首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The expressed immunoglobulin gamma 2b (IgG2b) heavy-chain gene of 4T001 was cloned into the shuttle vector pSV2-gpt and transfected into myeloma J558L and lymphoma A20.2J. Northern blots indicated that the transfected gamma 2b gene was processed in a manner similar to the endogenous heavy chain in both lymphoma and myeloma cells. To identify sequences important for immunoglobulin mRNA processing, we constructed deletions around the secretion-specific polyadenylation site and introduced the deleted genes into J558L cells. The BAL deletion lacked 670 base pairs of intervening sequence between secreted and membrane regions; the Kpn deletion lacked 830 base pairs in this region. J558L cells transfected with either the entire gamma 2b gene or the delta BAL vector produced predominantly secretion-specific gamma 2b mRNA and protein. J558L cells transfected with the delta Kpn vector produced approximately equimolar amounts of secretion-specific and membrane-specific gamma 2b mRNA. Both 55,000-dalton secreted and 62,000-dalton putative surface IgG2b proteins were detected in the delta Kpn transfectants. We conclude that sequences absent in the Kpn deletion but present in the BAL deletion exert an important role in the production of secretion-specific mRNA. The Kpn deletion removes the normal site of cleavage and poly(A) addition, and it is possible that it is the absence of this site which changes the processing pattern. Alternatively, it is possible that sequences absent in the Kpn deletion but present in the BAL deletion function in regulating the production of predominantly secretion-specific mRNA in myeloma cells. The possible role of a highly conserved sequence found in this region is discussed.  相似文献   

3.
4.
5.
D W Chung  E W Davie 《Biochemistry》1984,23(18):4232-4236
cDNAs and the genomic DNA coding for the gamma and gamma' chains of human fibrinogen have been isolated and characterized by sequence analysis. The cDNAs coding for the gamma and gamma' chains share a common nucleotide sequence coding for the first 407 amino acid residues in each polypeptide chain. The predominant gamma chain contains an additional four amino acids on its carboxyl-terminal end (residues 408-411). These four amino acids, together with the 3' noncoding sequences, are encoded by the tenth exon. Removal of the ninth intervening sequence following the processing and polyadenylation reactions yields a mature mRNA coding for the predominant gamma chain. The less prevalent gamma' chain contains 20 amino acids at its carboxyl-terminal end (residues 408-417). These 20 amino acids are encoded by the immediate 5' end of the ninth intervening sequence. This results from an occasional processing and polyadenylation reaction that occurs within the region normally constituting the ninth intervening sequence. Accordingly, the gene for the gamma chain of human fibrinogen gives rise to two mRNAs that differ in sequence on their 3' ends. These mRNAs code for polypeptide chains with different carboxyl-terminal sequences. Both of these polypeptides are incorporated into the fibrinogen molecule present in plasma.  相似文献   

6.
7.
8.
9.
A DNA sequence complementary to the entire coding part of a mouse gamma 2a immunoglobulin heavy chain mRNA isolated from a myeloma producing a levan binding protein (UPC 10), has been cloned in the PstI site of pBR 322. Transformants containing sequences complementary to purified gamma 2a heavy chain mRNA were selected. One transformant, pG2a-10-21, containing a 1750 nucleotide insert, has been characterized by hybrid-arrested translation and purification of gamma 2a heavy chain mRNA on DNA-DBM cellulose filters. Restriction enzyme analysis and partial sequencing demonstrate that the pG2a-10-21 contains the complete structural sequence for the gamma 2a heavy chain and predicts the sequence of a 18 amino acid hydrophobic amino terminal extra piece segment.  相似文献   

10.
We have measured the concentration of mRNAs coding for immunoglobulins, k and lambda type light chains and gamma 1 type heavy chain, in mouse spleen cells activated by bacterial lipopolysaccharide or sheep red blood cells. These mRNAs were quantitated by hybridization to radioactive DNA complementary to highly purified immunoglobulin mRNAs from mouse myelomas. In the lipopolysaccharide-stimulated spleen cells, only light chain mRNA accumulated, whereas gamma 1 type heavy chain mRNA remained unvaried. The light chain mRNA concentration also increased in purified bone-marrow-derived lymphocytes. The lipopolysaccharide-induced light chain mRNA was similar to light chain mRNAs purified from myelomas. The accumulation and disappearance of light chain mRNA in bone-marrow-derived lymphocytes coincide with the kinetics of synthesis of immunoglobulin M which is the major species induced by lipopolysaccharide. In sheep red blood cell stimulated spleen, the specific accumulation of k type light chain and gamma 1 type heavy chain mRNAs parallels immunoglobulin G synthesis. These results seem to indicate that the increment of immunoglobulin mRNA concentration in bone-marrow-derived lymphocytes is important for induction of immunoglobulin synthesis.  相似文献   

11.
12.
13.
14.
The erbAalpha gene encodes two alpha-thyroid hormone receptor isoforms, TRalpha1 and TRalpha2, which arise from alternatively processed mRNAs, erbAalpha1 (alpha1) and erb alpha2 (alpha2). The splicing and alternative polyadenylation patterns of these mRNAs resemble that of mRNAs encoding different forms of immunoglobulin heavy chains, which are regulated at the level of alternative processing during B cell differentiation. This study examines the levels of erbAalpha mRNA in eight B cell lines representing four stages of differentiation in order to determine whether regulation of the alternatively processed alpha1 and alpha2 mRNAs parallels the processing of immunoglobulin heavy chain mRNAs. Results show that the pattern of alpha1 and alpha2 mRNA expression is clearly different from that observed for immunoglobulin heavy chain mRNAs. B cell lines display characteristic ratios of alpha1/alpha2 mRNA at distinct stages of differentiation. Furthermore, expression of an overlapping gene, Rev-ErbAalpha (RevErb), was found to correlate strongly with an increase in the ratio of alpha1/alpha2 mRNA. These results suggest that alternative processing of erbAalpha mRNAs is regulated by a mechanism which is distinct from that regulating immunoglobulin mRNA. The correlation between RevErb and erbAalpha mRNA is consistent with negative regulation of alpha2 via antisense interactions with the complementary RevErb mRNA.  相似文献   

15.
Plasminogen activator inhibitor type 1 (PAI-1) is the primary physiologic inhibitor of the naturally occurring plasminogen activators. In higher primates two forms of mature PAI-1 mRNA (3.2 kb and 2.2 kb) arise by alternative cleavage and polyadenylation of PAI-1 hnRNA which is regulated in a tissue-specific fashion in humans. In other mammals only the 3.2 kb mRNA has been detected. The putative downstream polyadenylation site in humans that gives rise to the 3.2 kb PAI-1 mRNA consists of three overlapping copies of the consensus polyadenylation sequence while no consensus polyadenylation sequence is found upstream at a position that could generate the shorter mRNA species. To determine whether differential cleavage and polyadenylation of PAI-1 mRNA is due to species-specific differences in trans-acting factors that process PAI-1 mRNA or to the presence of a nonconsensus polyadenylation site acquired recently during primate evolution we prepared plasmids in which the 3' nontranslated region of the human PAI-1 gene or the mouse PAI-1 cDNA was inserted downstream of the neomycin gene in the plasmid pSV2neo. We show that the 3'-nontranslated region of the human PAI-1 gene but not the mouse PAI-1 cDNA conferred alternative cleavage and polyadenylation to the neomycin gene in transfected human Hep G2 cells as well as mouse NIH3T3 and rat L6 cells.  相似文献   

16.
Mouse myeloma mutants isolated from cell line 45.6 (gamma 2b) producing structurally altered immunoglobulin heavy (H) chains have been characterized. The mutant 10-1 synthesizes an H chain of 47 000 daltons containing a CH1 deletion; two mutants, G251 and I17, derived from 10-1 synthesize H chains of 40 000 and 35 000 daltons, respectively. The messenger ribonucleic acids (mRNAs) in these mutants have been shown to be smaller in molecular weight than mRNAs produced in 45.6 cells and lack a portion, but not all, of the CH1 domain. The H chains of G251 and I17 no longer express IgG subclass-specific determinants, are not secreted, and are structurally altered in the carboxyl-terminal portion of the molecule. In vitro the mRNAs of the mutants code for the synthesis of a polypeptide precursor characteristic of secreted proteins; the shortened proteins are apparently glycosylated intracellularly. Somatic cell hybrids between a structurally altered nonsecretor and a drug-marked wild-type myeloma cell secret only the wild-type protein. Reversion to secretion for G251 or I17 is accompanied by a change in the amino acid composition of the H chain such that gamma 2a subclass-specific determinants are expressed. Therefore, the primary structure of the H chain is an important factor in determining secretion. The gamma 2a-secreted chains from G251 and I17 fall into two classes: (1) those synthesizing proteins of approximately 47 000 daltons producing H-chain mRNAs of approximately 1.66 kilobases that are deleted for a portion, but not all, of CH1; (2) those synthesizing gamma2a proteins of approximately 55 000 daltons that are encoded in mRNAs of apparently wild-type size and that have regained CH1 sequences. The molecular explanations for the production of these alterations is discussed.  相似文献   

17.
The post-translational fates of three immunoglobulin lambda chain variants of MOPC 315 were investigated in mouse plasmacytoma cell lines and in mRNA-microinjected Xenopus oocytes. Quite unexpectedly we found that one non-secretory variant chain (lambda-43) underwent extensive post-translational N-glycosylation: however the presence of the oligosaccharide moiety did not account for the nonsecretory phenotype nor did it affect the rate of degradation of this lambda chain. Another variant chain (lambda-47) at first believed to be non-secretory, was found to be secreted from oocytes at a very low level, but mostly as a lambda-lambda dimer. In myeloma cells a low level of lambda-47 chain was secreted and again lambda-lambda dimers were the favoured secretory form. The secretory lambda-48 chain also formed lambda-lambda dimers, whereas lambda-43, which was never secreted, was only found as a monomeric lambda chain in both oocytes and myeloma cells. A similar relationship between assembly and secretion was found when oocytes were coinjected with MOPC 21 heavy (gamma 1) chain mRNA and MOPC 315 lambda chain mRNAs. The wild type lambda chain (lambda-48) was able to assemble with the gamma chain in a covalently bound tetramer (gamma gamma lambda lambda). The variant lambda-47 chain was also able to form gamma gamma lambda lambda tetramers, whereas the lambda-43 was not, even when glycosylation was prevented by tunicamycin. Both types of tetramer were secreted. These data reinforce the idea that conformational changes play a major role in the routing of secretory proteins and that the cellular mechanisms by which these changes are recognized are not cell-type specific.  相似文献   

18.
19.
20.
Fourteen clones were isolated in culture from a mouse myeloma, MOPC104E. All clones had kappa and lambda types of light chain mRNAs in approximately equimolar quantity as assayed by hybridization with specific complementary DNA (cDNA). However, the myeloma produces and secretes only lambda-type light chain protein. Both kappa- and lambda-type mRNAs in these clones were indistinguishable from kappa- and lambda-type mRNAs of other myelomas with respect to (a) adsorption to oligo-(dT) cellulose, (b) molecular size (12.6 S), and (c) thermal stability of the hybrids formed with corresponding cDNA. The kappa chain mRNA of MOPC104E cells, however, was translated very inefficiently both in vivo and in vitro, whereas the lambda chain mRNA was translated efficiently. These results indicate that each cell of MOPC104E myeloma synthesizes a crippled kappa chain mRNA in addition to a normal lambda chain mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号