首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysine transfer RNA2 is the major target for L-ethionine in the rat   总被引:1,自引:0,他引:1  
Ethionine, a hepatocarcinogen, ethylates macromolecules in vivo especially tRNA of rat liver. When rats were injected with L-[ethyl-3H]ethionine, the tRNA fraction of the liver was found to be labeled. One tRNA with the highest specific activity was purified and identified as lysine-tRNA2.  相似文献   

2.
L-ethionine has been found to inhibit uracil tRNA methylating enzymes in vitro under conditions where methylation of other tRNA bases is unaffected. No selective inhibitor for uracil tRNA methylases has been identified previously. 15 mM L-ethionine or 30 mM D,L-ethionine caused about 40% inhibition of tRNA methylation catalyzed by enzyme extracts from E. coli B or E. coli M3S (mixtures of methylases for uracil, guanine, cytosine, and adenine) but did not inhibit the activity of preparations from an E. coli mutant that lacks uracil tRNA methylase. Analysis of the 14CH3 bases in methyl-deficient E. coli tRNA after its in vitro methylation with E. coli B3 enzymes in the presence or absence of ethionine showed that ethionine inhibited 14CH3 transfer to uracil in tRNA, but did not diminish significantly the 14CH3 transfer to other tRNA bases. Under similar conditions 0.6 mM S-adenosylethionine and 0.2 mM ethylthioadenosine inhibited the overall tRNA base methylating activity of E. coli B preparations about 50% but neither of these ethionine metabolites preferentially inhibited uracil methylation. Ethionine was not competitive with S-adenosyl methionine. Uracil methylation was not inhibited by alanine, valine, or ethionine sulfoxide. It is suggested that the thymine deficiency that we found earlier in tRNA from ethionine-treated E. coli B cells, resulted from base specific inhibition by the amino acid, ethionine, of uracil tRNA methylation in vivo.  相似文献   

3.
The effect of a range of inhibitors on kinetin-induced increasein fresh weight (expansion) and in RNA content of isolated cotyledonsof fenugreek (Trigonella foenum-graecum L.) has been measuredover incubation periods of up to 48 h in darkness. Some compounds inhibited both expansion and net RNA increase:2, 4-dinitrophenol, cycloheximide, L-azetidine-2-carboxylicacid, 6-methylpurine, thiouracil, and actinomycin D. Other compoundsinhibited net RNA increase but not expansion: 5-fluorouracil,2, 6-diamino-purine, 5-azacytidine, and L-ethionine. Ethionine stimulated the induction of nitrate reductase. Effectsby ethionine on RNA content were reversed by methionine, butnot by adenosine. Inhibitory interactions between ethionineand guanosine, hypoxanthine and especially some 6-substitutedadenines were observed. Ethionine, apart from inhibiting uptakeof labelled uridine, also inhibited its incorporation into rRNAbut not that into tRNA. Results confirm that kinetin-induced expansion in cotyledonsis dependent on mRNA synthesis and suggest that the inhibitoryeffect of ethionine on kinetin-induced RNA increase is not dueto ATP trapping or inhibition of protein synthesis or reducedmethylation of tRNA, but to interference with the metabolismof rRNA.  相似文献   

4.
Treatment of rats with ethionine was found to cause severe impairment in the aminoacylation capacity of tRNA. This effect was only observed when assayed in injected oocytes, while invitro assays of aminoacylation failed to detect differences between normal tRNA and tRNA from ethionine treated animals. The effect of ethionine on the tRNA population was not uniform and differed for various amino acid specific tRNAs. Thus liver tRNA from ethionine treated rats showed a decreased capacity for phenylalanine aminoacylation, while no change was found in the case of leucine. On the other hand, the level of histidine aminoacylation was higher for tRNA from ethionine treated animals. An even more complex response was observed with methionine aminoacylation where tRNA from ethionine treated animals showed an initially faster rate than control tRNA. With more prolonged incubation periods, the methionyl-tRNA from ethionine treated animals was deacylated at an accelerated rate while the level of normal methionyl-tRNA remained almost constant.In addition to the aminoacylation reaction, the participation of aminoacyl-tRNA in protein synthesis was severely impaired. In this case, both the injected oocyte system and the cell-free wheat germ assay revealed these differences which were manifested with various mRNA and viral RNA preparations.  相似文献   

5.
Ethionine, a hepatocarcinogen, was administered into rats 24 h before partial hepatectomy and immediately thereafter. Hepatic precursor ribosomal RNA (pre-rRNA) obtained 20 h after the operation of rats injected with ethionine and adenine resulted in methyl deficiency as judged by the incorporation of [3H]methyl group of S-adenosylmethionine into nuclear rRNA by partially purified rRNA methylase. The ethionine and adenine treatment causes methyl deficiency of nuclear rRNA at 2'-hydroxyribose sites of cytidine and uridine, but not at base sites. Although the ethionine and adenine treatment produced no significant change in total hepatic RNA synthesis in vivo assayed by the incorporation of labeled orotate, a one-third increase in nuclear rRNA synthesis as well as a one-third decrease in microsomal rRNA synthesis was found under the treatment. These results suggest that the undermethylation at 2'-hydroxyribose of pre-rRNA in liver nucleus, which is caused by ethionine and adenine administration into rats, causes an inhibition of the processing of nuclear pre-rRNA to cytoplasmic rRNA.  相似文献   

6.
Poly(A)-containing RNA in the livers of ethionine-treated rats   总被引:1,自引:0,他引:1  
Ethionine intoxication in nonfasted rats leads to a rapid change in the levels of poly(A)+ RNA. Prolonged fasting causes a decrease in poly(A)+ RNA which is not aggravated further by ethionine. The size distribution of poly(A) tracts at the 3' end of mRNA is not affected by ethionine. However, ethionine induces a change in the metabolism of the poly(A) sequence relative to the remainder of the mRNA.  相似文献   

7.
Lysophosphatidic acid (LPA) receptors (LPA1 to LPA6) indicate a variety of cellular responses, such as cell proliferation, migration, differentiation, and morphogenesis. However, the role of each LPA receptor is not functionally equivalent. Ethionine, an ethyl analog of methionine, is well known to be one of the potent liver carcinogens in rats. In this study, to assess whether ethionine may regulate cell motile activity through LPA receptors, rat liver epithelial (WB-F344) cells were treated with ethionine for 48 h. In cell motility assay with a cell culture insert, the treatment of ethionine at 1.0 and 10 μM enhanced significantly high cell motile activity, compared with untreated cells. The expression levels of LPA receptor genes in cells treated with ethionine were measured by quantitative real time RT-PCR analysis. The expression of the Lpar3 gene in ethionine-treated cells was significantly higher than that in untreated cells. Furthermore, to confirm an involvement of LPA3 on cell motility increased by ethionine, the Lpar3 knockdown cells were also used. The cell motile activity by ethionine was completely suppressed in the Lpar3 knockdown cells. These results suggest that LPA signaling through LPA3 may be involved in cell motile activity stimulated by ethionine in WB-F344 cells.  相似文献   

8.
The effect of ethionine, an amino acid analog of methionine, has been studied in Saccharomyces cerevisiae in relation to cell growth, oxygen consumption, in vitro protein synthesis of mitochondrial translation products (MTPs) and the degradation of those mitoribosomally made proteins by an ATP-dependent process present within the organelle. Ethionine was found to increase the generation time of those cells already committed to cell division and to abolish the initiation of new cell cycles. Oxygen consumption of cultures grown in the presence of the analog was drastically reduced. Ethionine was also found to impair the incorporation of methionine and leucine into mitochondrial translation products, however the synthesis of proteins was not totally blocked and, apparently, mitochondria utilized ethionine as a precursor amino acid. MTPs synthesized by isolated mitochondria in the presence of ethionine were rapidly degraded inside the organelle at a faster rate compared with the normal proteins synthesized under identical conditions in the mitochondria. It is also shown that these in vitro synthesized proteins are degraded by an ATP-stimulated proteolytic system, as has been previously established.  相似文献   

9.
Induction of hyperphenylalaninemia in mice by ethionine and phenylalanine   总被引:1,自引:0,他引:1  
Female NMRI mice were fed diets containing l-ethionine (0.1 and 0.3% w/w) and phenylalanine (3% w/w), as well as respective control diets. Ethionine, the S-ethylated analog of methionine, was shown to inhibit phenylalanine hydroxylase in vivo, whereby in vitro kinetics remained unaffected. Treatment with ethionine resulted in fatty liver, reduced ATP content of liver, and alterations in serum amino acid concentrations. In the high dosage ethionine group, for instance, concentrations of Ala, Gly, Ser, Met, and Phe were increased whereas concentrations of Lys, Asp, and Pro were decreased. Applying ethionine together with phenylalanine resulted in hyperphenylalaninemia and phenylketonuria. Feeding phenylalanine alone also led to decreased activity of phenylalanine hydroxylase and increased concentration of Phe in serum. Ethionine only had a minimal effect on body weight gain; however, the hyperphenylalaninemic condition induced by application of the high dosage of ethionine and phenylalanine induced severe loss of body weight. A disturbed protein synthesis and protein phosphorylation might be the underlying mechanism of ethionine-induced suppression of phenylalanine hydroxylase.  相似文献   

10.
SYNOPSIS. Ethionine or methionine can serve as sole nitrogen source for growth of Prymnesium parvum. Both amino acids are taken up as such at a ratio of 2 : 1 methionine/ethionine. Ethionine is totally de-ethylated in the cell, while methionine is probably only partially de-methylated. The homocysteine moiety of both amino acids is similarly metabolised to form cysteine or re-methylated to form methionine. De-ethylation of ethionine seems how P. parvum avoids its antimetabolic effect  相似文献   

11.
Two unknown radioactive areas appeared after radioautography and two dimensional paper chromatography of culture medium in which Escherichia coli was grown. These materials were studied by paper chromatography and paper electrophoresis of several derivatives and identified as ethionine and ethionine sulfone, the latter an artifact. Chromatographic coincidence of the unknowns and their derivatives with authentic materials establishes the identification. Ethionine was found in cellular extracts and in the growth media of Escherichia coli, Bacillus megaterium, Pseudomonas aeruginosa, and Aerobacter aerogenes but not in Scenedesmus, Saccharomyces cerevisiae, or bovine lymphosarcoma cells. Ethionine was synthesized by resting E. coli cultures from radioactive sulfate and from radioactive methionine. Growing cells labeled ethionine within 1 minute after addition of radioactive sulfate to cultures. Levels of radioactivity in ethionine increased with time. No incorporation of this amino acid could be detected in the cellular proteins formed under the conditions of this study.  相似文献   

12.
1. The ethylated nucleosides present in tRNA isolated from the livers of rats treated with 0.5g of l-ethionine/kg body wt. were investigated. Evidence that this tRNA contained N(2)-ethylguanine, N(2)N(2)-diethylguanine, N(2)-ethyl-N(2)-methylguanine, 7-ethylguanine, two ethylated pyrimidines and ethylated ribose groups was obtained. 2. Ethylation of bacterial tRNA was catalysed by extracts containing tRNA methylases prepared from rat liver by using S-adenosyl-l-ethionine as an ethyl donor, but the rate of ethylation was 20 times less than the rate of methylation with S-adenosyl-l-methionine as a methyl donor. 3. The principal product of such ethylation in vitro was N(2)-ethylguanine and traces of the other ethylated guanines and pyrimidines found in tRNA isolated from rats treated with ethionine in vivo were also found. 1-Ethyladenine was not formed, although 1-methyl-adenine is a major product of methylation of bacterial tRNA by these extracts, and 1-ethyladenine was not present in the rat liver tRNA isolated from ethionine-treated animals. 4. After injection of actinomycin D (15mg/kg body wt.) or l-methionine (1.0g/kg body wt.) before the ethionine, ethylation of tRNA was diminished by about 80% but not completely abolished. Administration of 1-aminocyclopentanecarboxylic acid (2.5g/kg body wt.) to inhibit the formation of S-adenosyl-l-ethionine inhibited ethylation of tRNA by 44%. 5. These results suggest that not all of the ethylation of tRNA that occurs in the livers of rats treated with ethionine is mediated by the action of tRNA methylases acting with S-adenosyl-l-ethionine as a substrate, but that this pathway does occur and accounts for a major part of the observed ethylation. 6. The results are discussed with reference to ethionine-induced hepatocarcinogenesis.  相似文献   

13.
Ethionine causes a decrease in the amount of rough endoplasmic reticulum in rat liver, the effect being greater in female than in male rats. Rough endoplasmic reticulum isolated from rat liver 24 hr after ethionine injection and stripped of its ribosomes partially lost itsin vitro ribosome binding capacity. However, no differences were detected between the binding affinities of ribosomes, isolated from either untreated animals or intoxicated rats, to stripped rough membranes derived from normal rats. Structural changes occur in the rough endoplasmic reticulum of the ethionine treated rats, while the ribosomes are still bound to the membrane.  相似文献   

14.
Protein carboxymethylase of mouse pancreas is both soluble (70%) and particulate (30%). The Km for S-adenosylmethionine is 7.5 x 10(-7) M and the Ki for S-adenosylethionine is 1.3 . 10(-5) M. Administration of an ethionine containing diet results in a decrease in protein carboxymethylase activity. Ethionine ingestion also increases pancreatic amylase content by interfering with digestive enzyme discharge. The reciprocal changes in amylase content and protein carboxymethylase activity can be detected within 12 h of commencing the ethionine administration and are enhanced by simultaneous choline deficiency. These studies support the hypothesis that protein carboxymethylase plays an important role in secretion of exportable material. Inhibition of pancreatic protein carboxymethylase activity in vivo may be one important mechanism by which ethionine interferes with digestive enzyme discharge.  相似文献   

15.
Aminoacyl-tRNA synthetase and tRNA were isolated from the chrysomonad Ochromonas danica. The mutual effect of methionine and ethionine, and the effect of other amino acids on methionyl- and ethionyl-tRNA formation, were tested in an in vitro system. The tRNAMet had a similar accepting capacity for either methionine or ethionine. Ethionine and methionine, but none of the other amino acids tested, competed for the same aminoacyl-tRNA synthetase. The Km of methionine was 0.88 × 10–5 M, and that of ethionine 5 × 10–4 M. Ethionine inhibited methionine binding; Ki 3.4 × 10–4 M. The respective values in a similar system isolated from E. coli were 2.2 × 10–5, 1.95 × 10–3, and 1.95 × 10–3.  相似文献   

16.
SYNOPSIS. Growth of Ochromonas danica is competitively inhibited by ethionine. Inhibition can be reversed by methionine. Inhibition indexes of the effect of ethionine on growth and methionine incorporation into proteins are 1 and 4, respectively. Inside the cell, methionine is partially de-methylated and metabolized to form cysteine. Ethionine is partially de-ethylated, and the homocysteine moiety is either re-methylated to form methionine or further metabolized to form cysteine. Ethionine is also incorporated into proteins of O. danica. The kind of metabolic interference, expressed by inhibition of growth, and correlated with incorporation of ethionine, is yet unknown.  相似文献   

17.
Ethionine supplementation of a defined medium for growth of Pseudomonas denitrificans inhibited vitamin B(12) overproduction and led to the elaboration of a red pigment. The pigment was shown to be coproporphyrin III. Inhibition by ethionine of cobalamin synthesis is probably due to interference of methylation of the corrin nucleus by methionine. Accumulation of coproporphyrin III is thought to result from interference by ethionine with the activity of methionine in the coproporphyrinogenase reaction; this would inhibit formation of heme, the feedback inhibitor and corepressor of delta-aminolevulinate synthetase, thus allowing unregulated synthesis of coproporphyrinogen III and its degradation product, coproporphyrin III. Betaine, known to be required for vitamin B12 overproduction, was found to be an essential requirement for porphyrin overproduction in the presence of ethionine. Low-level production of porphyrin, which occurs in the absence of ethionine, also required betaine supplementation. Betaine is thus required for overproduction of both corrins and porphyrins in P. denitrificans.  相似文献   

18.
SYNOPSIS. On prolonged incubation of ethionine-sensitive (ES) cells of Ochromonas danica in L-ethionine-containing media, growth was resumed by an ethionine-resistant (ER) mutant. Such mutants arise at random and are selected by the ethionine-containing medium. Ethionine resistance is not lost on repeated transfers thru ethionine-less media. ES cells incubated with ethionine form a large posterior vacuole before they disintegrate. Inhibition of reserve substance utilization is suggested to underlie growth inhibition of O. danica by ethionine. In ES cells incubated with ethionine, 14C uptake from labeled methionine, ethionine or serine is reduced by 65%. In ER cells the decrease in 14C uptake is 90%. This decrease in uptake of ethionine seems to be how ER O. danica evades growth inhibition by ethionine.  相似文献   

19.
It was found that ethionine partially inhibits the transport of the inducer (TMG) of β-galactosidase into the cells ofEscherichia coli ML-30. The synthesis of β-galactosidase-specific messenger RNA is not inhibited. Ethionine appears to be incorporated into proteins synthesized by the strains used. The incorporation of ethionine into the molecule of β-galactosidase results in the synthesis of an enzymically inactive, immunologically cross-reacting protein.  相似文献   

20.
The possibility that ethione, the ethyl analog of methionine and potent liver carcinogen, exerts its action by blocking the methylation of DNA and thereby rendering the post-replictive methylation instructed error-avoidance system inoperative was investigated. While the results are not directly supportive for the existence of such a repair system in V79 Chinese hamster cells, effects of ethionine were found. Following the exposure of ethionine-treated cells to EMS an increase in the cell killing and an decrease in mutation induction was observed. The base analog, 6-hydroxyaminopurine, was shown to be clearly mutagenic in the mammalian cells and in the presence of ethionine a drastic decrease in mutant frequency was observed. Ethionine itself did not appear mutagenic over the entire dose range tested (1–1000 μg/ml).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号