首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To extend our knowledge of model membrane systems based upon one lipid component, multi-lamellar bilayers were made of cholesterol with two phospholipids in equimolar ratio, and the enthalpy change delta H of the main phase transition of the temary mixture was measured by differential scanning calorimetry (DSC) as a function of increasing cholesterol concentration c. The lipids were saturated phosphatidylcholines CnPC of acyl chain length n, and as the n of the two lipids became more different (from C13PC/C14PC to C14PC/C15PC to C14PC/C18PC to C14PC/C19PC) distinct breaks in the delta H versus c plots were observed. These mixtures displayed only one broad DSC endotherm. Mixtures of an unsaturated lipid C18: 1PC (dioleoyl) with C16PC or with C18PC showed two peaks, with each peak being associated with its parent lipid. However, the delta H versus c plots for each of these peaks showed an initial independence of cholesterol concentration followed by a dependence on cholesterol concentration. These results indicate that, in lipid mixtures, the type of interaction of cholesterol with each lipid component depends on the concentration of cholesterol present.  相似文献   

2.
The use of the Liebermann-Burhard reaction and the thin-layer chromatography of nonsaponifiable lipids of culture medium (donor blood serum) permitted the isolation of three biological variants of Escherichia in the process of their 48-hour cultivation in this medium. The cholesterol-destroying variant of Escherichia is characterized by a decrease in the content of total, free, esterified cholesterol and a decrease in the occurrence of fractions corresponding to cholesterol, delta 4-cholestenone-3, delta 5-cholestenone-3), as well as nonsaponifiable lipid, where Rf was equal to 0.36; two fractions of labeled nonsaponifiable lipids, not corresponding to cholesterol, appeared on plasma with sodium acetate-1-14C. Cholesterol-transforming biovars produced insignificant changes in the content of chemically determined cholesterol in the medium, but in plasma nonsaponifiable lipid with Rf = 0.26 and other less polar lipids were found. Escherichia strains increasing the amount of chemically determined cholesterol in the process of their growth more frequently transformed or used nonsaponifiable lipids with Rf = 0.26 and 0.42. As a rule, the occurrence of cholesterol and less polar lipids increased. The sodium acetate-1-14C was incorporated into 3-4 fractions of nonsaponifiable lipids, one of them being identified as cholesterol.  相似文献   

3.
We have calculated the variance of equilibrium distribution of a circular wormlike polymer chain over the writhing number, [Wr)2), as a function of the number of Kuhn statistical segments, n. For large n these data splice well with our earlier results obtained for a circular freely jointed polymer chain. Assuming that [delta Lk)2) = [delta Tw)2) we have compared our results with experimental data on the chain length dependence of the [delta Lk)2) value recently obtained by Horowitz and Wang for small DNA rings. This comparison has shown an excellent agreement between theory and experiment and yielded a reliable estimate of the torsional and bending rigidity parameters. Namely, the torsional rigidity constant is C = 3.0.10(-19) erg cm, and the bending rigidity as expressed in terms of the DNA persistence length is a = 500 A. The obtained value of C agrees well with earlier estimates by Shore and Baldwin as well as by Horowitz and Wang whereas the a value is in accord with the data of Hagerman. We have found the data of Shore and Baldwin on the chain length dependence of the [delta Lk)2) value to be entirely inconsistent with our theorectical results.  相似文献   

4.
The effect of cholesterol on the interfacial elastic packing interactions of various molecular species of phosphatidylcholines (PCs) has been investigated by using a Langmuir-type film balance and analyzing the elastic area compressibility moduli (Cs(-1)) as a function of average cross-sectional molecular area. Emphasis was on the high surface pressure regions (pi > or = 30 mN/m) which are thought to mimic biomembrane conditions. Increasing levels of cholesterol generally caused the in-plane elasticity of the mixed monolayers to decrease. Yet, the magnitude of the cholesterol-induced changes was markedly dependent upon PC hydrocarbon structure. Among PC species with a saturated sn-1 chain but different sn-2 chain cis unsaturation levels [e.g., myristate (14:0), oleate (18:1delta9(c), linoleate (18:2delta9,12(c), arachidonate (20:4delta5,8,11,14(c), or docosahexenoate (22:6delta4,7,10,13,16,19(c)], the in-plane elasticity moduli of PC species with higher sn-2 unsaturation levels were less affected by high cholesterol mol fractions (e.g., >30 mol %) than were the more saturated PC species. The largest cholesterol-induced decreases in the in-plane elasticity were observed when both chains of PC were saturated (e.g., di-14:0 PC). When both acyl chains were identically unsaturated, the resulting PCs were 20-25% more elastic in the presence of cholesterol than when their sn-1 chains were long and saturated (e.g., palmitate). The mixing of cholesterol with PC was found to diminish the in-plane elasticity of the films beyond what was predicted from the additive behavior of the individual lipid components apportioned by mole and area fraction. Deviations from additivity were greatest for di-14:0 PC and were least for diarachidonoyl PC and didocosahexenoyl PC. In contrast to Cs(-1) analyses, sterol-induced area condensations were relatively unresponsive to subtle structural differences in the PCs at high surface pressures. Cs(-1) versus average area plots also indicated the presence of cholesterol concentration-dependent, low-pressure (<14 mN/m) phase boundaries that became more prominent as PC acyl chain unsaturation increased. Hence, area condensations measured at low surface pressures often do not accurately portray which lipid structural features are important in the lipid-sterol interactions that occur at high membrane-like surface pressures.  相似文献   

5.
A procedure for the synthesis of [24,25-3H]cholesterol from the nonradioactive precursor desmosterol is described. The intermediate, isodesmosterol, which was purified by column chromatography, was formed to protect the original double bond (delta 5-6) from hydrogenation. Tritium was introduced into the side chain by catalytic reduction of the double bond (delta 24-25) of the isodesmosterol in the presence of carrier-free tritium. After ring rearrangement of the iso-[24,25-3H]cholesterol acetate, the acetate was hydrolyzed to form the free labeled cholesterol. Hepatic oxidation of the [24,25-3H]cholesterol side chain release tritium into water which freely equilibrates with cell and body water pools. Thus, the rate of 3H2O appearance corresponds to the rate of cholesterol side chain oxidation. Applications of this method to in vivo, isolated perfused liver, and isolated hepatocyte preparations of the rat are discussed.  相似文献   

6.
D P Mascotti  T M Lohman 《Biochemistry》1992,31(37):8932-8946
The equilibrium binding to the synthetic RNA poly(U) of a series of oligolysines containing one, two, or three tryptophans has been examined as a function of pH, monovalent salt concentration (MX), temperature, and Mg2+. Oligopeptides containing lysine (K) and tryptophan (W) of the type KWKp-NH2 and KWKp-CO2 (p = 1-8), as well as peptides containing additional tryptophans or glycines, were studied by monitoring the quenching of the peptide tryptophan fluorescence upon binding poly(U). Equilibrium association constants, K(obs), and the thermodynamic quantities delta G(o)obs, delta H(o)obs, and delta S(o)obs describing peptide-poly(U) binding were measured as well as their dependences on monovalent salt concentration, temperature, and pH. In all cases, K(obs) decreases significantly with increasing monovalent salt concentration, with (delta log K(obs)/delta log [K+]) = -0.74 (+/- 0.04)z, independent of temperature and salt concentration, where z is the net positive charge on the peptide. The origin of these salt effects is entropic, consistent with the release of counterions from the poly(U) upon formation of the complex. Upon extrapolation to 1 M K+, the value of delta G(o)obs is observed to be near zero for all oligolysines binding to poly(U), supporting the conclusion that these complexes are stabilized at lower salt concentrations due to the increase in entropy accompanying the release of monovalent counterions from the poly(U). Only the net peptide charge appears to influence the thermodynamics of these interactions, since no effects of peptide charge distribution were observed. The binding of poly(U) to the monotryptophan peptides displays interesting behavior as a function of the peptide charge. The extent of tryptophan fluorescence quenching, Qmax, is dependent upon the peptide charge for z less than or equal to +4, and the value of Qmax correlates with z-dependent changes in delta H(o)obs and delta S(o)obs(1 M K+), whereas for z greater than or equal to +4, Qmax, delta H(o)obs, and delta S(o)obs (1 M K+) are constant. The correlation between Qmax and delta H(o)obs and delta S(o)obs(1 M K+) suggests a context (peptide charge)-dependence of the interaction of the peptide tryptophan with poly(U). However the interaction of the peptide tryptophan does not contribute substantially to delta G(o)obs for any of the peptides, independent of z, due to enthalpy-entropy compensations. Each of the tryptophans in multiple Trp-containing peptides appear to bind to poly(U) independently, with delta H(o)Trp = -2.9 +/- 0.7, although delta G(o)Trp is near zero due to enthalpy-entropy compensations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The effects of phospholipid acyl chain length (n(c)) and cholesterol on several partial reactions of Na,K-ATPase reconstituted into liposomes of defined lipid composition are described. This regards the E(1)/E(2) equilibrium, the phosphoenzyme level, and the K(+)-deocclusion reaction. In addition, the lipid effects on some steady-state properties were investigated. Finally, the effects of cholesterol on the temperature sensitivity of the phosphorylation and spontaneous dephosphorylation reactions were investigated. The fatty acid and cholesterol composition of the native Na,K-ATPase membrane preparation showed a remarkable similarity to the lipid composition known to support maximum hydrolytic capacity as determined from in vitro experiments. The main rate-determining step of the Na,K-ATPase reaction, the E(2) --> E(1) reaction, as well as several other partial reactions were accelerated by cholesterol. This regards the phosphorylation by ATP as well as the E(1) - P --> E(2)-P reaction. Moreover, cholesterol shifted the E(1)/E(2) equilibrium toward the E(1) conformation and increased the K(+)-deocclusion rate. Finally, cholesterol significantly affected the temperature sensitivity of the spontaneous dephosphorylation reaction and the phosphorylation by ATP. The effects of cholesterol were not completely equivalent to those induced by increasing the phospholipid acyl chain length, indicating that the cholesterol effects are not entirely caused by increasing the hydrophobic bilayer thickness, which indicates an additional mechanism of action on the Na,K-ATPase.  相似文献   

8.
Cornelius F 《Biochemistry》2001,40(30):8842-8851
The effects of phospholipid acyl chain length (n(c)), degree of acyl chain saturation, and cholesterol on Na,K-ATPase reconstituted into liposomes of defined lipid composition are described. The optimal acyl chain length of monounsaturated phosphatidylcholine in the absence of cholesterol was found to be 22 but decreased to 18 in the presence of 40 mol % cholesterol. This indicates that the hydrophobic matching of the lipid bilayer and the transmembrane hydrophobic core of the membrane protein is a crucial parameter in supporting optimal Na,K-ATPase activity. In addition, the increased bilayer order induced by both cholesterol and saturated phospholipids could be important for the conformational mobility of the Na,K-ATPase changing the distribution of conformations. Lipid fluidity was important for several parameters of reconstitution, e.g., the amount of protein inserted and the orientation in the liposomes. The temperature dependence of the Na,K-ATPase as well of the Na-ATPase reactions depends both on phospholipid acyl chain length and on cholesterol. Cholesterol increased significantly both the enthalpy of activation and entropy of activation for Na,K-ATPase activity and Na-ATPase activity of Na,K-ATPase reconstituted with monounsaturated phospholipids. In the presence of cholesterol the free energy of activation was minimum at a lipid acyl chain length of 18, the same that supported maximum turnover. In the case of ATPase reconstituted without cholesterol, the minimum free energy of activation and the maximum turnover both shifted to longer acyl chain lengths of about 22.  相似文献   

9.
M R Wenk  T Alt  A Seelig    J Seelig 《Biophysical journal》1997,72(4):1719-1731
The interaction of the nonionic detergent octyl-beta-D-glucopyranoside (OG) with lipid bilayers was studied with high-sensitivity isothermal titration calorimetry (ITC) and solid-state 2H-NMR spectroscopy. The transfer of OG from the aqueous phase to lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) can be investigated by employing detergent at concentrations below the critical micellar concentration; it can be defined by a surface partition equilibrium with a partition coefficient of K = 120 +/- 10 M-1, a molar binding enthalpy of delta H degrees D = 1.3 +/- 0.15 kcal/mol, and a free energy of binding of delta G degrees D = -5.2 kcal/mol. The heat of transfer is temperature dependent, with a molar heat capacity of delta CP = -75 cal K-1 mol-1. The large heat capacity and the near-zero delta H are typical for a hydrophobic binding equilibrium. The partition constant K decreased to approximately 100 M-1 for POPC membranes mixed with either negatively charged lipids or cholesterol, but was independent of membrane curvature. In contrast, a much larger variation was observed in the partition enthalpy. delta H degrees D increased by about 50% for large vesicles and by 75% for membranes containing 50 mol% cholesterol. Structural changes in the lipid bilayer were investigated with solid-state 2H-NMR. POPC was selectively deuterated at the headgroup segments and at different positions of the fatty acyl chains, and the measurement of the quadrupolar splittings provided information on the conformation and the order of the bilayer membrane. Addition of OG had almost no influence on the lipid headgroup region, even at concentrations close to bilayer disruption. In contrast, the fluctuations of fatty acyl chain segments located in the inner part of the bilayer increased strongly with increasing OG concentration. The 2H-NMR results demonstrate that the headgroup region is the most stable structural element of the lipid membrane, remaining intact until the disordering of the chains reaches a critical limit. The perturbing effect of OG is thus different from that of another nonionic detergent, octaethyleneglycol mono-n-dodecylether (C12E8), which produces a general disordering at all levels of the lipid bilayer. The OG-POPC interaction was also investigated with POPC monolayers, using a Langmuir trough. In the absence of lipid, the measurement of the Gibbs adsorption isotherm for pure OG solutions yielded an OG surface area of AS = 51 +/- 3 A2. On the other hand, the insertion area AI of OG in a POPC monolayer was determined by a monolayer expansion technique as AI = 58 +/- 10 A2. The similar area requirements with AS approximately AI indicate an almost complete insertion of OG into the lipid monolayer. The OG partition constant for a POPC monolayer at 32 mN/m was Kp approximately 320 M-1 and thus was larger than that for a POPC bilayer.  相似文献   

10.
In order to understand how subtle variations in lipid structure can influence the stability of an integral membrane protein, the purified, delipidated anion transport domain of human erythrocyte band 3 was reconstituted into a series of well-defined lipids and examined by differential scanning calorimetry. From the calorimetric scans, plots of denaturation temperature (Tm), enthalpy (delta Hd), and heat capacity (delta Cdp) as a function of phospholipid chain length, degree of unsaturation, headgroup type, and cholesterol content were constructed. The data show that the stability of the 55,000-dalton membrane-spanning domain of band 3 is exquisitely sensitive to the acyl chain length of its phospholipid environment, increasing almost linearly from a Tm of 47 degrees C in dimyristoleylphosphatidylcholine (C14:1) to 66 degrees C in dinervonylphosphatidylcholine (C24:1). The integral domain was also found to be significantly stabilized by increasing the degree of saturation of the fatty acyl chains and by elevating the cholesterol content of the membrane. Although band 3 was native in all reconstituted lipid systems, the transport protein's stability was clearly much greater in zwitterionic lipids (phosphatidylethanolamine and phosphatidylcholine) than anionic lipids (phosphatidylserine and phosphatidylglycerol). Enthalpy and delta Cdp values were generally within the ranges expected of globular proteins in the various reconstituted systems, except the values for the anionic and polyunsaturated phospholipids were anomalously low. Much of the data can be accounted for by the hypothesis that band 3 has a long hydrophobic cross-section and that a close match between the hydrophobic zone of the membrane-spanning protein and the nonpolar region of the bilayer is necessary for maximum protein stability. Because the integral domain of band 3 may be structurally representative of a larger group of transport proteins, the data should be useful in interpreting structural observations on protein-lipid interactions in other membrane systems.  相似文献   

11.
A direct and quantitative analysis of the internal structure and dynamics of a polyunsaturated lipid bilayer composed of 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0-22:6n3-PC) containing 29 mol% cholesterol was carried out by neutron diffraction, (2)H-NMR and (13)C-MAS NMR. Scattering length distribution functions of cholesterol segments as well as of the sn-1 and sn-2 hydrocarbon chains of 18:0-22:6n3-PC were obtained by conducting experiments with specifically deuterated cholesterol and lipids. Cholesterol orients parallel to the phospholipids, with the A-ring near the lipid glycerol and the terminal methyl groups 3 ? away from the bilayer center. Previously, we reported that the density of polyunsaturated docosahexaenoic acid (DHA, 22:6n3) chains was higher near the lipid-water interface. Addition of cholesterol partially redistributes DHA density from near the lipid-water interface to the center of the hydrocarbon region. Cholesterol raises chain-order parameters of both stearic acid and DHA chains. The fractional order increase for stearic acid methylene carbons C(8)-C(18) is larger, reflecting the redistribution of DHA chain density toward the bilayer center. The correlation times of DHA chain isomerization are short and mostly unperturbed by the presence of cholesterol. The uneven distribution of saturated and polyunsaturated chain densities and the cholesterol-induced balancing of chain distributions may have important implications for the function and integrity of membrane receptors, such as rhodopsin.  相似文献   

12.
An expression for the C-C bond order parameter, SCC, of membrane hydrocarbon chains has been derived from the observed C-D bond order parameters. It allows calculation of the probability of each of the C-C bond rotamers and, consequently, the number of gauche defects per chain as well as their projected average length onto the bilayer normal, thus affording the calculation of accurate hydrophobic bilayer thicknesses. The effect of temperature has been studied on dilauroyl-, dimyristoyl-, and dipalmitoylphosphatidylcholine (DLPC, DMPC, DPPC) membranes, as has the effect of cholesterol on DMPC. The salient results are as follows: 1) an odd-even effect is observed for the SCC versus carbon position, k, whose amplitude increases with temperature; 2) calculation of SCC, from nonequivalent deuterons on the sn-2 chain of lipids, SCC2, leads to negative values, indicating the tendency for the C1-C2 bond to be oriented parallel to the bilayer surface; this bond becomes more parallel to the surface as the temperature increases or when cholesterol is added; 3) calculation on the sn-2 chain length can be performed from C1 to Cn, where n is the number of carbon atoms in the chain, and leads to 10.4, 12.2, and 13.8 A for DLPC, DMPC, and DPPC close to the transition temperature, TC, of each of the systems and to 9.4, 10.9, and 12.6 for T-TC = 30-40 degrees C, respectively; 4) separation of intra- and intermolecular motions allows quantitation of the number of gauche defects per chain, which is equal to 1.9, 2.7, and 3.5 for DLPC, DMPC, and DPPC near TC and to 2.7, 3.5, and 4.4 at T-TC = 30-40 degrees C, respectively. Finally, the validity of our model is discussed and compared with previously published models.  相似文献   

13.
R Katakai  K Wanikawa  K Saga 《Biopolymers》1990,30(7-8):815-819
Liposomes consisting of egg yolk phosphatidylcholine and hydrophobic peptides Nps- and Cl-.+H2-(Met-Met-Leu)n-OEt (n = 6-10) with various polypeptide chain lengths were prepared by the sonication method. The conformation of the peptides incorporated into the liposomes was examined by CD spectroscopy. All the peptides incorporated assumed alpha-helical conformation. Quantitative analyses of the peptides and lipids in the membranes showed that the concentration of the peptides with a positive charge at the N-terminus in the liposomes decreased markedly as the peptide chain length increased, reaching zero for the peptides over n = 8. The peptides without a positive charge were hardly incorporated into the liposomes. Infrared attenuated reflection spectroscopy of multilayered membranes containing the peptides suggests that the axis of the alpha-helical peptide rods is oriented in parallel with the molecular axis of lipids in the membranes. These results suggest that the hydrophobic peptides can be incorporated into the lipid bilayers of the liposomes in the alpha-helical conformation, the rods of which have a length comparable to the thickness of the lipid bilayers, and the N-terminal positive charge of the peptides is essential for the stable peptide incorporated into the membranes.  相似文献   

14.
beta beta'-Methyl-substituted, C14-C18, alpha, omega-dicarboxylic acids (MEDICA 14-18) were found to inhibit fatty acids and cholesterol synthesis in cultured rat hepatocytes. Maximum inhibition was observed with MEDICA 16, amounting to a 50% decrease in 3H2O and acetate incorporation into fatty acids and cholesterol in the presence of 0.08 mM of the drug added to the culture medium. Inhibition of lipogenesis was not accompanied by inhibition of palmitate or glycerol esterification into neutral lipids and phospholipids. The respective capacities of MEDICA homologues of varying acyl chain length as inhibitors of fatty acid and cholesterol synthesis in cultured rat hepatocytes and in vivo (Bar-Tana, J., Rose-Kahn, G., and Srebnik, M. (1985) J. Biol. Chem. 260, 8404-8410) correlated well with their respective inhibitory effect on liver ATP-citrate lyase. Thus, MEDICA 16 inhibited liver ATP-citrate lyase competitively to citrate with a Ki of 16 microM as compared to a Km of 0.8 mM for the citrate substrate.  相似文献   

15.
The lipids found in the bilayers of the stratum corneum fulfill the vital barrier role of mammalian bodies. The main classes of lipids found in stratum corneum are ceramides, cholesterol, and free fatty acids. For an investigation of their phase behavior, mixed Langmuir-Blodgett monolayers of these lipids were prepared. Atomic force microscopy was used to investigate the structure of the monolayers as a function of the monolayer composition. Three different types of ceramide were used: ceramide extracted from pigskin, a commercially available ceramide with several fatty acid chain lengths, and two synthetic ceramides that have only one fatty acid chain length. In pigskin ceramide-cholesterol mixed monolayers phase separation was observed. This phase separation was also found for the commercially available type III Sigma ceramide-cholesterol mixed monolayers with molar ratios ranging from 1:0.1 to 1:1. These monolayers separated into two phases, one composed of the long fatty acid chain fraction of Sigma ceramide III and the other of the short fatty acid chain fraction of Sigma ceramide III mixed with cholesterol. Mixtures with a higher cholesterol content consisted of only one phase. These observations were confirmed by the results obtained with synthetic ceramides, which have only one fatty acid chain length. The synthetic ceramide with a palmitic acid (16:0) chain mixed with cholesterol, and the synthetic ceramide with a lignoceric acid (24:0) chain did not. Free fatty acids showed a preference to mix with one of these phases, depending on their fatty acid chain lengths. The results of this investigation suggest that the model system used in this study is in good agreement with those of other studies concerning the phase behavior of the stratum corneum lipids. By varying the composition of the monolayers one can study the role of each lipid class in detail.  相似文献   

16.
We examined, by reverse-phase high performance liquid chromatography (HPLC), the hydrophilic-hydrophobic balance of cholesterol and 12 non-cholesterol sterols and related this property to their equilibrium micellar solubilities in sodium taurocholate and sodium glycodeoxycholate solutions. Sterols investigated exhibited structural variations in the polar function (3 alpha-OH, 3 beta-OH, 3 beta-SH), nuclear double bonds (none, delta 5, or delta 7), side chain length (C27, C28, C29) and side chain double bonds (none, delta 22, or delta 24). In general, a sterol's hydrophilic-hydrophobic balance became progressively more hydrophobic (as exemplified by increasing HPLC retention values, k') with additions of side chain methyl (C28) and ethyl (C29) groups and with 3 beta-SH substitution of the 3-OH polar function. Side chain delta 22 and especially delta 24 double bonds rendered the sterols appreciably more hydrophilic, whereas a single nuclear double bond had little influence. Sterol solubilities (24 degrees C, 0.15 M Na+) were uniformly greater in 50 mM solutions of sodium glycodeoxycholate (range 0.15 to 2.5 mM) than in equimolar solutions of the more hydrophilic bile salt, sodium taurocholate (range 0.07 to 0.67 mM). For each bile salt system, a strong inverse correlation existed between micellar solubilities of sterols and their HPLC k' values, indicating that more hydrophilic sterols had greater micellar solubilities than the more hydrophobic ones. Based upon the aqueous monomeric solubilities of cholesterol (C27) and beta-sitosterol (C29) at 24 degrees C, we derived free energy changes associated with micellar binding and found that solubilization of both sterols was more energetically favored in glycodeoxycholate solutions. Although cholesterol exhibited a higher binding affinity than beta-sitosterol in glycodeoxycholate micelles, solubilization of beta-sitosterol in taurocholate micelles was more energetically favored than cholesterol by -0.6 kcal/mol. Based upon these results we offer a thermodynamic explanation for the greater micellar solubilities of more hydrophilic sterols and suggest that the high affinity, but low capacity, of a typical phytosterol for binding to trihydroxy bile salt micelles may provide a physical-chemical basis for its inhibition of intestinal cholesterol absorption.  相似文献   

17.
S Li  H N Lin  G Wang    C Huang 《Biophysical journal》1996,70(6):2784-2794
The biphasic effect of ethanol on the main phase transition temperature (Tm) of identical-chain phosphatidyl-cholines (PCs) in excess H2O is now well known. This biphasic effect can be attributed to the transformation of the lipid bilayer, induced by high concentrations of ethanol, from the partially interdigitated L beta, phase to the fully interdigitated L beta I phase at T < Tm. The basic packing unit of the L beta I phase has been identified recently as a binary mixture of PC/ethanol at the molar ratio of 1:2. The ethanol effect on mixed-chain PCs, however, is not known. We have thus in this study investigated the alcohol effects on the Tm of mixed-chain PCs with different delta C values, where delta C is the effective acyl chain length difference between the sn-1 and sn-2 acyl chains. Initially, molecular mechanics (MM) simulations are employed to calculate the steric energies associated with a homologous series of mixed-chain PCs packed in the partially and the fully interdigitated L beta I motifs. Based on the energetics, the preference of each mixed-chain PC for packing between these two different motifs can be estimated. Guided by MM results, high-resolution differential scanning calorimetry is subsequently employed to determine the Tm values for aqueous lipid dispersions prepared individually from a series of mixed-chain PCs (delta C = 0.5-6.5 C-C bond lengths) in the presence of various concentrations of ethanol. Results indicate that aqueous dispersions prepared from mixed-chain PCs with a delta C value of less than 4 exhibit a biphasic profile in the plot of Tm versus ethanol concentration. In contrast, highly asymmetric PCs (delta C > 4) do not exhibit such biphasic behavior. In the presence of a longer chain n-alcohol, however, aqueous dispersions of highly asymmetric C(12):C(20)PC (delta C = 6.5) do show such biphasic behavior against ethanol. Our results suggest that the delta C region in a highly asymmetric PC packed in the L beta I phase is most likely the binding site for n-alcohol.  相似文献   

18.
1. Phase transitions in sonicated (vesicles) and unsonicated liposomes composed of various synthetic phosphatidylcholines are monitored using differential scanning calorimetry and 31P NMR. 2. The temperature (Tc), heat content and width of the phase transition are comparable in both vesicles and liposomes prepared from 1,2-dipalmitoyl phosphatidylcholine and 1,2-dimyristoyl phosphatidylcholine. In vesicles composed of a (1 : 1) mixture of 1,2-dipalmitoyl phosphatidylcholine and 1,2-dioleoyl phosphatidylcholine phase separation occurs as in the bilayers of the unsonicated liposomes. 3. The linewidth of the 31P resonances in vesicles is not greatly dependent upon the fatty acid composition when the lipids are in the disordered liquid crystalline state (above Tc). When the lipids are in the gel state (below Tc), however, there is a marked increase in linewidth, demonstrating a reduction in motion of the phosphate group. 4. The ratio of the amounts of phosphatidylcholine present in the outside and inside monolayter of the vesicle membrane was determined with 31P NMR using Nd3+ as a non-permeating shift reagent. 5. The outside/inside ratio is dependent upon the hydrocarbon chain length. Increasing chain length gives a lower outside/inside ratio and a larger vesicle. Introduction of cis or trans double bonds in the chain influences the outside/inside ratio slightly. 6. The incorporation of cholesterol decreases the outside/inside ratio and increases the size of 1,2-dimyristoyl phosphatidylcholine vesicles. The cholesterol concentration in the outside and inside monolayer is approximately the same. The size of the 1,2-dioleoyl phosphatidylcholine vesicles is also increased by cholesterol incorporation but the outside/inside distribution is also increased, especially between 30 and 50 mol% cholesterol. In these vesicles cholesterol is asymmetrically distributed and strongly prefers the inside monolayer of the vesicle.  相似文献   

19.
The binding of alpha-, omega-amino acids, which are important effectors of human plasminogen activation, to the isolated kringle 4 (K4) peptide region of this protein has been investigated by high sensitivity titration calorimetry. The titration curve of the heat changes accompanying binding of the widely employed ligand, epsilon-aminocaproic acid (EACA), to K4 were deconvoluted to yield the following binding characteristics: n = 0.87 +/- 0.08 mol/mol; Ka = 3.82 +/- 0.37 x 10(4) M-1; delta H = -4.50 +/- 0.22 kcal/mol; delta S = 6.01 +/- 0.7 entropy units; and delta G = 6.29 +/- 0.06 kcal/mol. Here, both delta H and delta S provide the driving force of the interaction, with both hydrogen bonds and hydrophobic interactions, the latter which may result from an induced conformational change in K4 upon ligand binding, as well as possible alterations in peptide-bound water structure, providing the stabilizing forces for complex formation. The thermodynamic binding parameters were not greatly influenced by pH between the values of 5.5 and 8.2, suggesting that titratable groups on K4 in this pH region did not influence the binding. Investigations of the binding properties of structural analogues of EACA to K4 demonstrated that definable steric requirements existed for a maximal interaction, with spacing between the functional groups on EACA, as well as a hydrophobic region of this molecule, being important. This rapid and reliable method for measuring all thermodynamic parameters of formation of this complex at a given temperature can now be employed to investigate this important interaction with a wide variety of kringles and modified kringles to provide a more complete understanding of the necessary factors for this binding to occur.  相似文献   

20.
Although mammalian tissues contain high levels of polyunsaturated fatty acids, our knowledge of the effects of the degree of unsaturation and double-bond location upon bilayer organization is limited. Therefore, a series of mixed-chain unsaturated phosphatidylcholines (PC) comprised of 18:0 at the sn-1 position and various unsaturates at the sn-2 position (18:1n9, 18:2n6, 18:3n6, 18:3n3, 20:2n6, 20:3n6, 20:4n6, 20:5n3, 22:4n6, 22:5n6, or 22:6n3) was studied with differential scanning calorimetry, and their gel to liquid-crystalline phase transitions yielded measurements of Tm, Tonset, delta H, and delta S. Minimal delta H values were obtained for the diene species, 1.7 and 2.9 kcal/mole for 18:2n6 and 20:2n6, respectively. These results are consistent with the dienes having an acyl chain conformation that results in perturbed chain packing. Increasing the degree of unsaturation to three or more double bonds resulted in higher delta H values, 3.7, 4.3, and 4.6 kcal/mole for 18:3n6, 20:3n6, and 20:4n6, respectively, consistent with the occurrence of a gel-state chain conformation(s), which is more tightly packed than the dienes. The 18:0,22:6n3-PC species yielded the highest delta H (6.1 kcal/mole) and delta S(22.7 cal/mol degree) of all the polyunsaturates studied. The distinctive packing properties of phospholipid bilayers containing 22:6n3 may underlie its essential role in the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号