首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study deals specifically with floral organogenesis and the development of the inflorescence of Philodendron squamiferum and P. pedatum. Pistillate flowers are initiated on the lower portion of the inflorescence and staminate flowers are initiated on the distal portion. An intermediate zone consisting of sterile male flowers and atypical bisexual flowers with fused or free carpels and staminodes is also present. This zone is located between the sterile male and female floral zones. In general, the portion of bisexual flowers facing the male zone forms staminodes, and the portion facing the female zone develops an incomplete gynoecium with few carpels. The incomplete separation of some staminodes from the gynoecial portion of the whorl shows that they belong to the same whorl as the carpels. There are two levels of aberrant floral structures in Philodendron: The first one is represented by the presence of atypical bisexual flowers, which are intermediates between typical female flowers and typical sterile male flowers. The second one is the presence of intermediate structures between typical carpels and typical staminodes on a single atypical bisexual flower. The atypical bisexual flowers of P. squamiferum and P. pedatum are believed to be a case of homeosis where carpels have been replaced by sterile stamens on the same whorl. A quantitative analysis indicates that in both species, on average, one staminode replaces one carpel.  相似文献   

2.
Barabé D  Lacroix C  Jeune B 《Annals of botany》2008,101(7):1027-1034
Background and Aims: The inflorescence of Philodendron constitutes an interestingmorphological model to analyse the phenomenon of homeosis quantitativelyat the floral level. The specific goals of this study were (1)to characterize and quantify the range of homeotic transformationin Philodendron billietiae, and (2) to test the hypothesis thatthe nature of flowers surrounding atypical bisexual flowers(ABFs) channel the morphological potentialities of atypicalbisexual flowers. Methods: Inflorescences of P. billietiae at different stages of developmentwere observed using SEM. The number of appendices in male, femaleand sterile flowers were counted on 11 young inflorescences(5–6 flowers per inflorescence). The number of staminodesand carpels on ABFs were counted on 19 inflorescences (n = 143).These data were used for regression and ANOVA analyses. Results: There was an average of 4·1 stamens per male flower,9·8 carpels per female flower and 6·8 staminodesper sterile male flower. There was an average of 7·3floral appendices per atypical flower. Staminodes and carpelsare inserted on the same whorl in ABFs. A negative exponentialrelationship was found between the average number of staminodesand the number of carpels in ABFs. If only the ABFs consistingof less than six carpels are considered, there is a linear relationshipbetween the number of carpels and the average number of staminodes.The value of the slope of the regression equation indicatesthat on average, in P. billietiae, 1·36 carpels are replacedby one staminode. Conclusions: In P. billietiae, the number of appendages in female flowersimposes a constraint on the maximum total number of appendages(carpels and staminodes) that can develop on ABFs. The quantitativeanalyses indicate that the average number of different typesof floral appendages on an ABF and the number of organs involvedin a homeotic transformation are two independent phenomena.  相似文献   

3.
In Freycinetia reineckei the staminate flower (on the staminate spikes) comprises 3 or 4 (sometimes 2) stamens and a pistillode with 2 (sometimes 4) carpellodes, and the pistillate flower (on the pistillate spikes) is formed of a pistil with 2 (sometimes 4) carpels and of 3 or 4 (sometimes 2) staminodes. This perfect floral homology, also observed in all the other species that were studied with both pistillate and staminate material, strongly suggests that the flower of Freycinetia is basically and potentially bisexual, and may explain the occasional sexual lability and bisexuality of that flower (occurrence of both pistillate and staminate inflorescences, and/or of bisexual inflorescences with bisexual flowers and/or unisexual flowers, on the same individuals) in some species, and also the frequent occurrence of bisexual spikes in this species. These may be partitioned into pistillate, staminate, mixed and sterile zones. In the pistillate zones the flowers have the same aspect and structure as the pistillate flowers. In the staminate zones the flowers generally comprise 3 or 4 (sometimes 2) stamens and a ‘semi-pistil’ some have both stamens and staminodes. The semi-pistils are intermediate between pistils and pistillodes in length, aspect and structure, but always have placentas and ovules. In the mixed zones the flowers are generally formed of a pistil and 3 or 4 (sometimes 2) stamens, and are therefore true hermaphrodite flowers; some have both stamens and staminodes. In the sterile zones the flowers comprise a semi-pistil and 3 or 4 (sometimes 2) staminodes. The staminodes are anatomically very similar to the stamens, especially in the staminate, mixed, and sterile zones, in which they exhibit a wide range of variation in length, aspect and structure. The perfect floral homology as generic character on one hand, and the occasional bisexuality both with and without bisexual flowers and other aspects of sex expression (e.g. occurrence of both pistillate and staminate shoots on the same individuals) in some species on the other hand, seem to indicate that Freycinetia is a basically monoecious, sex changing genus.  相似文献   

4.
花叶芋(天南星科)的花器官发生   总被引:1,自引:0,他引:1  
利用扫描电镜首次观察了天南星科花叶芋(Colocasia bicolor) 的花器官发生过程。花叶芋的肉穗花序由无花被的单性花构成, 雌花发生于花序基部, 雄花发生于花序上部, 中性花位于花序中间部位。雄花: 3 或4 个初生雄蕊原基轮状发生, 随后每个初生原基一分为二, 形成6或8个次生原基; 一部分次生原基在其后的发育过程中融合, 形成5 或7 枚雄蕊; 雄花发育过程中未见雌性结构的分化; 花药的分化先于花丝; 雄蕊合生成雄蕊柱。雌花: 合生心皮, 3或4个心皮原基轮状发生, 未见雄性结构的分化。中性花来源于雌雄花序过渡带上, 属于雄蕊原基的滞后发育以及发育成熟过程中的退化; 与彩叶芋属(Caladium)不同, 此过渡区未见畸形两性花。初生雄蕊原基二裂产生次生原基的次生现象在目前天南星科花器官发生中显得比较特殊, 同时初步探讨了次生原基的融合方式。  相似文献   

5.
The development of staminate and pistillate flowers in the dioecious tree species Pistacia vera L. (Anacardiaceae) was studied by scanning electron microscopy with the objective of determining organogenetic patterns and phenology of floral differentiation. Flower primordia are initiated similarly in trees of both sexes. Stamen and carpel primordia are initiated in both male and female flowers, and the phenology of organ initiation is essentially identical for flowers of both sexes. Vestigial stamen primordia arise at the flanks of pistillate flower apices at the same time functional stamens are initiated in the staminate flowers. Similarly, a vestigial carpel is initiated in staminate flowers at the same time the primary, functional carpel is initiated in pistillate flower primordia. Differences between the two sexes become apparent early in development as, in both cases, development of organs of the opposite sex becomes arrested at the primordial stage. Male flowers produce between four and six mature functional stamens and female flowers produce a gynoecium with one functional and two sterile carpels.  相似文献   

6.
A comparative developmental study of the inflorescence ofPhilodendron solimoesense was conducted using scanning electron microscopy. The spadix ofP. solimoesense is characterized by unisexual flowers. Staminate flowers are initiated on the upper portion of the spadix while pistillate flowers develop on the lower portion of the spadix. An intermediate zone located between the upper male and lower female portion of the inflorescence consists of sterile male flowers. Within this intermediate zone a row of flowers exhibit polarity with respect to the identity of sexual organs. Stamens are initiated on the flank of the floral meristem facing the upper male zone and carpels are initiated on the portion of the floral meristem facing the lower female zone. The resulting flowers therefore assume a bisexual identity. At the level of the inflorescence, all floral buds are initiated along a series of contact parastichies and the continuity of these parastichies is not disrupted at any level in the male, intermediate, and female zones on the spadix. Results from this study support the presence of a morphogenetic gradient acting at the level of the inflorescence and appears to be independent of the boundaries of floral primordia.  相似文献   

7.
The spadix of Montrichardia arborescens contains unisexual flowers without a perianth. The pistillate flowers are located in the basal portion of the inflorescence, and the staminate flowers are located in the apical portion. There is a narrow :zone between male flowers and female flowers consisting of atypical flowers. The portion of the atypical flowers facing the staminate zone exhibits staminate characters (stamens), and the portion facing the pistillate zone has an aborted gynoecium. The floral development of Montrichurdia is compared with that of Philodendron and a new interpretation of the morphology of atypical flowers of Montrichardia is proposed. Ontogenetic evidence supports relationships with Philodendron rather than Cercestis. 2001 The Linnean Society of London  相似文献   

8.
利用扫描电镜(SEM)和光镜(LM)对臭椿花序及花器官的分化和发育进行了初步研究,表明:1)臭椿花器官分化于当年的4月初,为圆锥花序;2)分化顺序为花萼原基、花冠原基、雄蕊原基和雌蕊原基。5个萼片原基的发生不同步,并且呈螺旋状发生;5个花瓣原基几乎同步发生且其生长要比雄蕊原基缓慢;雄蕊10枚,两轮排列,每轮5个原基的分化基本是同步的;雌蕊5,其分化速度较快;3)在两性花植株中,5个心皮顶端粘合形成柱头和花柱,而在雄株中,5个心皮退化,只有雄蕊原基分化出花药和花丝。本研究着重观察了臭椿中雄花及两性花发育的过程中两性花向单性花的转变。结果表明,臭椿两性花及单性花的形成在花器官的各原基上是一致的(尽管时间上有差异),雌雄蕊原基同时出现在每一个花器官分化过程中,但是,可育性结构部分的形成取决于其原基是否分化成所应有的结构:雄蕊原基分化形成花药与花丝,雌蕊原基分化形成花柱、柱头和子房。臭椿单性花的形成是由于两性花中雌蕊原基的退化所造成,其机理有待于进一步研究。  相似文献   

9.
The inflorescence of Dracontium polyphyllum consists of 150 – 300 flowers arranged in recognisable spirals. The flower has 5 – 6 (90% of observed specimens), or 7 broad tepals enclosing 9 – 12 stamens (occasionally 7) inserted in two whorls. The gynoecium is trilocular (90% of observed specimens) or tetralocular. The tetralocular gynoecia are found at random among the trilocular gynoecia. Each locule encloses an ovule inserted in an axile position, in the median portion of the ovary. Each carpel has its own stylar canal. However, in the upper portion of the style, there is only one common stylar canal. Floral organs are initiated in an acropetal direction in the following sequence: tepals, stamens, and carpels. During later stages of development, the tepals progressively cover the other floral organs. The first floral primordia are initiated on the upper portion of the inflorescence. During early stages of development, the floral primordia have a circular shape. The tepals are initiated nearly simultaneously. During later stages of development, the first whorl of stamens develops in alternation with the tepals and is followed by a second whorl of stamens. The trilocular or tetralocular nature of the ovary is clearly visible during early stages of development of the gynoecium. Recent molecular studies show that Anaphyllopsis A. Hay and Dracontium L. are closely related. However, although pentamerous flowers have been observed in Anaphyllopsis, the developmental morphology of the flower of Dracontium is different from that of Anaphyllopsis.  相似文献   

10.
The development of the bisexual flower of Lophotocarpus calycinus and of the unisexual flowers of Sagittaria latifolia has been observed. In all eases floral organs arise in acropetal succession. In L. calycinus, after initiation of the perianth, the first whorl of stamens to form consists of six stamens and is ordinarily followed by two alternating whorls of six stamens each. The very numerous carpels arc initiated spirally. In the male flower of S. latifolia the androecium develops in spiral order. A few rudimentary carpels appear near the floral apex after initiation of the stamens. There are no staminodia. The female flower has a similar developmental pattern to that of Lophotocarpus except that a prominent residual floral apex is left bare of carpels. The vascular system in all flowers is semiopen, with vascular bundles passing to the floral organs in a pattern unrelated to the relative positions of those organs. The androecia of these two taxa are similar to those of some Butomaceae and relationships based on ontogeny and morphology are suggested. The gynoecia are meristically less specialized but morphologically more specialized than the gynoecia of Butomaceae.  相似文献   

11.
Sagittaria papillosa Buch. is monoecious with unisexual flowers, pistillate below, staminate above, typically with an unbranched scape. A large population with unusual numbers of staminate and bisexual flowers on the lowest whorl of the inflorescence and many particles was quantitatively evaluated. First-formed inflorescences had more staminate and bisexual flowers than those produced later. Branched scapes were predominantly found to be the second inflorescence produced by a given plant. Genetic crosses between flowers on recemes and panicles produced no branched inflorescences. When grown under greenhouse conditions all tested plants had racemes with pistillate flowers in the lower whorls and staminate ones above. Data from soil parameters, daylengths and air temperatures are compared to reported information on modification of flower sexuality by these factors.  相似文献   

12.
庙台械的花序为有限花序,由一顶花和6—9枝侧花枝组成,属圆锥状聚伞花序。一个花序共有14—29朵花,包括两性花、雄花和无性花三类花。根据花在花序上着生的位置,可分为三级。7月初,花序原基形成,在花序轴伸长的同时,侧面形成侧花枝轴原基。花序的顶花最早进行个体发育,随后是侧花枝顶花;侧花枝上同一级花的发育顺序则是从花序的下面向上进行。花器官发生时,花萼原基最先形成,然后是花瓣、雄蕊、心皮和胚珠。  相似文献   

13.
This paper reports the bisexual structure of the flowers of Pterocarya stenoptera. The bisexual flowers are borne at the end of a leafy shoot of the current year in many-flowered terminal pendulous catkins. They have the same structure as the general female ones. Each flower grows in the axil of a bract, with a pair of bracteoles and four small perianths. Each flower has two or three carpels in the centre of the flower, and upon them there are two or three styles with stigmas on the inner face. They differ from the general female ones in that each of them contains 4-6 stamens, forming a single whorl. The stamens alternates with, or is opposite to, the perianth elements. Sometimes they contain 8 (-10) stamens, forming two whorls, with 6 in the outer whorl and 2 (-4) in the inner whorl, and in this case the pistil in the bisexual flower of terminal catkins often becomes a rudiment. It is interesting that we have also found bisexual flowers in another tree, which are borne in lateral male catkins. They have the same structure as general male ones, and the pistils are often represented by a rudiment. Manning (1940) points out that some female flowers of Pterocarya stenoptera and P. fraxinifolia occasionally have stamens ( ? ) opposite the sepals. In P. stenoptera we have found that both the stamens and the stigmas of bisexual flowers are functional. They are capable of producing functional fruits. This is the same case as in Myrica Gale described by Davey and Gibson (1917). Rendle (1952) points out that in the male flowers of Platycarya the pistils often appeared as a rudiment. He considers, however, the male flowers derived from the bisexual flowers with an indefinite number of stamens. The rudimentary pistils of lateral male catkins in P. stenoptera we found are just the same as the ones found in Platycarya by Rendle. The discovery of the bisexual flowers in P. stenoptera may prove that the unisexual flowers of the present-day Juglandaceae are derived from ancestors with bisexual flowers.This tends to support the hypothesis that Cycadicae is the possible ancestor of the angiosperms.  相似文献   

14.
In both male and female flowers of H. morsus-ranae the primordia of the floral appendages appear in an acropetal succession consisting of alternating trimerous whorls. In the male flower a whorl of sepals is followed by a whorl of petals, three whorls of stamens, and a whorl of filamentous staminodes. The mature androecial arrangement therefore consists of two antisepalous stamen whorls, an antipetalous whorl of stamens, and antipetalous staminodes. Shortly before anthesis, basal meristematic upgrowth between filaments of adjacent whorls produces paired stamens, joining Whorls 1 and 3, and Whorl 2 with the staminodial whorl. A central domelike structure develops between the closely appressed filaments of the inner stamen and staminodial whorl, giving the structure a lobed appearance. After petal inception in the female flower a whorl of antisepalous staminodes develop, each of which may bifurcate to form a pair of staminodes. During staminode development a girdling primordium arises by upgrowth at the periphery of the floral apex. The girdling primordium rapidly forms six gynoecial primordia, which then go on to produce six free styles with bifid stigmas. Intercalary meristem activity, below the point of floral appendage attachment, leads to the production of a syncarpous inferior ovary with six parietal placentae. The styles and carpels remain open along their ventral sutures. During the final stages of female floral development, several hundred ovules develop along the carpel walls, and three nectaries develop dorsally and basally on the three antipetalous styles.  相似文献   

15.
16.
林祁  段林东  袁琼 《植物研究》2008,28(6):648-652
报道了单性木兰(Kmeria septentrionalis Dandy)花的形态发生过程。发现过去一直被认为是雌花条状披针形的“内轮花被片”,实际为退化雄蕊,它形态发生的时间与位置均与雄花的雄蕊相同,在成熟结构中仍可见药室残迹,说明单性木兰的雌性花是由两性花退化而来。通过与K. duperreana(Pierre) Dandy和Magnolia thailandica Noot. &; Chalermglin雌花的比较,发现它们雌花的形态相同,从而得知人们长期以来对此3种植物雌花的认识有误,原一直认为的“内轮花被片”实为退化雄蕊。  相似文献   

17.
The initiation of the floral parts (mainly stamens and carpels) is described for the four dioecious species of Piper: Piper polysyphorum C. DC, P. bavinum C. DC., P. pedicellatum C. DC., P. pubicatulum C. DC. The initiation order resembles that in the perfect flowers of some species, such as P. amalago. The carpels are initiated simultaneously, in most cases, as three primordia. In P. polysyphorum , carpel tips split into two lobes, so that finally a four- or five-lobed stigma will be formed when the ovary is fully developed. The staminodes (exactly, staminodial primordia) in the female flowers are initiated in the same order as the stamens in the male flowers and remain until the ovaries are enclosed. The unisexual flowers have stamens reduced to three or two. The reduction of stamen or staminode (staminodial primordium) number is accompanied by the change of their positions from opposite the carpels to alternate. After the initiation of the staminodes, or, exactly staminodial primordia, in the female flowers, the central part of the floral apex forms a ring meristem which is triangular. The carpel primordia (often three) are initiated on the three points of the ring meristem. The evolutionary trends of the flowers of Piper sensu lato are discussed.  相似文献   

18.
Summary Flower and fruit characters were measured in ten female, five male and five fruiting male selections of A. deliciosa var deliciosa (A. Chev) Liang and Ferguson. Flowers from female vines had functional pistils, which contained many ovules. Stamens appeared to be fully developed but produced only empty pollen grains. Flowers from male vines had functional stamens that produced high percentages of pollen grains with stainable cytoplasmic contents. Pistils did not contain ovules and were generally small with vestigial styles. Fruiting male vines had both staminate and bisexual flowers. Staminate flowers were similar to those found on strictly male vines. Bisexual flowers produced ovules and stainable pollen. Pistils were smaller than in pistillate flowers. Although the three flower sexes differed in style length, ovary dimensions and ovules per carpel, staminate and bisexual flowers were similar in number of flowers per inflorescence, stamen filament length, pollen stainability, inflorescence rachis length and carpel number, and differed from pistillate flowers in these characters. The three flower sexes had similar sepal and petal numbers. The fruit of fruiting males were considerably smaller than those of females. Low ovule number appears to be the major factor limiting fruit size in the fruiting males studied. Prospects for developing hermaphroditic kiwifruit cultivars through breeding are discussed.  相似文献   

19.
In the early development of Trochodendron aralioides (Trochodendraceae) inflorescences lateral flowers are initiated after the appearance of the floral pherophylls (subtending bracts). The terminal flower is preceded by metaxyphylls and is initiated earlier than the uppermost lateral flowers of the botryoid inflorescence. Small scales (interpreted as rudimentary perianth organs) precede the stamens. These scales are more distinct in the terminal flower than in the lateral flowers. In the radially symmetrical terminal flower, small scales (or metaxyphylls) and stamens are initiated in a spiral during early development. At anthesis, stamen phyllotaxis appears irregular or approximately whorled as a result of the rapid elongation and irregular slight curvature of the stamen filaments which distorts the originally regular pattern. Finally, the numerous carpels arise simultaneously in a single whorl. It takes about 9 months for flowers to develop and the 2-year reproductive cycle of T. aralioides is typical of many trees. The floral development of T. aralioides is compared with that of other basal eudicots. The bottle-shaped, unicellular stigmatic papillae and long, decurrent stigma of basally united carpels are similar to those of the Buxales¸ suggesting a close relationship.  相似文献   

20.
Flowers commonly face the dilemma of needing to be attractive to pollinators but unattractive to nectar robbers or florivores. When the pollinator has chewing mouthparts, there is also a considerable risk of the pollinator consuming the flowers. Scant field records indicate that the florivorous beetle Erioscelis emarginata (Mannerheim) (Coleoptera: Scarabaeidae: Cyclocephalini), which pollinates Philodendron spp., feeds selectively on the sterile staminate flowers. Here, the hypothesis was tested that E. emarginata prefers sterile staminate flowers of Philodendron bipinnatifidum Schott and Philodendron melinonii Brongn. ex Regel (Araceae) over fertile flowers. This study also examined whether such a preference exists regardless of the proportion of fertile vs. sterile flowers in each Philodendron species. Analysis of nutritional and defensive compounds plus scanning electron microscopy on each flower type were performed. The feeding preference of florivores for either P. bipinnatifidum or P. melinonii was also examined. In both species, sterile flowers were significantly more consumed than fertile ones. The sterile zone of P. bipinnatifidum was significantly larger than that of P. melinonii, and sterile staminate flowers of both plants were consumed at similar rates. Calcium oxalate was markedly low in sterile flowers, which also presented smaller papillae than the other flowers. This study presents evidence that the balance between pollination and florivory has most likely evolved through a strong feeding preference for less‐defended sterile flowers regardless of the size of the sterile zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号