首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We identified committed T cell progenitors (CTPs) in the mouse bone marrow that have not rearranged the TCRbeta gene; express a variety of genes associated with commitment to the T cell lineage, including GATA-3, T cell-specific factor-1, Cbeta, and Id2; and show a surface marker pattern (CD44+ CD25- CD24+ CD5-) that is similar to the earliest T cell progenitors in the thymus. More mature committed intermediate progenitors in the marrow have rearranged the TCR gene loci, express Valpha and Vbeta genes as well as CD3epsilon, but do not express surface TCR or CD3 receptors. CTPs, but not progenitors from the thymus, reconstituted the alphabeta T cells in the lymphoid tissues of athymic nu/nu mice. These reconstituted T cells vigorously secreted IFN-gamma after stimulation in vitro, and protected the mice against lethal infection with murine CMV. In conclusion, CTPs in wild-type bone marrow can generate functional T cells via an extrathymic pathway in athymic nu/nu mice.  相似文献   

2.
Experiments were performed to analyze the mechanism by which lipopolysaccharide (LPS) modulates the expression of Ia by murine peritoneal macrophages in vivo. We investigated the effect of LPS on Ia expression in T cell deficient mice by using the congenitally athymic nude mouse model. Injection (i.p) of LPS into athymic (nu/nu) mice resulted in a dramatic increase in the expression and biosynthesis of Ia by peritoneal macrophages 7 days after injection. The magnitude and kinetics of this induction were equivalent to increases observed after LPS injection of euthymic (nu/+) mice. Viable Listeria monocytogenes also increased Ia expression in athymic mice, but in contrast to the induction observed in euthymic mice at 3 and 7 days after injection, increased Ia expression was not seen until 7 days. Ia induction by either LPS or L. monocytogenes in athymic mice was not due to the presence or development of mature T cell function as defined by assays for T cell mitogenesis and interleukin 2 production. We conclude that increased macrophage Ia expression by LPS and L. monocytogenes in vivo can occur in the absence of mature functioning T cells.  相似文献   

3.
The frequency of cells in the spleens of nude mice which could be grown in conditioned medium containing interleukin 2 and of those which developed natural killer (NK)-like activity was evaluated. Although BALB/c nu/nu spleen cells have higher spontaneous NK activity than euthymic mice, they showed a substantially lower frequency of proliferating and cytotoxic cells as compared to BALB/c nu/+ littermates. This defect in cells of nu/nu mice was reversed in part by culturing nu/nu responder cells in the presence of irradiated (3,000 R) splenic or thymic feeder cells that included T cells. In contrast to the dissociation of NK activity and progenitor frequencies in nude mice, the results of parallel studies with spleen cells from euthymic mice indicated that the limiting dilution assay correlated well with previously described features of NK activity. High-NK-reactive CBA/J mice were found to have a considerably higher frequency of interleukin 2 dependent NK cell progenitors than low-NK-reactive strains of mice when assessed against NK-susceptible YAC-1 targets. The frequency of progenitors of cells cytotoxic against YAC-1 was higher in spleens of high-NK-reactive mice than that of cells reactive against the NK-insensitive target P-815. Furthermore, the phenotype of the progenitor cells and of the cultured effector cells was consistent with that of NK cells rather than cytotoxic T cells in that the cells expressed asialo GM1, some Thy-1, but no detectable Lyt-1 or Lyt-2 antigens. Thus, the present observations suggest that the subpopulation of NK cell progenitors in nude mice which can grow and develop cytotoxic reactivity in vitro in the presence of interleukin 2 is small, that it can be increased appreciably in the presence of T cells, but that this does not represent the major pathway for development of NK cells in athymic individuals.  相似文献   

4.
5.
ERdj4 is a BiP cochaperone regulated by the unfolded protein response to facilitate degradation of unfolded and/or misfolded proteins in the endoplasmic reticulum. As the unfolded protein response plays a critical role in B cell maturation and antibody production, ERdj4 gene trap mice were generated to determine if this chaperone was required for B cell homeostasis. Homozygosity for the trapped allele resulted in hypomorphic expression of ERdj4 in bone marrow cells and abnormal development of hematopoietic lineages in the bone marrow. The number of myeloid cells was increased, while the number of erythroid and B lymphoid cells was reduced in ERdj4 gene trap mice compared to controls. An intrinsic B cell defect was identified that decreased survival of B cell precursors including large and small pre-B, and immature B cells. Consistent with impaired B lymphopoiesis, the number of mature follicular B cells was reduced in both the bone marrow and spleen of ERdj4 gene trap mice. Paradoxically, unchallenged ERdj4 gene trap mice showed non-specific hypergammaglobulinemia and gene trap B cells exhibited increased proliferation, survival and isotype switching in response to LPS stimulation. Although ERdj4 gene trap mice responded normally to T cell-independent antigen, they failed to mount a specific antibody response to T cell-dependent antigen in vivo. Collectively, these findings demonstrate that the chaperone activity of ERdj4 is required for survival of B cell progenitors and normal antibody production.  相似文献   

6.
Regional variations in intraepithelial lymphocytes (IELs) in the small intestine were examined in BALB/c +/+, nu/+, and nu/nu mice. The small intestine was obtained from 11- to 12-week-old mice and divided equally into three (proximal, middle, and distal) parts. The IELs were isolated from each part of the intestine, and the total numbers of IELs in nu/+ and nu/nu mice were about a fifth of those in +/+ mice. Regional variations in the distribution of the IEL alphabeta, but not the gammadelta T-cell subset were found by use of flow cytometry in +/+ and nu/+ mice. On the other hand, such differences were not found in nu/nu mice, suggesting that thymus-independent development of T cells is not different among regions. Different local expansion of thymus-dependent alphabeta T cells may cause the regional variations seen in the distribution of alphabeta T cell IELs in +/+ and nu/+ mice.  相似文献   

7.
Immune tolerance to organ transplants has been reported in laboratory animals and in humans after nonmyeloablative conditioning of the host and infusion of donor bone marrow cells. We examined the mechanisms of immune tolerance to mouse cardiac allografts in MHC-mismatched hosts that developed mixed chimerism after posttransplant conditioning with a 2-wk course of multiple doses of lymphoid tissue irradiation, depletive anti-T cell Abs, and an infusion of donor bone marrow cells. When CD1(-/-) or J(alpha)281(-/-) hosts with markedly reduced NK T cells were used instead of wild-type hosts, then the conditioning regimen failed to induce tolerance to the heart allografts despite the development of mixed chimerism. Tolerance could be restored to the CD1(-/-) hosts by infusing enriched T cells from the bone marrow of wild-type mice containing CD1-reactive T cells but not from CD1(-/-) host-type mice. Tolerance could not be induced in either IL-4(-/-) or IL-10(-/-) hosts given the regimen despite the development of chimerism and clonal deletion of host T cells to donor MHC-Ags in the IL-10(-/-) hosts. We conclude that immune tolerance to bone marrow transplants involves clonal deletion, and tolerance to heart allografts in this model also involves regulatory CD1-reactive NK T cells.  相似文献   

8.
NK cells differentiate in adult mice from bone marrow hemopoietic progenitors. Cytokines, including those that signal via receptors using the common cytokine receptor gamma-chain (gamma(c)), have been implicated at various stages of NK cell development. We have previously described committed NK cell precursors (NKPs), which have the capacity to generate NK cells, but not B, T, erythroid, or myeloid cells, after in vitro culture or transfer to a fetal thymic microenvironment. NKPs express the CD122 Ag (beta chain of the receptors for IL-2/IL-15), but lack other mature NK markers, including NK1.1, CD49b (DX5), or members of the Ly49 gene family. In this report, we have analyzed the roles for gamma(c)-dependent cytokines in the generation of bone marrow NKP and in their subsequent differentiation to mature NK cells in vivo. Normal numbers of NKPs are found in gamma(c)-deficient mice, suggesting that NK cell commitment is not dependent on IL-2, IL-4, IL-7, IL-9, IL-15, or IL-21. Although IL-2, IL-4, and IL-7 have been reported to influence NK cell differentiation, we find that mice deficient in any or all of these cytokines have normal NK cell numbers, phenotype, and effector functions. In contrast, IL-15 plays a dominant role in early NK cell differentiation by maintaining normal numbers of immature and mature NK cells in the bone marrow and spleen. Surprisingly, the few residual NK cells generated in absence of IL-15 appear relatively mature, expressing a variety of Ly49 receptors and demonstrating lytic and cytokine production capacity.  相似文献   

9.
Dendritic cells (DC) mature upon infectious agent detection to elicit immune responses. It has been suggested that T cells influence peripheral DC function. However, it is not known if lymphocytes influence DC progenitors. Therefore, we determined the ability of bone marrow progenitors from T and B cell-deficient mice to generate functional DC. We report that bone marrow-derived DC from RAG-2(-/-) mice differentiate and proliferate normally. Moreover, such generated DC efficiently internalize particles, mature in response to various Toll-like receptor engagement, and activate allogenic T cells. This work strongly supports that early signals delivered during DC ontogeny by mature lymphocytes do not influence the functional differentiation of DC progenitors.  相似文献   

10.
NZB mice exhibit a primary T cell defect in fetal thymic organ culture   总被引:1,自引:0,他引:1  
Defects in T cell development have been suggested to be a factor in the development of systemic autoimmunity in NZB mice. However, the suggestion of a primary T cell defect has often been by extrapolation, and few direct observations of T cell precursors in NZB mice have been performed. Moreover, the capacity of NZB bone marrow T cell precursors to colonize the thymus and the ability of the NZB thymic microenvironment to support T lymphopoiesis have not been analyzed. To address this important issue, we employed the fetal thymic organ culture system to examine NZB T cell development. Our data demonstrated that NZB bone marrow cells were less efficient at colonizing fetal thymic lobes than those of control BALB/c or C57BL/6 mice. In addition, NZB bone marrow cells did not differentiate into mature T cells as efficiently as bone marrow cells from BALB/c or C57BL/6 mice. Further analysis revealed that this defect resulted from an intrinsic deficiency in the NZB Lin-Sca-1+c-kit+ bone marrow stem cell pool to differentiate into T cells in fetal thymic organ culture. Taken together, the data document heretofore unappreciated deficiencies in T cell development that may contribute to the development of the autoimmune phenotype in NZB mice.  相似文献   

11.
The differentiation pattern of splenic T-cell populations in germ- and pathogen-free nu/nu mice, as compared to nu/+ littermates, is characterized by two abnormal features: the expression of TL determinants on peripheral T cells and the delayed onset of their differentiation from the predominant Lyt-123:TL+ set into TL- cells of Lyt-1+ and Lyt-123+ phenotype, which, in these mice, does not occur until 10 weeks of age. We report here that the delayed onset of mitogen- or alloantigen-induced interleukin-2 synthesis and T-cell proliferation as well as the development of cytotoxic T-lymphocyte activity of enriched T-cell populations is strictly correlated with the time point of T-cell subset diversification in nu/nu mice and depends in particular on the presence of the Lyt-1 (TL-:Lyt-2-) T-cell set which is lacking in splenic T-cell populations of germ-free young nu/nu mice.  相似文献   

12.
Fetal thyroid follicular cells of congenitally athymic nude mouse (BALB/cAnNCrj-nu/nu) were studied with an electron microscope. The area of the entire cell, nucleus and mitochondrion were measured and compared in athymic and euthymic fetal nude mice (BALB/cAnNCrj-nu/+) at 18 days of gestation. The mean area of cytoplasm was significantly smaller in homozygous athymic nude mice than in heterozygous euthymic ones. The mean area of the mitochondrion was also smaller in homozygous athymic nude mice, but the difference was not statistically significant. There was no significant difference between the two groups in the area of the nucleus. These findings suggest that the thyroid gland of athymic nude mice is still underdeveloped at the end of gestation as compared to that of their euthymic littermates.  相似文献   

13.
In aged mice the population of mature peripheral B cells is maintained despite a severalfold decrease in the population of bone marrow B cell progenitors. The analysis of the rate of accumulation of 5'-bromo-2-deoxyuridine (BrdU)-labeled splenic B cells in mice fed BrdU for 8 days to 8 wk demonstrated a severalfold increase in the half-life of mature B cells in aged mice. Consistent with a role for decreased B cell turnover in maintaining the mature B cell population of aged mice, several findings indicate that fewer newly generated B cells enter the spleen from the bone marrow in aged vs young adult mice. These include 1) a fourfold decrease in the population of relatively immature splenic B cells, defined as cells that express high levels of heat-stable Ag and accumulate BrdU within 8 wk of labeling; and 2) an equivalent decrease in the population of bone marrow cells representative of later stages of B cell maturation (sIgD-sIgM(int-high)). Surprisingly, despite a four- to sixfold decrease in pre-B cells, the population of least mature bone marrow B cells (IgD-sIgM(very low)) remains intact. Because this population accumulates BrdU-labeled cells more slowly in aged mice than in younger mice, and bone marrow B cells at more mature developmental stages are diminished, it appears that in aged mice B cell development beyond the sIgM(very low) stage may be retarded and that cells, therefore, accumulate within this population.  相似文献   

14.
When the capping of membrane immunoglobulin on spleen B cells from normal C57Bl/6 mice (B6) is taken as reference, a faster capping rate is found for cells of age-matched B6 mice which are congenic at the lymphoproliferation (lpr) or nude (nu) loci. Though both congenic strains can be characterized by an abnormal T-lineage cell content, the nature of the abnormality itself is very different since B6 nudes lack thymus-processed/influenced lymphocytes whereas B6 mice with the lpr phenotype suffer from an invasion of all lymphoid organs with cells of a particular T-cell subset. Moreover, the more "normal" capping rate of B cells from the double congenic B6 mice (nu/nu, lpr/lpr) is intriguing. Since other mice homozygous at the lpr locus (MRL-1) or at the nu locus (BALB/c nude) also cap faster than their congenic controls (MRL-n and BALB/c, respectively), the observed effects do not appear to depend on a peculiarity of the B6 genetic background. If the faster capping of B cells of nu congenic and of lpr congenic mice had a common origin, it might be that T cells would control in some way the mobility of B-cell membrane immunoglobulins: both congenic mice have in their spleen a very low proportion of mature T cells together with a very high proportion of prethymic/thymic immature T-cell types, either of which might affect B-cell behavioral responses to membrane immunoglobulin clustering.  相似文献   

15.
Thymus development and T cell differentiation were studied in mouse chimaeras produced by aggregating pre-implantation embryos of thymus-deficient nude BALB/c (nu/nu) and wild-type C57BL/6 (+/+) mice and vice versa. Chimaeras showed mosaic distribution of skin and coat pigmentation, of hair follicles, of glucosephosphate isomerase within all tested organs and of lymphocytes expressing the different major transplantation antigens (H-2). When tested for their capacity to generate vaccinia virus-specific and self-H-2 specific cytotoxic T cells, all chimaeras of BALB/c (nu/nu) H-2d in equilibrium C57BL/6 (+/+) H-2b type generated T cells of one or both parental origins that were specific for virus and for self-H-2 of the +/+ (H-2b) type only. In contrast, some BALB/c (+/+) H-2d in equilibrium C57BL/6 (nu/nu) H-2b chimaeras generated vaccinia virus-specific cytotoxic T cells specific for either H-2d (+/+) type or for H-2b (nu/nu) type. These asymmetrical results can be interpreted to indicate the following: (i) The +/+ thymus part alone is functional, but because of asymmetrical cross-reactivities of anti-self-H-2 specificities, the observed T cell restriction phenotypes differ. (ii) Both nu/nu and +/+ thymus parts are functional but immune response defects may be exaggerated in such chimaeras producing unexpected non-responsiveness to vaccinia virus linked to H-2d in H-2b (+/+) in equilibrium H-2d (nu/nu).  相似文献   

16.
Adoptive transfer of bone marrow cells to syngeneic lethally irradiated C57BL/6 mice was used to study the maturation of natural killer (NK) cells from their progenitors. The NK progenitor cell was found to be asialomonoganglioside-negative, (aGM1-) Thy-1-, NK-1-, Ly-1-, Ly-2-, and L3T4-. The NK cells emerging from the bone marrow grafts were aGM1+, NK-1+, Thy-1+/-, Ly-1-, Ly-2-, and L3T4- and to have a target specter similar to that of NK cells isolated from the spleen of normal mice. The regulatory role of interleukin 2 (IL-2) and interleukin 3 (IL-3) for the maturation of NK cells was examined by exposure of the bone marrow cells to the lymphokines in vitro before bone marrow grafting or by treatment of bone marrow-grafted mice with lymphokines through s.c. implanted miniosmotic pumps. IL-3 antagonized the IL-2-induced maturation of NK cells in vitro and strongly inhibited the generation of NK cells after adoptive transfer of bone marrow cells in vivo. The suppressive effect of IL-3 was evident throughout the treatment period (8 or 16 days) but was apparently reversible because NK activity returned to control levels within 8 days after cessation of treatment. The inhibition of cytotoxic activity was accompanied by a reduced appearance of cells with the NK phenotypic markers aGM1 or NK-1, indicating that not only the cytotoxic activity of NK cells but also their actual formation was inhibited. Concomitantly, a moderate increase in cells expressing the T cell marker L3T4 and an increased proliferative response to the T cell mitogen concanavalin A was observed. A direct estimate of the effect of IL-3 on the frequency of NK cell progenitors was obtained by limiting dilution analysis of bone marrow cells at day 8 after bone marrow transplantation. The estimated minimal frequency of NK cell progenitors was reduced from 1/11,800 in control to 1/41,900 in IL-3-exposed mice. IL-3 may take part in the homeostasis of NK cells by the down-regulation of their progenitors.  相似文献   

17.
We have previously reported that mouse bone marrow cells produce high levels of interferon-alpha/beta (IFN-alpha/beta) after 5 to 6 days of in vitro culture with irradiated allogenic spleen cells. The current study was initiated to determine whether or not T cells are important for alloantigen-induced IFN-alpha/beta production by mouse bone marrow cells. Bone marrow cells and spleen cells were obtained from C57BL/6 mice. These cells were treated with different monoclonal antisera and complement, and then were cultured 5 to 6 days with irradiated DBA spleen cells. The results from these experiments indicated that optimal IFN-alpha/beta production by alloantigen-stimulated bone marrow cells required Lyt-1+2+ T cells. In addition, when bone marrow cells obtained from nu/nu B10 mice were cultured with alloantigen, only low levels of IFN were produced when compared with IFN production by bone marrow cells obtained from normal littermate B10 mice. The addition of nylon wool-enriched splenic T cells to cultures containing bone marrow cells and alloantigen resulted in an augmentation of IFN-alpha/beta production by three-fold to fivefold. Furthermore, bone marrow cells obtained from alloantigen-immunized mice produced much higher levels of IFN-alpha/beta and in a shorter period of time (2 to 3 days) when compared with bone marrow cells obtained from control or non-immunized mice. Cyclosporin A (CsA) has been shown to inhibit predominantly T cell-dependent responses. The effect of CsA on IFN production by alloantigen-stimulated bone marrow and spleen cells was investigated. The addition of CsA at concentrations as low as 0.1 micrograms/ml inhibited not only IFN-gamma production by alloantigen-stimulated spleen cells, but also IFN-alpha/beta production by alloantigen-stimulated bone marrow cells. In contrast, IFN-alpha/beta production by Newcastle disease virus-infected spleen cells, bone marrow cells, or L cells was not inhibited by the addition of CsA (1 microgram/ml). Thus, the ability of bone marrow cells to produce high levels of IFN-alpha/beta after in vitro culture with alloantigen is dependent upon T cells resident in the bone marrow. IFN-alpha/beta production by alloantigen-stimulated bone marrow cells may play a major role in the pathogenesis associated with graft-vs-host disease and in T cell regulation of hematopoiesis.  相似文献   

18.
Induction of immunological tolerance is highly desirable for the treatment and prevention of autoimmunity, allergy, and organ transplant rejection. Adoptive transfer of MHC class I disparate mature T cells at the time of reconstitution of mice with syngeneic bone marrow resulted in specific tolerance to allogeneic skin grafts that were matched to the T cell donor strain. Mature allogeneic T cells survived long-term in reconstituted hosts and were able to re-enter the thymus. Analysis of T cell development using transgenic mice expressing an alloantigen-reactive TCR revealed that expression of allogeneic MHC class I on adoptively transferred mature T cells mediated negative selection of developing alloreactive T cells in the thymus. Thus, mature allogeneic T cells are able to mediate central deletion of alloreactive cells and induce transplantation tolerance without the requirement for any other alloantigen-expressing cell type.  相似文献   

19.
Previously we showed that unlike normal, nude, or X-linked immune deficient (xid) mice, nude.xid mice are deficient in bone marrow pre-B cell targets for Abelson murine leukemia virus transformation. We show that nude.xid bone marrow is deficient in both CD45(B220)+ and CD45(B220)- surface (s)IgM- progenitors that give rise to B cell colonies in Whitlock-Witte cultures. CD45(B220)+ precursors had normal differentiation potential in vitro. CD45(B220)- precursors differentiated into CD45(B220)+ cells at the same rate as normal controls, but acquired sIgM at a much slower rate. These results correlated with the observation that in nude.xid mice the severity of B lineage defects correlates with maturity: a profound (ninefold) deficit of sIgM+, CD45(B220)+ mature B cells, a fivefold deficit in the sIgM-, CD45(B220)+ precursors of short term B cell colonies (colonies forming within 4-5 days in Whitlock-Witte cultures), and a moderate (twofold) decrease in the frequency of sIgM-, CD45(B220)- (less mature) precursors of long term B cell colonies (colonies forming after 14 days of Whitlock-Witte culture. Thus the combination of the nude and xid mutations produces a deficiency in early B cell progenitors and the deficiency becomes more profound with further maturation. Therefore the lack of mature B cells is the result of a cascade effect. Inasmuch as bone marrow progenitors are affected, and these are the source of the vast majority of B cells, most B cells are affected by the xid mutation and the xid defect cannot be attributed to a loss of a fetal lineage of B cells. These results suggest that xid affected cells lack the capacity to progress efficiently through differentiation in the absence of an exogenous factor(s) that is dependent on the product of a normal allele at the nude locus. This product might be supplied in vivo by a T cell or T cell-dependent source and/or epithelial elements such as bone marrow stromal cells all of which are known to be affected by the nude mutation.  相似文献   

20.
Regulation of eosinophilopoiesis in a murine model of asthma   总被引:5,自引:0,他引:5  
Eosinophilic inflammation plays a key role in tissue damage that characterizes asthma. Eosinophils are produced in bone marrow and recent observations in both mice and humans suggest that allergen exposure results in increased output of eosinophils from hemopoietic tissue in individuals with asthma. However, specific mechanisms that alter eosinophilopoiesis in this disease are poorly understood. The current study used a well-characterized murine animal model of asthma to evaluate alterations of eosinophil and eosinophil progenitor cells (CFU-eo) in mice during initial sensitization to allergen and to determine whether observed changes in either cell population were regulated by T lymphocytes. Following the first intranasal installation of OVA, we observed sequential temporal elevation of eosinophils in bone marrow, blood, and lung. In immunocompetent BALB/c mice, elevation of bone marrow eosinophils was accompanied by transient depletion of CFU-eo in that tissue. CFU-eo rebounded to elevated numbers before returning to normal baseline values following intranasal OVA exposure. In T cell-deficient BALB/c nude (BALB/c(nu/nu)) mice, CFU-eo were markedly elevated following allergen sensitization, in the absence of bone marrow or peripheral blood eosinophilia. These data suggest that eosinophilia of asthma results from alterations in two distinct hemopoietic regulatory mechanisms. Elevation of eosinophil progenitor cells in the bone marrow is T cell independent and likely results from altered bone marrow stromal cell function. Differentiation of eosinophil progenitor cells and phenotypic eosinophilia is T cell dependent and does not occur in athymic nude mice exposed to intranasal allergen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号