首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. We have studied the inherited changes occurring in the sialoglycoproteins of membranes from erythrocytes of type Miltenberger Class III (Mi.III), Miltenberger Class IV (Mi.IV) and Miltenberger Class V (Mi.V) by using sodium dodecyl sulphate/polyacrylamide gel electrophoresis and lactoperoxidase radioiodination. 2. Mi.III erythrocytes lack the normal blood-group-Ss-active sialoglycoprotein but contain an unusual s-active sialoglycoprotein of higher apparent molecular weight. A similar abnormal S-active sialoglycoprotein appears to occur in Mi.IV erythrocytes. 3. The Mi.V condition is associated with the hemizygous absence of both the normal blood-group-MN-active sialoglycoprotein and the normal Ss-active sialoglycorprotein. However, a new sialoglycoprotein component is present in these cells that has properties characteristic of both the MN-active and Ss-active sialoglycoproteins. 4. Our results suggest that the new sialoglycorportein present in Mi.V erythrocytes is a hybrid of the normal MN sialoglycoprotein and an s-active sialoglycoprotein that has properties similar to the s-active sialoglycoprotein found in Mi.III erythrocytes. We suggest that the unusual Mi.V sialoglycoprotein is derived from chromosomal misalignment with unequal crossing-over between the genes for the MN- and Ss-active sialoglycoproteins in a manner similar to that which gives rise to haemoglobin Lepore. 5. Further studies of S-s-erythrocytes confirm that these cells lack normal Ss-active sialoglycoprotein, but contain an unusual component that shows some of the properties of the normal Ss-active sialoglycoprotein. 6. Analysis of erythrocytes of type Mk/Mi.III confirms that, in addition to the known hemizygous lack of the MN-active sialoglycoprotein, the Mk condition is also associated with a loss of the Ss-active sialoglycoprotein. 7. In order to facilitate discussion of the complex changes that occur in these variant erythrocytes, a new unified nomenclature is used for the erythrocyte sialoglycoproteins.  相似文献   

2.
Human erythrocytes of blood group En (a-), a rare homozygous condition involving a complete lack of the major sialoglycoprotein of the cell membrane (glycophorin A), were compared with erythrocytes from normal (En(a+)) individuals by freeze-fracture electron microscopy. No decrease in number, or variation in morphology, of the intramembranal particles of En (a-) cells was detectable. These results show that the erythrocyte sialoglycoprotein is not essential for the maintenance of the integrity of the intramembranal particles of the human erythrocyte membrane.  相似文献   

3.
By using radioiodinated monoclonal antibodies we have estimated that there are about 600 000 copies of sialoglycoprotein alpha (synonym glycophorin A) and 80 000 copies of sialoglycoprotein delta (synonym glycophorin B) per normal human erythrocyte. Erythrocytes expressing the product of only one alpha gene contain about 300 000 copies of alpha/cell. Two erythrocyte types containing alpha-delta hybrid molecules were studied. Those with heterozygous expression of the (alpha-delta)Mi.V gene contain about 100 000 alpha-delta copies per cell, whereas those with heterozygous expression of the En(UK) gene contain about 80 000 alpha-delta copies/cell. Erythrocyte types containing delta-alpha hybrid molecules were also studied. About 200 000 copies of (delta-alpha)Dantu were measured in cells with heterozygous expression of the (delta-alpha)Dantu gene (donor M.P.), whereas about 315 000 copies of the putative (delta-alpha)Dantu hybrid were found on the erythrocytes of donor J.O. [which also have heterozygous expression of the putative (delta-alpha)Dantu gene]. The erythrocytes of donor M.P. have normal levels of alpha, whereas those of donor J.O. have only about half-normal levels. It is proposed that the hybrid sialoglycoprotein of donor J.O. is of alpha-delta-alpha composition [(alpha-delta-alpha)Dantu] rather than delta-alpha and results from a double cross-over analogous to that which gives rise to haemoglobin Parchman.  相似文献   

4.
Studies of phosphorylation in membranes of intact human erythrocytes were performed by incubating erythrocytes in inorganic [32P]phosphate. Analysis of membrane proteins by polyacrylamide gel electrophoresis showed a pattern of phosphorylation similar to that observed when ghost membranes were incubated with [gamma-32P]ATP. Membrane lipid phosphorylation was also similar in intact cells and ghosts. The most heavily phosphorylated lipid, polyphosphoinositide, was closely associated with glycophorin A, the major erythrocyte membrane sialoglycoprotein obtained when the sialoglycoprotein fraction was isolated by the lithium diiodosalicylate-phenol partition procedure. Only 1 molecule of glycophorin A out of every 100 was found to be phosphorylated, and the phosphate exchange occurred specifically in the COOH-terminal intracellular portion of glycophorin A. These studies show that the human erythrocyte can be used as a model for membrane phosphorylation in an intact cell system.  相似文献   

5.
The membranes from Miltenberger Class I (Mi I) and II (Mi II) erythrocytes, two rare variants at the blood group MNSs locus, exhibited an abnormal glycoprotein of 32 kDa apparent molecular mass sharply stained by the periodic acid/Schiff procedure and a decreased content of glycoprotein alpha (synonym glycophorin A, glycoprotein MN) as seen on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Purified 125I-labelled Vicia graminea lectin binds to the unusual 32 kDa glycoprotein separated from Mi I and Mi II erythrocyte membrane of blood group NN or MN, but no significant labelling of this band was observed with Mi samples typed MM. On the basis of such lectin-labelling experiments we have described two heterozygous MN, Mi I individuals that carry one copy of an M gene producing a normal alpha-glycoprotein with M-specificity and one copy of a MiI gene producing a 32 kDa glycoprotein with N-specificity. Further investigations have shown that the 32 kDa glycoprotein was immunoprecipitated by two mouse monoclonal antibodies (R18 and R10) reacting specifically with the external domain of glycoprotein alpha. These results demonstrate that Mi I and Mi II erythrocytes carry an unusual variant of glycoprotein alpha.  相似文献   

6.
The sialoglycoproteins (glycophorins) in human red cell membranes of rare individuals lacking totally (Ge-1,-2,-3 phenotype) or partially (Ge-1,-2,3 phenotype) the Gerbich (Ge) blood group antigens and two Ge-1,-2,-3 heterozygotes were studied by dodecylsulfate polyacrylamide gel electrophoretic techniques. Two sialoglycoproteins (components D and E) were not detectable in the membranes from the homozygotes and found to be decreased by about 50% in those from the heterozygotes. Ge--1,-2,-3 and Ge-1,-2,3 cells were found to contain a 'new' component (mol. masses about 29 and 30 kDa, respectively) possibly representing a D/E hybrid molecule. This sialoglycoprotein was not detectable in membranes from the Ge-1,-2,-3 heterozygotes, suggesting that the Ge-1,-2,-3 phenotype may be caused by at least two different alleles at the Ge blood group antigen locus. Hemagglutination or hemagglutination inhibition tests involving anti-Ge 1,2,3 and -Ge 1,2 as well as native and enzyme-treated normal red cells (phenotype Ge 1,2,3) or membrane and sialoglycoprotein fractions from normal erythrocytes indicate that the receptors of these sera are located within the glycosylated domain(s) of the D and/or E sialoglycoprotein(s). Our data suggest that the Ge locus encodes the polypeptide sequences of the D and E sialoglycoproteins.  相似文献   

7.
In the Miltenberger class V (Mi. V) condition, red cells lack glycophorin A (GPA) and glycophorin B (GPB) but carry instead an unusual glycoprotein thought to be a hybrid molecule produced by the unequal crossing-over between the closely linked genes encoding for GPA and GPB. By Western blot analysis with rabbit anti-GPA antibodies specific for discrete domains of GPA, it was found that the Mi. V glycoprotein (donor F. M.) contains approximately 60 amino acid residues of GPA at its N-terminus. As a preliminary approach to the molecular analysis of this variant the restriction maps of the GPA and GPB genes were established by Southern blot analysis of genomic DNA and from genomic clones isolated from a human leukocyte library constructed in lambda EMBL4. The GPA and GPB genes cover about 30 kb of DNA and are organized into seven exons (A-1-A-7) and five exons (B-1-B-5), respectively. In addition to the normal genes, a third gene (named inv), closely resembling the GPA and GPB genes, was also identified. In the homozygous Mi. V individual the normal GPA and GPB genes were absent, but an unusual form of gene structure was detected by Southern blot analysis. The Mi. V glycoprotein gene was composed of exon B-1 of the GPB gene followed by exons A-2 and A-3 of the GPA gene and the exons B-3, B-4 and B-5 of the GPB gene. Exon B-1 can be distinguished from exon A-1 of GPA since it is located within a different restriction fragment, but both encode the same amino acid sequence (N-terminal region of the signal peptides). Using the polymerase chain reaction, the junction between exon A-3 and exon B-3 was confirmed by amplification of the DNA region where the putative crossing-over has occurred and it was deduced that the Mi. V glycoprotein is a hybrid molecule composed of amino acid residues 1-58 from GPA fused to amino acid residues 27-72 of GPB. In addition, the finding that part of the signal peptide and the 5'-untranslated region are derived from GPB suggests that the genetic background of the Mi. V variant is rather complex and may involve a cascade of recombination or gene conversion events.  相似文献   

8.
The major penetrating membrane glycoprotein (band 3) was isolated from En(a-) and normal human erythrocytes. The two proteins differed only in carbohydrate composition. Band 3 from En(a-) erythrocytes contained greater amounts of galactose and N-acetyl-glucosamine. The loss of the sialoglycoprotein sialotetrasaccharides in the En(a-) cell is not compensated by the appearance of these units in band 3 of En(a-) erythrocytes.  相似文献   

9.
A reproducible quantitative assay for the lectin-mediated agglutination of human erythrocytes, depending on different rates of settling of agglutinated and nonagglutinated erythrocytes, was developed. This assay was used to study the aggregation of human erythrocytes by phytohemagglutinin-P. The aggregation of human erythrocytes by phytohemagglutinin-P was found to depend upon the metabolic state of the cells. Metabolically depleted erythrocytes agglutinated much less readily than did similar cells supplied with adenosine. This was not due to swelling and rigidity of the cells, since erythrocytes in hypotonic solution did not exhibit significantly altered phytohemagglutinin-P agglutination. Metabolically depleted erythrocytes, or erythrocytes from blood stored 8 weeks, lysed and resealed in the presence of ATP, were agglutinated by phytohemagglutinin-P to a much greater extent than control samples without ATP. The presence of Mg2+, either alone or with ATP, had little effect on the agglutinability of the resealed membranes. Low concentrations of Ca2+ (0.2 mM) had little effect on agglutinability, although high Ca2+ (5 mM) inhibited agglutinability of the resealed membranes somewhat. Both metabolically depleted erythrocytes and depleted erythrocytes, previously treated with adenosine, when treated with trypsin released similar amounts of sialic acid. The agglutinability of the trypsinized adenosine-supplemented cells increased more readily than did that of trypsinized metabolically depleted cells. The agglutination of erythrocytes was not affected by cytochalasin B (40 mug/ml). Vinblastine (0.2 mM) caused depleted erythrocytes to agglutinate similarly to adenosine-supplemented erythrocytes, but had no effect on the agglutination of adenosine-supplemented erythrocytes. It is concluded that ATP in the human erythrocyte probably participates in the modulation of phytohemagglutinin-P agglutinability. This is not a consequence of the more rigid membrane known to accompany ATP depletion in the erythrocyte, or of the effect of ATP levels on Ca2+ or Mg2+ content. It appears likely that ATP modulates human erythrocyte phytohemagglutinin-P agglutinability through interaction, direct or indirect, with a membrane-associated component, which might also be sensitivie to vinblastine.  相似文献   

10.
The Ss sialoglycoprotein (glycophorin B) and its antigens in Rhnull erythrocytes, which lack the Rhesus blood group antigens, due to apparently silent (amorphic type) or independent suppressor (regulator type) genes, were investigated. The quantity of the molecule in amorphic and in regulator type red cell membranes was found to be decreased by about 60%-70%, as judged from sodium-dodecylsulfate polyacrylamide gel electrophoresis. The Ss glycoprotein content in the erythrocytes from heterozygotes (regulator type) was diminished to an extent of about 30%. Confirming and extending previous studies, the S, s, Ux, Uz and 'N' antigens were slightly weakened in Rhnull erythrocytes. The U and Duclos receptors were only slightly or not depressed in amorphic Rhnull cells, but almost absent from or not detectable in those of the regulator type. This demonstrates that an additional alteration, apart from the decreased Ss glycoprotein content of the membranes, accounts for the weakness of these receptors in regulator type cells. We propose the hypothesis that (a) protein(s) encoded by the Rhesus locus form(s) a complex with the Ss glycoprotein. Thus, it (they) might facilitate the incorporation of the Ss glycoprotein into the membrane and also contribute to the complete expression of the U and Duclos antigens in normal cells.  相似文献   

11.
Individuals whose erythrocytes are positive for the rare blood-group antigen Webb (Wb) have an altered form of the minor sialoglycoprotein beta (synonyms glycophorin C and glycoconnectin). This altered sialoglycoprotein beta (beta Wb) has an Mr about 2700 lower than that of normal sialoglycoprotein beta. Treatment of normal sialoglycoprotein beta with endo-beta-N-acetylglucosaminidase F decreased its Mr by about 3600, but similar treatment of sialoglycoprotein beta Wb had no effect. These results suggest the possibility that sialoglycoprotein beta Wb lacks the N-glycosidically linked oligosaccharide found on normal sialoglycoprotein beta.  相似文献   

12.
The major human erythrocyte membrane sialoglycoprotein (glycophorin A or MN glycoprotein) was purified from the erythrocytes of two individuals heterozygous for the Mi-VIII gene in the Miltenberger subsystem of the MNSs blood-group system. The complete structure of a tryptic glycopetide from glycophorin A comprising the residues 40-61 was deduced from automated and manual sequence analyses. The Mi-VIII-specific glycophorin A was found to exhibit an arginine----threonine exchange at position 49. The threonine residue was found to be glycosylated. Hemagglutination and hemagglutination inhibition assays demonstrated that one of the Mi-VIII-characteristic antigenic determinants (Anek) is located within the residues 40-61 of glycophorin A. Furthermore, erythrocytes from the two Mi-VIII heterozygotes reacted only weakly with anti-EnaKTsera, suggesting that the Mi-VIII-specific glycophorin A does not express the EnaKT antigen that is located within the positions 46-56 of normal glycophorin A. Our data suggest that the Mi-VIII-specific glycophorin A represents the evolutionary link between normal glycophorin A and the Mi-VIII-specific molecule which exhibits arginine----threonine and tyrosine----serine exchanges at the positions 49 and 52, respectively. Our data also provide an explanation for the close serological similarity between Mi-VII and Mi-VIII erythrocytes.  相似文献   

13.
The specificity of various allo- and autoantibodies, which agglutinate normal erythrocytes, but do not react with En(a-) red cells and normal erythrocytes, treated with trypsin (anti-EnaTS) or ficin (anti-EnaFS), was investigated. Various fragments and modification products of the major (MN) red cell membranes sialoglycoprotein were used in hemagglutination inhibition assays. Six anti-EnaFS sera were found to be directed against the residues approx. 46-56 of the molecule. Five of these require the carbohydrate unit, attached to Thr50, for binding. One anti-EnaTS serum was found to be directed against the residues approx. 36-42. Another antibody with anti-EnaTS specificity was shown to react with the residues 31-39 in some of the MN sialoglycoprotein molecules, namely those not glycosylated at a certain position (probably Thr33). A third anti-EnaTS serum, directed against the sequence domain around Lys30, was also found to react only with a fraction of the molecules, apparently due to the variable attachment of oligosaccharides in that region. The heterogeneity of glycosylation, detected by these two sera, appears to account for the partial tryptic and chymotryptic cleavage in this domain of the MN sialoglycoprotein, which has been described previously. Heterogeneity of the glycosylation at various positions of the molecule could be established by the isolation and analysis of peptides.  相似文献   

14.
"Band 3," an integral membrane protein of red blood cells, plays a relevant role in anionic transport. The C- and N-terminal portions of band 3 are cytoplasmatics, and the last is the link site for different glycolitic enzymes, such as glyceraldehyde-3-phosphate dehydrogenase, aldolase, phosphofructokinase, and hemoglobin. All or some of these interactions on the CDB3 protein could allow a subtle modulation of anion flux. The interaction among HbA, Mg(2+), and membrane proteins has been sufficiently investigated, but not the effect of Mg(2+) on pathological hemoglobin in relation to the influx of the SO(4)(2-). The aim of this study was to evaluate the involvement of hemoglobin S in sulfate transport. This has been measured with native and increased concentrations of Mg(2+), using normal erythrocytes containing HbA, sickle red cells containing HbS, or ghosts obtained from both erythrocytes and normal erythrocytes ghosts with HbS added. The magnitude of the SO(4)(2-) rate constant measured in normal red blood cells increased markedly when measured in the presence of varied Mg(2+) concentrations. The results show that a low increase of intracellular Mg(2+) concentrations exercises a different HbA modulation on band 3 protein and consequently higher anion transport activity. The same experiments carried out in sickle red cells showed that the SO(4)(2-) rate constant measured in the presence of native concentrations of Mg(2+) was normal, compared to normal red cells, and was not affected by any increase of intracellular Mg(2+). Our suppositions with regard to the importance exercised by the hemoglobin and the Mg(2+) on the SO(4)(2-) influx were confirmed by comparison of the data obtained through measuring SO(4)(2-) influx with native and increased concentrations of Mg(2+) in both normal and sickle red cell ghosts. Both revealed the same sensitivity to Mg(2+) due to withdrawal of hemoglobins. The incorporation of HbS in normal as well as in sickle red cell ghosts reduced the Mg(2+) response to sulfate influx in both the reconstituted ghosts. Our research demonstrated that the different effects exercised on the rate constants of SO(4)(2-) influx in normal (HbA) and sickle red cells (HbS) by the increased intracellular Mg(2+) could be ascribed to the physical-chemical influence exercised either on the hemoglobins or on the intracellular contents of erythrocytes.  相似文献   

15.
The capacity of membrane glycoproteins to interact with proteinases was investigated in the model system: Membrane sialoglycoprotein from human erythrocytes (glycophorin) and lysosomal proteinases from rat liver. Glycophorin was found to stimulate the activity of a lysosomal proteinase mixture up to about 150% at pH 6.9. Cathepsin L was found to be the primarily stimulated proteinase. The stoichiometry in the saturation range of the dose-response curve waas about 10 to 20 molecules glycophorin per molecule cathepsin L. The mechanism of the activation is unknown. Interactions of this type may be of importance for the regulation of cell proliferation on the level of cell membranes.  相似文献   

16.
We have investigated the influence of Li+ on free intracellular Mg2+ concentration in human erythrocytes by 31P NMR and optical absorbance spectroscopies. In red cells loaded with 3 mM intracellular Li+, the chemical shift separation between the alpha- and beta-phosphate resonances of MgATP2- was approx. 0.9 ppm larger than that observed in Li+-free red cells. By analyzing the interaction of each red cell component with Mg2+ and Li+, we found that Mg2+ is displaced in part from MgATP2- upon addition of Li+ and that the released Mg2+ is bound to the red cell membrane causing an overall decrease in free intracellular Mg2+ concentration.  相似文献   

17.
M Nakamura  S Ohnishi  H Kitamura  S Inai 《Biochemistry》1976,15(22):4838-4843
The structural change in erythrocyte membranes induced by antibody and complement was studied using phospholipid spin-labels. Sheep erythrocytes were labeled with phosphatidylcholine spin-label and various intermediate cells (erythrocyte-antibody complex (EA), EA bound with complement components from C1 to C7 (EAC1-7), EAC1-8, and EAC1-9) were prepared. Electron spin resonance spectra of EA, EAC1-7, and EAC1-8 were very similar to that of the erythrocytes, while that of EAC1-9 was markedly different. The overall splitting value for the lysed EAC1-9 (53 G) was much smaller than that for the erythrocytes (57 G), indicating a marked fluidization around the phosphatidylcholine label. The unlysed EAC1-9 membranes contained a limited fraction of the fluidized area. When EA was reacted with complement in the presence of 36% bovine serum albumin, the membranes were fluidized similarly to the lysed EAC1-9, although the hemolysis was largely blocked. The membranes of unlysed EAC1-9 prepared in isotonic (ethylenedinitrilo)tetraacetic acid were also fluidized, but to somewhat smaller extent. The role of C9 in the modification of erythrocyte membranes was also demonstrated using Mg2+ ghosts, which were prepared by hypotonic hemolysis in the presence of Mg2+. The membranes of Mg2+ ghost of EAC1-7 were markedly fluidized when bound with C8 and C9, but not affected by binding of C8 only. The component C8 was found to give a latent effect on the membranes that caused irreversible fluidization upon osmotic shock. The terminal component thus creates a fluidized area in the erythrocyte membranes through which small ions and molecules may diffuse more easily and the resulting osmotic unbalance may finally cause hemolysis.  相似文献   

18.
Membrane fluidity was studied by electron-spin-resonance techniques in human En(a-) erythrocytes that lack the major membrane sialoglycoprotein, glycophorin A. By using stearic acid spin labels with a doxyl group in the C-12 or C-15 positions, we demonstrated that the hydrophobic core in these cells was more fluid than in normal cells. Surface-located regions in isolated En(a-) membranes, when probed with stearic acid labelled in the C-5 position, appeared more stable than in normal membranes. In isolated En(a-) membranes, protein motion was decreased when probed with a nitroxide derivative of maleimide. After incubation with anti-(glycophorin A) antibodies protein motion and membrane fluidity were increased in normal membranes. This effect was observed also after spectrin depletion, which by itself increased protein motion but decreased membrane fluidity in the hydrophobic core of the membrane. The results show that membrane proteins influence the fluidity of membrane lipids.  相似文献   

19.
A method to determine the intracellular pH of intact erythrocytes using phosphorus-31 nuclear magnetic resonance spectroscopy is described. Changes in phosphorus metabolites due to the alkalization of intracellular pH were also examined. The normal erythrocytes gave signals of phosphate groups corresponding to 2,3-bisphosphoglycerate, inorganic phosphate, ATP, and NAD. Among them, the separation between alpha and gamma peaks of ATP was shown to be a good indicator of the intracellular pH free from the perturbation caused by hemoglobin. This method enabled us to determine the intracellular pH of the erythrocytes without any pretreatment. The separation between alpha and gamma peaks of ATP was also dependent on the degree of complexation with Mg2+, and was consistent with approximately 80% of total ATP complexing with Mg2+ in the samples investigated here. The pKa value of ATP in the erythrocytes was estimated to be 6.1 at 23 degrees C, which is lower than the value of 6.5 obtained for the Mg2+-free ATP solution. In the alkalized erythrocytes, fructose 1,6-bisphosphate and dihydroxyacetone phosphate were observed in addition to the metabolites found in the normal erythrocytes. Time course changes in these phosphorus metabolites were followed along with the intracellular pH monitored from ATP peaks.  相似文献   

20.
K-Cl cotransport in LK sheep erythrocytes is activated by osmotic swelling and inhibited by shrinkage. The mechanism by which changes in cell volume are transduced into changes in transport was investigated by measuring time courses of changes in transport after osmotic challenges in cells with normal and reduced Mg concentrations. When cells of normal volume and normal Mg are swollen, there is a delay of 10 min or more before the final steady-state flux is achieved, as there is for swelling activation of K-Cl cotransport in erythrocytes of other species. The delay was shown to be independent of the extent of swelling. There was also a delay after shrinkage inactivation of cotransport. Reducing cellular Mg concentration activates cotransport. Swelling of low-Mg cells activates cotransport further, but with no measurable delay. In contrast, there is a delay in shrinkage inactivation of cotransport in low-Mg cells. The results are interpreted in terms of a three-state model: [formula see text] in which A state, B state, and C state transporters have relatively slow, intermediate, and fast transport rates, respectively. Most transporters in shrunken cells with normal Mg are in the A state. Swelling converts transporters to the B state in the rate-limiting process, followed by rapid conversion to the C state. Reducing cell Mg also promotes the A-- >B conversion. Swelling of low-Mg cells activates transport rapidly because of the initial predominance of B state transporters. The results support the following conclusions about the rate constants of the three-state model: k21 is the rate constant for a Mg-promoted process that is inhibited by swelling; k12 is not volume sensitive. Both k23 and k32 are increased by swelling and reduced by shrinkage; they are rate constants for a single process, whereas k12 and k21 are rate constants for separate processes. Finally, the A-->B conversion entails an increase in Jmax of the transporters, and the B-->C conversion entails an increase in the affinity of the transporters for K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号