme was a metalloprotease [sensivity to ethylenediaminetetraacetic acid (EDTA)] and showed maximal activity against proteins at 20–30°C and pH 6.5–7.0, and towards N-benzoyl-tyrosine ethyl ester (BzTyrOEt) at pH 8.0. At 0°C the enzyme retained as much as 47% of maximal activity in hydrolysis of urea denatured haemoglobin (Hb) (at pH 7.0), and at −5 and −10°C, 37 and 30%, respectively. The metalloprotease was stable up to 30°C for 15 min and up to 20°C for 60 min. These results indicate that the proteinase from S. paucimobilis 116 is a cold-adapted enzyme.  相似文献   

14.
An extracellular enzyme that produces di-d-fructofuranose-2′, 1;2, 1′ dianhydride from inulin was purified from the culture broth cf Arthrobacter sp. MCI2493. The molecular weight of the enzyme was 40,000 by gel filtration and SDS polyacrylamide gel electrophoresis. The enzyme had maximum activity at pH 6.0 and 50°C. Using this purified enzyme, 100g/liter inulin was converted into 60 g/liter of DFA I, nystose, and 1-f-fructofuranosyl-nystose after incubation for 30 h.  相似文献   

15.
Chaetomium thermophilum CT2 produced endocellulases at 50 °C, when grown on 2% microcrystalline cellulose, 1% soluble starch, and 0.4% yeast extract medium. A major endocellulase component was purified to homogeneity by fractional ammonium sulphate precipitation, ion-exchange chromatography on DEAE-Sepharose, Phenyl-Sepharose hydrophobic interaction chromatography and gel filtration on Sephacryl S-100. The molecular weight of the enzyme was estimated to be 67.8 kDa and the enzyme was found to be a glycoprotein containing 18.9% carbohydrate. The Km of the purified enzyme for carboxymethyl cellulose, sodium salt (CMC), was 4.6 mg ml−1. The enzyme displayed highest activity towards CMC and significantly lower activities towards phosphoric acid swollen cellulose and filter paper. The activity was enhanced in the presence of Na+, K+ and Ca2+ but inhibited by Hg2+, Zn2+, Ag+, Mn2+, Ba2+, Fe2+, Cu2+, Mg2+ and NH4+. Optimum activity was at 60 °C and pH 4.0. The enzyme was stable over 60 min incubation at 60 °C and half-life at 70, 80 and 90 °C was approximately 45, 24 and 7 min, respectively.  相似文献   

16.
Previously, a di-D-fructofuranose 1,2’:2,3’ dianhydride (DFA III)-producing strain, Arthrobacter aurescens SK8.001, was isolated from soil, and the gene cloning and characterization of the DFA III-forming enzyme was studied. In this study, a DFA III hydrolysis enzyme (DFA IIIase)-encoding gene was obtained from the same strain, and the DFA IIIase gene was cloned and expressed in Escherichia coli. The SDS-PAGE and gel filtration results indicated that the purified enzyme was a homotrimer holoenzyme of 145 kDa composed of subunits of 49 kDa. The enzyme displayed the highest catalytic activity for DFA III at pH 5.5 and 55°C, with specific activity of 232 U mg-1. K m and V max for DFA III were 30.7 ± 4.3 mM and 1.2 ± 0.1 mM min-1, respectively. Interestingly, DFA III-forming enzymes and DFA IIIases are highly homologous in amino acid sequence. The molecular modeling and docking of DFA IIIase were first studied, using DFA III-forming enzyme from Bacillus sp. snu-7 as a template. It was suggested that A. aurescens DFA IIIase shared a similar three-dimensional structure with the reported DFA III-forming enzyme from Bacillus sp. snu-7. Furthermore, their catalytic sites may occupy the same position on the proteins. Based on molecular docking analysis and site-directed mutagenesis, it was shown that D207 and E218 were two potential critical residues for the catalysis of A. aurescens DFA IIIase.  相似文献   

17.
γ-Proteobacterium JB, an alkali-tolerant soil isolate, produced laccase constitutively in unbuffered medium. The enzyme was purified to homogeneity by ammonium sulphate precipitation, DEAE-sepharose anion exchange chromatography and preparatory polyacrylamide gel electrophoresis. The purified enzyme was a monomeric polypeptide (MW 120 kDa) and absorbed at 590 nm indicating the presence of Type I Cu2+-centre. It worked optimally at 55 °C and showed different pH optima for different substrates. The enzyme was highly stable in the pH range 4–10 even after 60 days at 4 °C. Km and Vmax values for syringaldazine, catechol, pyrogallol, p-phenylenediamine, l-methyl DOPA and guaiacol substrates were determined. Inhibitors, viz. azide, diethyldithiocarbamate, thioglycollate and cysteine-hydrochloride all inhibited laccase non-competitively using guaiacol as substrate at pH 6.5. The enzyme degraded indigo carmine (pH 9, 55 °C) to anthranilic acid via isatin as determined spectrophotometrically and by HPLC analysis. Degradation was enhanced in the presence of syringaldehyde (571%), vanillin (156%) and p-hydroxybenzoic acid (91.6%) but not HOBT.  相似文献   

18.
Lactobacillus pentosus B235, which was isolated as part of the dominant microflora from a garlic containing fermented fish product, was grown in a chemically defined medium with inulin as the sole carbohydrate source. An extracellular fructan beta-fructosidase was purified to homogeneity from the bacterial supernatant by ultrafiltration, anion exchange chromatography and hydrophobic interaction chromatography. The molecular weight of the enzyme was estimated to be approximately 126 kDa by gel filtration and by SDS-PAGE. The purified enzyme had the highest activity for levan (a beta(2-->6)-linked fructan), but also hydrolysed garlic extract, (a beta(2-->1)-linked fructan with beta(2-->6)-linked fructosyl sidechains), 1,1,1-kestose, 1,1-kestose, 1-kestose, inulin (beta(2-->1)-linked fructans) and sucrose at 60, 45, 39, 12, 9 and 3%, respectively, of the activity observed for levan. Melezitose, raffinose and stachyose were not hydrolysed by the enzyme. The fructan beta-fructosidase was inhibited by p-chloromercuribenzoate, EDTA, Fe2+, Cu2+, Zn2+ and Co2+, whereas Mn2+ and Cu2+ had no effect. The sequence of the first 20 N-terminal amino acids was: Ala-Thr-Ser-Ala-Ser-Ser-Ser-Gln-Ile-Ser-Gln-Asn-Asn-Thr-Gln-Thr-Ser-Asp-Val-Val. The enzyme had temperature and pH optima at 25 degrees C and 5.5, respectively. At concentrations of up to 12% NaCl no adverse effect on the enzyme activity was observed.  相似文献   

19.
Isoamylase catalyzes the hydrolysis of -1,6-glucosidic linkages of starch and related polysaccharides. In this study, the treX gene (GenBank accession no. AE006815 REGION: 9279 … 11435) encoding the thermophilic isoamylase was PCR-cloned from the genomic DNA of Sulfolobus solfataricus ATCC 35092 to an expression vector with a T7lac promoter. Both wild-type and His-tagged isoamylases were expressed in Escherichia coli. The wild-type isoamylase was purified sequentially using heat treatment, nucleic acid precipitation, ion-exchange chromatography, and gel filtration chromatography while the His-tagged isoamylase was purified from the cell-free extract directly by metal chelating chromatography. Both enzymes were active only under their homo-trimer forms. In the absence of NaCl, both enzymes became inactive monomers. In addition, both enzymes were more stable when being stored at room temperature than at 4 °C. They had an apparent optimal pH of 5 and an optimal temperature at 75 °C. The enzyme activities remained unchanged after a 2 h incubation at 80 and 75 °C for the wild-type and His-tagged enzymes, respectively. These thermophilic isoamylases showed a potential to be used in industry to degrade the branching points of starch at a high temperature.  相似文献   

20.
Proline iminopeptidase [EC 3.4.11.5] was purified about 1,700-fold from cell free extract of Bacillus megaterium by a series of column chromatographies on DEAE-Toyopearl, PCMB-T-Sepharose and hydroxyapatite, and gel filtration on Toyopearl FW-55. The purified enzyme still contained a minor contaminant as judged by disc gel electrophoresis. The enzyme was most active at pH 7.0 with Pro-beta-naphthylamide (Pro-2-NNap) as the substrate, and hydrolyzed Pro-X (X = amino acid, peptide, amide, and arylamide) bonds when the proline residue was at the amino terminal. The enzyme was completely inactivated by p-chloromercuribenzoate (PCMB), but was not inhibited by metal chelators, diisopropylphosphorofluoridate (DFP) and phenylmethanesulfonyl fluoride (PMSF). The enzyme inactivated with PCMB was reactivated by adding 2-mercaptoethanol. From this result and the chromatographic profile on PCMB-T-Sepharose, the enzyme seems to be a sulfhydryl enzyme. The isoelectric point of the enzyme was 4.0. The molecular weight of the enzyme was estimated to be 58,000 by gel filtration on Toyopearl and 60,000 by sodium dodecyl sulfate (SDS) gel electrophoresis, suggesting that the enzyme is a monomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号