首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactate transport was investigated in newborn rat muscle cells in culture. The aim was to study the lactate transport function at two stages of cell differentiation in culture: (i) during the proliferative phase characterized by myoblasts and myotubes (MyB/MyT2) obtained after 2–3 seedings, (ii) when myotubes (MyT1) grow old in culture after 8–9 seedings. In both developmental stages MyB/MyT2, lactate was carried following a saturable and sigmoidal velocity curve: the Hill and the Scatchard plot analyses confirmed an allosteric or multisite mechanism of lactate transport with two classes of carriers: one of low and one of high affinity i.e., 8.6 and 0.95 mm, respectively, which are associated with high and low transport capacities (V m ) i.e., 9.1 and 0.67 nm/min/mg, respectively. With MyT1, the velocity curve of lactate transport presented a hyperbolic profile, and the Hill plot analysis gave a Hill number near one suggesting that for cell aging in culture the decrease in cooperativity shows that lactate transport essentially occurs through the low affinity transport system. Inhibitor effects also contributed to evidence for at least two systems of transport. Results obtained from primary cells give evidence for the early activity of lactate transport system at the Myb/MyT2 stage and its evolution during cell aging in culture (MyT1). Sarcolemmal lactate transport in primary cultures of myocytes is accomplished by multiple carriers, neither of which are MCT1 or MCT2 as confirmed by immunoblots. Received: 31 March 1999/Revised: 22 September 1999  相似文献   

2.
The construction and in vitro testing of a photo-activatable anti-tumour immuno-regulatory antibody is described. In this ‘cloaked’ folated anti-CD3 antibody conjugate, the folate portion of the conjugate is free to bind to folate receptor expressing cancer cells, whilst the anti-CD3 activity is effectively rendered inert by a coating of photo-labile 2-nitrobenzyl groups. On irradiation with UV-A light the activity of the anti-CD3 antibody is restored, not only when it is required, but more importantly, only where it is required. The conjugate can then attract killer T-cells to the surface of the tumour cells and kill them. Unirradiated normal tissues, to which the conjugate has been targeted by specific and non-specific binding, remain unharmed. We believe that these ‘photo-switchable’ conjugates could be used to markedly improve the targeting of the immune response to folate receptor (FR) expressing ovarian and breast cancers whilst minimising the side effects in the rest of the body.  相似文献   

3.
A major challenge in the application of cytotoxic anti-cancer drugs is their general lack of selectivity, which often leads to systematic toxicity due to their inability to discriminate between malignant and healthy cells. A particularly promising target for selective targeting are the folate receptors (FR) that are often over-expressed on cancer cells. Here, we report on a conjugate of the pentadentate nitrogen ligand N4Py to folic acid, via a cleavable disulphide linker, which shows selective cytotoxicity against folate receptor expressing cancer cells.  相似文献   

4.
To study interaction of specific antibodies with the GABA receptor/channel, antisera were raised against the extracellular domains of the GABAA receptor/channel β2 subunit, γ2 subunit and the GABAC receptor/channel ρ1 subunit. The specificity of the antibodies was characterized by immunocytochemistry and by Western blotting of transfected FDC-P1 cells expressing recombinant GABA receptor/channel subunits. The effects of the antibodies on whole-cell currents in Xenopus laevis oocytes expressing homomeric recombinant GABA receptor/channel β2, γ2, and ρ1 were studied using two-microelectrode voltage clamp. In the absence of GABA, anti-α2, anti-γ2, and anti-ρ1 antisera elicited whole-cell currents in oocytes expressing β2, γ2, and ρ1 subunits, respectively. The effect of antibody on channel activation was concentration-dependent. The whole-cell currents induced by anti-β2 and anti-γ2 were several-fold greater than those induced by application of 100 μm GABA. In Xenopus oocytes expressing recombinant ρ1 subunits, GABA-induced whole-cell currents were inhibited by the anti-ρ1 antibody. In contrast, the GABA-induced whole-cell currents were potentiated several-fold by anti-β2 and anti-γ2 antibodies in Xenopus oocytes expressing homomeric β2 and γ2 subunits. Our studies indicate that antibodies specific to the N-terminal domain of GABA receptor/channel subunits can modulate the neurotransmitter receptor function. Received: 2 February 2001/Revised: 11 April 2001  相似文献   

5.
The Na,K-ATPase is a major ion transport protein found in higher eukaryotic cells. The enzyme is composed of two subunits, α and β, and tissue-specific isoforms exist for each of these, α1, α2 and α3 and β1, β2 and β3. We have proposed that an additional α isoform, α4, exists based on genomic and cDNA cloning. The mRNA for this gene is expressed in rats and humans, exclusively in the testis, however the expression of a corresponding protein has not been demonstrated. In the current study, the putative α4 isoform has been functionally characterized as a novel isoform of the Na,K-ATPase in both rat testis and in α4 isoform cDNA transfected 3T3 cells. Using an α4 isoform-specific polyclonal antibody, the protein for this novel isoform is detected for the first time in both rat testis and in transfected cell lines. Ouabain binding competition assays reveal the presence of high affinity ouabain receptors in both rat testis and in transfected cell lines that have identical K D values. Further studies of this high affinity ouabain receptor show that it also has high affinities for both Na+ and K+. The results from these experiments definitively demonstrate the presence of a novel isoform of the Na,K-ATPase in testis. Received: 4 December 1998/Revised: 1 February 1999  相似文献   

6.
Triton X-100 extracted ciliary membrane protein from isolated cilia, prepared from the protozoon Tetrahymena thermophila, were fractionated by affinity chromatography on columns with covalently bound fibroblast growth factor (FGF), insulin, or concanavalin A (ConA), respectively. The eluted proteins were further analyzed by electrophoresis on sodium dodecyl sulfate polyacrylamide gels, isoelectric focusing, and by immunoblotting techniques using antibodies against the FGF receptor, platetelet derived growth factor (PDGF) receptor α-subunit, and insulin receptor β-subunit. The particular antibodies were chosen because the peptides PDGF, FGF, insulin, and ConA are chemoattractants in this organism and corresponding binding (receptor) proteins could be expected to be identified. A 66 kDa protein fraction was eluted from the FGF-MiniLeak agarose, insulin-MiniLeak agarose and ConA sepharose. This fraction responded in Western immunoblots to an antibody against the β-subunit of the human insulin receptor, to an antibody against the PDGF receptor (PDGFR) and also to an antibody against the bovine FGF receptor (FGFR) that is known, in other systems, to inhibit FGF binding to its receptor. When analyzed by SDS-PAGE and stained with Coomassie blue the 66 kDa fraction appeared as a single component. However, in some experiments it appeared more heterogeneous when stained with silver indicating the presence of minor components that may be a procedural artifact or isoforms of the same glycoprotein. The 66 kDa protein(s) migrated in isoelectric focusing with a pI of 7.4. The results are discussed in terms of the possible role of the 66 kDa glycoprotein as a protein involved in peptide-mediated cell signalling. Received: 9 June 2000/Revised: 11 January 2001  相似文献   

7.
用胆固醇合成抑制剂Lovastatin(洛伐他汀,暂译名)和神经鞘脂类合成抑制剂FumonisinB1(抑鞘脂素B1,暂译名)处理能表达糖基化磷脂酰肌醇锚定叶酸受体(GPIFR)的基因转染细胞(FRα·TRVB-1)3d,发现前者可使细胞的胆固醇含量减少约35%,而后者可使神经鞘脂类减少44%以上;同时发现,处理组细胞结合叶酸的能力减少约40%,其对5-甲基四氢叶酸的摄入率减少逾80%.这主要是由于细胞质膜中胆固醇和神经鞘脂类含量减少,从而导致膜内GPIFR结合叶酸功能降低及GPIFR摄入叶酸的内化过程障碍所致.其详细作用机制尚待进一步研究  相似文献   

8.
Barbiturates inhibit GLUT-1-mediated glucose transport across the blood-brain barrier, in cultured mammalian cells, and in human erythrocytes. Barbiturates also interact directly with GLUT-1. The hypotheses that this inhibition of glucose transport is (i) selective, preferring barbiturates over halogenated hydrocarbon inhalation anesthetics, and (ii) specific, favoring some GLUT-# isoforms over others were tested. Several oxy- and thio-barbiturates inhibited [3H]-2-deoxyglucose uptake by GLUT-1 expressing murine fibroblasts with IC50s of 0.2–2.9 mm. Inhibition of GLUT-1 by barbiturates correlates with their overall lipid solubility and pharmacology, and requires hydrophobic side chains on the core barbiturate structure. In contrast, several halogenated hydrocarbons and ethanol (all ≤10 mm) do not significantly inhibit glucose transport. The interaction of these three classes of anesthetics with purified GLUT-1 was evaluated by quenching of intrinsic protein fluorescence and displayed similar specificities and characteristics. The ability of barbiturates to inhibit other facilitative glucose transporters was determined in cell types expressing predominantly one isoform. Pentobarbital inhibits [3H]-2-deoxyglucose and [14C]-3-O-methyl-glucose uptake in cells expressing GLUT-1, GLUT-2, and GLUT-3 with IC50s of ∼1 mm. In contrast, GLUT-4 expressed in insulin-stimulated rat adipocytes was much less sensitive than the other isoforms to inhibition by pentobarbital (IC50 of >10 mm). Thus, barbiturates selectively inhibit glucose transport by some, but not all, facilitative glucose transporter isoforms. Received: 10 November 1998/Revised: 3 February 1999  相似文献   

9.
Blockers of CFTR with well-characterized kinetics and mechanism of action will be useful as probes of pore structure. We have studied the mechanism of block of CFTR by the arylaminobenzoates NPPB and DPC. Block of macroscopic currents by NPPB and DPC exhibited similar voltage-dependence, suggestive of an overlapping binding region. Kinetic analysis of single-channel currents in the presence of NPPB indicate drug-induced closed time constants averaging 2.2 msec at −100 mV. The affinity for NPPB calculated from single-channel block, K D = 35 μm, exceeds that for other arylaminobenzoates studied thus far. These drugs do not affect the rate of activation of wild-type (WT) channels expressed in oocytes, consistent with a simple mechanism of block by pore occlusion, and appear to have a single binding site in the pore. Block by NPPB and DPC were affected by pore-domain mutations in different ways. In contrast to its effects on block by DPC, mutation T1134F-CFTR decreased the affinity and reduced the voltage-dependence for block by NPPB. We also show that the alteration of macroscopic block by NPPB and DPC upon changes in bath pH is due to both direct effects (i.e., alteration of voltage-dependence) and indirect effects (alteration of cytoplasmic drug loading). These results indicate that both NPPB and DPC block CFTR by entering the pore from the cytoplasmic side and that the structural requirements for binding are not the same, although the binding regions within the pore are similar. The two drugs may be useful as probes for overlapping regions in the pore. Received: 14 October 1999/Revised: 18 January 2000  相似文献   

10.
Cholesterol and glycosphingolipid-rich membrane rafts, which are rich in GPI-anchored proteins and are distinct from caveolae, are believed to serve as platforms for signal transduction events and protein recycling. GPI-anchored proteins with diverse functions as well as caveolin may be recovered in a membrane fraction insoluble in cold non-ionic detergent. This study tests for possible heterogeneity in the protein composition of the lipid rafts and detergent-insoluble membrane complexes by examining the two GPI-anchored homologous human folate receptors (FR)-alpha and -beta, the GPI-anchored human placental alkaline phosphatase (PLAP), and caveolin (control) in transfected CHO cells. Both FR and PLAP showed the equal distribution of cell-surface vs. sequestered (recycling) protein typical of GPI-proteins. Quantitative affinity purification of detergent-insoluble complexes using biotinylated folate or specific antibodies demonstrated a strong association of the homologous FR-alpha and FR-beta in the same detergent-insoluble complex and separate complexes containing either PLAP or caveolin. Immunogold localization experiments using antibody crosslinking to produce larger aggregates of GPI-anchored proteins for visualization by electron microscopy also showed a clear separation between FR- and PLAP-rich membrane microdomains. Thus, even though functionally diverse and heterologous GPI-anchored proteins are known to share endocytic and recycling vesicles, they may be segregated in distinct lipid rafts on the basis of their ecto(protein) domains facilitating clustering, compartmentalization and homotypic protein interactions.  相似文献   

11.
Piperidines are a relatively novel class of calcium channel blockers which act at a unique receptor site associated with the calcium channel α1 subunit. Calcium channel blocking affinities ranging from subnanomolar to several hundred micromolar have been reported in the literature, suggesting that piperidine block is highly sensitive to the cellular environment experienced by the channel. Here, I have investigated some of the cytoplasmic determinants of haloperidol block of N-type calcium channels expressed in human embryonic kidney cells. In perforated patch clamp recordings, haloperidol blocks N-type calcium channels with an inhibition constant of 120 μM. Upon internal dialysis with chloride containing pipette solution, the blocking affinity increases by 40-fold. This effect could be attributed in part to the presence of internal chloride ions, as replacement of intracellular chloride with methanesulfonate reduced haloperidol blocking affinity by almost one order of magnitude. Tonic inhibition of N-type channels by Gβγ subunits further enhanced the blocking effects of haloperidol, suggesting the possibility of direct effects of Gβγ binding on the local environment of the piperidine receptor site. Overall, depending on the cytoplasmic environment experienced by the channel, the blocking affinity of N-type calcium channels for haloperidol may vary by more than two orders of magnitude. Thus, absolute blocking affinities at the piperidine receptor site must be interpreted cautiously and in the context of the particular experimental setting. Received: 23 July 1998/Revised: 19 October 1998  相似文献   

12.
The cloned intestinal peptide transporter is capable of electrogenic H+-coupled cotransport of neutral di- and tripeptides and selected peptide mimetics. Since the mechanism by which PepT1 transports substrates that carry a net negative or positive charge at neutral pH is poorly understood, we determined in Xenopus oocytes expressing PepT1 the characteristics of transport of differently charged glycylpeptides. Transport function of PepT1 was assessed by flux studies employing a radiolabeled dipeptide and by the two-electrode voltage-clamp-technique. Our studies show, that the transporter is capable of translocating all substrates by an electrogenic process that follows Michaelis Menten kinetics. Whereas the apparent K0.5 value of a zwitterionic substrate is only moderately affected by alterations in pH or membrane potential, K0.5 values of charged substrates are strongly dependent on both, pH and membrane potential. Whereas the affinity of the anionic dipeptide increased dramatically by lowering the pH, a cationic substrate shows only a weak affinity for PepT1 at all pH values (5.5–8.0). The driving force for uptake is provided mainly by the inside negative transmembrane electrical potential. In addition, affinity for proton interaction with PepT1 was found to depend on membrane potential and proton binding subsequently affects the substrate affinity. Furthermore, our studies suggest, that uptake of the zwitterionic form of a charged substrate contributes to overall transport and that consequently the stoichiometry of the flux-coupling ratios for peptide: H+/H3O+ cotransport may vary depending on pH. Received: 19 August 1996/Revised: 10 October 1996  相似文献   

13.
Band 3 (AE1), the anion exchanger of the human erythrocyte membrane, mediates not only fluxes of small hydrophilic anions (e.g., chloride, oxalate), but also the flip-flop of long-chain amphiphilic anions (e.g., dodecylsulfate). Treatment of erythrocytes with papain, long known to inhibit the transport of the former type of anions, accelerates the transport of the latter type. In an attempt to elucidate the basis of these opposite responses to papain, several small amphiphilic arylalkyl sulfonates and -sulfates were tested for the response of their transport, via AE1, to papain. Although all these probes are most likely transported by a flux and not by flip-flop, their transport was inhibited by papain only in some cases, but accelerated in others. Different responses to papain therefore most likely do not reflect differences between transport by flux or by flip. The transports of different species of anions also differed considerably in the changes of their sensitivity, to noncovalent and some covalent inhibitors, brought about by papain treatment. While oxalate transport remained as sensitive as in native cells, transports of small amphiphilic anions lost their sensitivity to a major extent, regardless of the inhibition or acceleration of their transport by papain. The results are discussed in the light of present concepts of the structural organisation of AE1, and interpreted in terms of a model of different transport subsites for different species of anions in this transporter. Received: 20 June 2000/Revised: 1 November 2000  相似文献   

14.
Insect vitellogenin and yolk protein receptors (VgR/YPR) are newly discovered members of the low-density lipoprotein receptor (LDLR) family, which is characterized by a highly conserved arrangement of repetitive modular elements homologous to functionally unrelated proteins. The insect VgR/YPRs are unique in having two clusters of complement-type cysteine-rich (class A) repeats or modules, with five modules in the first cluster and seven in the second cluster, unlike classical LDLRs which have a single seven-module cluster, vertebrate VgRs and very low density lipoprotein receptors (VLDLR) which have a single eight-module cluster, and LDLR-related proteins (LRPs) and megalins which have four clusters of 2–7, 8, 10, and 11 modules. Alignment of clusters across subfamilies by conventional alignment programs is problematic because of the repetitive nature of the component modules which may have undergone rearrangements, duplications, and deletions during evolution. To circumvent this problem, we ``fingerprinted' each class A module in the different clusters by identifying those amino acids that are both relatively conserved and relatively unique within the cluster. Intercluster reciprocal comparisons of fingerprints and aligned sequences allowed us to distinguish four cohorts of modules reflecting shared recent ancestry. All but two of the 57 modules examined could be assigned to one of these four cohorts designated A, B, C, and D. Alignment of clusters based on modular cohorts revealed that all clusters are derived from a single primordial cluster of at least seven modules with a consensus arrangement of CDCADBC. All extant clusters examined are consistent with this consensus, though none matches it perfectly. This analysis also revealed that the eight-module clusters in vertebrate VgRs, insect VgR/YPRs, and LRP/megalins are not directly homologous with one another. Assignment of modules to cohorts permitted us to properly align 32 class A clusters from all four LDLR subfamilies for phylogenetic analysis. The results revealed that smaller one-cluster and two-cluster members of the family did not originate from the breakup of a large two-cluster or four-cluster receptor. Similarly, the LRP/megalins did not arise from the duplication of a two-cluster insect VgR/YPR-like progenitor. Rather, it appears that the multicluster receptors were independently constructed from the same single-cluster ancestor. Received: 16 January 1997 / Accepted: 21 August 1997  相似文献   

15.
Several studies suggest that aquaporin water channels can be identified in membranes by freeze-fracture electron microscopy. For this report, Chinese Hamster ovary cells were stably transfected with cDNAs encoding aquaporins 1–5. Measurement of the osmotic water permeability of the cells confirmed that functional protein was expressed and delivered to the plasma membrane. By freeze-fracture electron microscopy, a 20% increase in intramembrane particle (IMP) density was found in plasma membranes of cells expressing AQP2, 3 and 5, and a 100% increase was measured in AQP1-expressing cells, when compared to mock-transfected cells. On membranes of cells expressing AQP4, large aggregates of IMPs were organized into orthogonal arrays, which occupied 10–20% of the membrane surface. IMP aggregates were never seen in AQP2-transfected cells. Hexagonally packed IMP clusters were detected in ∼5% of the membranes from AQP3-expressing cells. Particle size-distribution analysis of rotary shadowed IMPs showed a significant shift from 13.5 (control cells) to 8.5 nm or less in AQP-expressing cells; size distribution analysis of unidirectionally shadowed IMPs also showed a significant change when compared to control. Some IMPs in AQP expressing cells had features consistent with the idea that aquaporins are assembled as tetramers. The results demonstrate that in transfected CHO cells, AQP transfection modifies the general appearance and number of IMPs on the plasma membrane, and show that only AQP4 assembles into well-defined IMP arrays. Received: 17 March 1998/Revised: 19 June 1998  相似文献   

16.
17.
Chemosensory transduction and adaptation are important aspects of signal transduction mechanisms in many cell types, ranging from prokaryotes to differentiated tissues such as neurons. The eukaryotic ciliated protozoan, Tetrahymena thermophila, is capable of responding to both chemoattractants (O'Neill et al., 1985; Leick, 1992; Kohidai, Karsa & Csaba, 1994, 1995) and chemorepellents (Francis & Hennessey, 1995; Kuruvilla, Kim & Hennessey, 1997). An example of a nontoxic, depolarizing chemorepellent in Tetrahymena is extracellular lysozyme (Francis & Hennessey, 1995; Hennessey, Kim & Satir, 1995). Lysozyme is an effective chemorepellent at micromolar concentrations, binds to a single class of externally facing membrane receptors and prolonged exposure (10 min) produces specific chemosensory adaptation (Kuruvilla et al., 1997). We now show that this lysozyme response is initiated by a depolarizing chemoreceptor potential in Tetrahymena and we have purified the membrane lysozyme receptor by affinity chromatography of solubilized Tetrahymena membrane proteins. The solubilized, purified protein is 42 kD and it exhibits saturable, high affinity lysozyme binding. Polyclonal antibodies raised against this 42 kD receptor block the in vivo lysozyme chemoresponse. This is not only the first time that a chemoreceptor potential has been recorded from Tetrahymena but also the first time that a chemorepellent receptor has been purified from any unicellular eukaryote. Received: 28 July 1997/Revised: 14 November 1997  相似文献   

18.
L-lysine Transport in Chicken Jejunal Brush Border Membrane Vesicles   总被引:2,自引:0,他引:2  
The properties of l-lysine transport in chicken jejunum have been studied in brush border membrane vesicles isolated from 6-wk-old birds. l-lysine uptake was found to occur within an osmotically active space with significant binding to the membrane. The vesicles can accumulate l-lysine against a concentration gradient, by a membrane potential-sensitive mechanism. The kinetics of l-lysine transport were described by two saturable processes: first, a high affinity-transport system (K mA= 2.4 ± 0.7 μmol/L) which recognizes cationic and also neutral amino acids with similar affinity in the presence or absence of Na+ (l-methionine inhibition constant KiA, NaSCN = 21.0 ± 8.7 μmol/L and KSCN = 55.0 ± 8.4 μmol/L); second, a low-affinity transport mechanism (KmB= 164.0 ± 13.0 μmol/L) which also recognizes neutral amino acids. This latter system shows a higher affinity in the presence of Na+ (KiB for l-methionine, NaSCN = 1.7 ± 0.3 and KSCN = 3.4 ± 0.9 mmol/L). l-lysine influx was significantly reduced with N-ethylmaleimide (0.5 mmol/L) treatment. Accelerative exchange of extravesicular labeled l-lysine was demonstrated in vesicles preloaded with 1 mmol/L l-lysine, l-arginine or l-methionine. Results support the view that l-lysine is transported in the chicken jejunum by two transport systems, A and B, with properties similar to those described for systems b 0,+ and y+, respectively. Received: 14 August 1995/Revised: 2 April 1996  相似文献   

19.
The functional properties of the transport of lysine across the chicken erythrocyte membrane were investigated. The animal population studied (male Leghorn chickens, 6–14 weeks old) was found to consist of two groups presenting either low (LT, 19 individuals) or high transport rates (HT, 20 individuals). The rates of influx in the two groups, measured at a concentration of l-lysine of 1 μm, differed by a factor of 34. The transport activities observed in LT and HT erythrocytes were compatible with the general features of system y+L, but showed some differences in specificity. The transporter in the LT group was found to bind l-lysine, l-leucine, l-methionine and l-glutamine with high affinity, in the presence of sodium, as described for system y+L in human erythrocytes. The activity present in HT erythrocytes exhibited a much lower affinity for l-leucine, but was able to interact strongly with l-glutamine and l-methionine. The specificity pattern of the HT transporter, has not been described in other cell types. In other respects, the properties of the two systems were similar. Sodium replacement with potassium, drastically reduced the affinity for l-leucine, without affecting lysine transport. Both transporters function as tightly coupled exchangers, are inactivated by p-chloromercuribenzene sulfonate and resistant to N-ethylmaleimide. These findings explain previous results obtained in selective breeding experiments of chicken with high and low amino-acid transport activity. Received: 12 February 2001/Revised: 11 June 2001  相似文献   

20.
We here report on studies on the frog skin epithelium to identify the nature of its excretory H+ pump by comparing transport studies, using inhibitors highly specific for V-ATPases, with results from immunocytochemistry using V-ATPase-directed antibodies. Bafilomycin A1 (10 μm) blocked H+ excretion (69 ± 8% inhibition) and therefore Na+ absorption (61 ± 17% inhibition after 60 min application, n= 6) in open-circuited skins bathed on their apical side with a 1 mm Na2SO4 solution, ``low-Na+ conditions' under which H+ and Na+ fluxes are coupled 1:1. The electrogenic outward H+ current measured in absence of Na+ transport (in the presence of 50 μm amiloride) was also blocked by 10 μm bafilomycin A1 or 5 μm concanamycin A. In contrast, no effects were found on the large and dominant Na+ transport (short-circuit current), which develops with apical solutions containing 115 mm Na+ (``high-Na+ conditions'), demonstrating a specific action on H+ transport. In immunocytochemistry, V-ATPase-like immunoreactivity to the monoclonal antibody E11 directed to the 31-kDa subunit E of the bovine renal V-ATPase was localized only in mitochondria-rich cells (i) in their apical region which corresponds to apical plasma membrane infoldings, and (ii) intracellularly in their neck region and apically around the nucleus. In membrane extracts of the isolated frog skin epithelium, the selectivity of the antibody binding was tested with immunoblots. The antibody labeled exclusively a band of about 31 kDa, very likely the corresponding subunit E of the frog V-ATPase. Our investigations now deliver conclusive evidence that H+ excretion is mediated by a V-ATPase being the electrogenic H+ pump in frog skin. Received: 21 May 1996/Revised: 24 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号