首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a three-dimensional finite element model of skeletal muscle and its validation incorporating inital tissue strains. A constitutive relation was determined by using a convex free strain energy function (SEF) where active and passive response contributions were obtained fitting experimental data from the rat tibialis anterior (TA) muscle. The passive and active finite strains response was modelled within the framework of continuum mechanics by a quasi-incompressible transversely isotropic material formulation. Magnetic resonance images (MRI) were obtained to reconstruct the external geometry of the TA. This geometry includes initial strains also taken into account in the numerical model. The numerical results show excellent agreement with the experimental results when comparing reaction force-extension curves both in passive and active tests. The proposed constitutive model for the muscle is implemented in a subroutine in the commercial finite element software package ABAQUS.  相似文献   

2.
Finite element modelling of contracting skeletal muscle   总被引:2,自引:0,他引:2  
To describe the mechanical behaviour of biological tissues and transport processes in biological tissues, conservation laws such as conservation of mass, momentum and energy play a central role. Mathematically these are cast into the form of partial differential equations. Because of nonlinear material behaviour, inhomogeneous properties and usually a complex geometry, it is impossible to find closed-form analytical solutions for these sets of equations. The objective of the finite element method is to find approximate solutions for these problems. The concepts of the finite element method are explained on a finite element continuum model of skeletal muscle. In this case, the momentum equations have to be solved with an extra constraint, because the material behaves as nearly incompressible. The material behaviour consists of a highly nonlinear passive part and an active part. The latter is described with a two-state Huxley model. This means that an extra nonlinear partial differential equation has to be solved. The problems and solutions involved with this procedure are explained. The model is used to describe the mechanical behaviour of a tibialis anterior of a rat. The results have been compared with experimentally determined strains at the surface of the muscle. Qualitatively there is good agreement between measured and calculated strains, but the measured strains were higher.  相似文献   

3.
The lack of an appropriate three-dimensional constitutive relation for stress in passive ventricular myocardium currently limits the utility of existing mathematical models for experimental and clinical applications. Previous experiments used to estimate parameters in three-dimensional constitutive relations, such as biaxial testing of excised myocardial sheets or passive inflation of the isolated arrested heart, have not included significant transverse shear deformation or in-plane compression. Therefore, a new approach has been developed in which suction is applied locally to the ventricular epicardium to introduce a complex deformation in the region of interest, with transmural variations in the magnitude and sign of nearly all six strain components. The resulting deformation is measured throughout the region of interest using magnetic resonance tagging. A nonlinear, three-dimensional, finite element model is used to predict these measurements at several suction pressures. Parameters defining the material properties of this model are optimized by comparing the measured and predicted myocardial deformations. We used this technique to estimate material parameters of the intact passive canine left ventricular free wall using an exponential, transversely isotropic constitutive relation. We tested two possible models of the heart wall: first, that it was homogeneous myocardium, and second, that the myocardium was covered with a thin epicardium with different material properties. For both models, in agreement with previous studies, we found that myocardium was nonlinear and anisotropic with greater stiffness in the fiber direction. We obtained closer agreement to previously published strain data from passive filling when the ventricular wall was modeled as having a separate, isotropic epicardium. These results suggest that epicardium may play a significant role in passive ventricular mechanics.  相似文献   

4.
The present study addresses the effect of muscle activation contributions to mitral valve leaflet response during systole. State-of-art passive hyperelastic material modeling is employed in combination with a simple active stress part. Fiber families are assumed in the leaflets: one defined by the collagen and one defined by muscle activation. The active part is either assumed to be orthogonal to the collagen fibers or both orthogonal to and parallel with the collagen fibers (i.e. an orthotropic muscle fiber model). Based on data published in the literature and information herein on morphology, the size of the leaflet parts that contain muscle fibers is estimated. These parts have both active and passive materials, the remaining parts consist of passive material only. Several solid finite element analyses with different maximum activation levels are run. The simulation results are compared to corresponding echocardiography at peak systole for a porcine model. The physiologically correct flat shape of the closed valve is approached as the activation levels increase. The non-physiological bulging of the leaflet into the left atrium when using passive material models is reduced significantly. These results contribute to improved understanding of the physiology of the native mitral valve, and add evidence to the hypothesis that the mitral valve leaflets not are just passive elements moving as a result of hemodynamic pressure gradients in the left part of the heart.  相似文献   

5.
6.
The mechanical properties of soft tissues are important for the control of motion in many invertebrates. Pressurized cylindrical animals such as worms have circumferential reinforcement of the body wall; however, no experimental characterization of comparable anisotropy has been reported for climbing larvae such as caterpillars. Using uniaxial, real-time fluorescence extensometry on millimeter scale cuticle specimens we have quantified differences in the mechanical properties of cuticle to circumferentially and longitudinally applied forces. Based on these results and the composite matrix-fiber structure of cuticle, a pseudo-elastic transversely isotropic constitutive material model was constructed with circumferential reinforcement realized as a Horgan-Saccomandi strain energy function. This model was then used numerically to describe the anisotropic material properties of Manduca cuticle. The constitutive material model will be used in a detailed finite-element analysis to improve our understanding of the mechanics of caterpillar crawling.  相似文献   

7.
The V–W exponential hyperelastic model is adopted to describe the instantaneous elastic response of the periodontal ligament (PDL). The general theoretical framework of constitutive modeling is described based on nonlinear continuum mechanics, and the elasticity tensor used to develop UMAT subroutine is formulated. Nanoindentation experiment is performed to characterize mechanical properties of an adult pig PDL specimen. Then the experiment is simulated by using the finite element (FE) analysis. Meanwhile, the optimized material parameters are identified by the inverse FE method. The good agreement between the simulated results and experimental data demonstrates that the V–W model is capable of describing the mechanical behavior of the PDL. Therefore, the model and its implementation into FE code are validated. By using the model, we simulate the tooth movement under orthodontic loading to predict the mechanical responses of the PDL. The results show that local concentrations of stress and strain in the PDL are found.  相似文献   

8.
In this paper, a visco-hyperelastic skeletal muscle model is developed. The constitutive relation is based on the definition of a Helmholtz free energy function. It is assumed that the Helmholtz energy can be decomposed into volumetric and isochoric parts; furthermore, the isochoric energy can be decoupled into hyperelastic and viscous parts. The model developed involves 14 material parameters and its performance is evaluated by comparing the finite element simulation results with the published experimental studies on the New Zealand white rabbit tibialis anterior muscle. Results show that this model is able to describe the visco-hyperelastic behaviour of both passive and active skeletal muscle tissues under high strain rates (10/s and 25/s).  相似文献   

9.
Finite element (FE) models are advantageous in the study of intervertebral disc mechanics as the stress–strain distributions can be determined throughout the tissue and the applied loading and material properties can be controlled and modified. However, the complicated nature of the disc presents a challenge in developing an accurate and predictive disc model, which has led to limitations in FE geometry, material constitutive models and properties, and model validation. The objective of this study was to develop a new FE model of the intervertebral disc, to validate the model?s nonlinear and time-dependent responses without tuning or calibration, and to evaluate the effect of changes in nucleus pulposus (NP), cartilaginous endplate (CEP), and annulus fibrosus (AF) material properties on the disc mechanical response. The new FE disc model utilized an analytically-based geometry. The model was created from the mean shape of human L4/L5 discs, measured from high-resolution 3D MR images and averaged using signed distance functions. Structural hyperelastic constitutive models were used in conjunction with biphasic-swelling theory to obtain material properties from recent tissue tests in confined compression and uniaxial tension. The FE disc model predictions fit within the experimental range (mean±95% confidence interval) of the disc?s nonlinear response for compressive slow loading ramp, creep, and stress-relaxation simulations. Changes in NP and CEP properties affected the neutral-zone displacement but had little effect on the final stiffness during slow-ramp compression loading. These results highlight the need to validate FE models using the disc?s full nonlinear response in multiple loading scenarios.  相似文献   

10.
The constitutive law of the material comprising any structure is essential for mechanical analysis since this law enables calculation of the stresses from the deformations and vice versa. To date, there is no constitutive law for actively contracting myocardial tissue. Using 2,3-butanedione monoxime to protect the myocardium from mechanical trauma, we subjected thin midwall slices of rabbit myocardium to multiaxial stretching first in the passive state and then during steady-state barium contracture or during tetani in ryanodine-loaded tissue. Assuming transverse isotropy in both the passive and active conditions, we used our previously described methods (Humphrey et al., 1990a) to obtain both passive and active constitutive laws. The major results of this study are: (1) This is the first multiaxial constitutive law for actively contracting mammalian myocardium. (2) The functional forms of the constitutive law for barium contracture and ryanodine-induced tetani are the same but differ from those in the passive state. Hence, one cannot simply substitute differing values for the coefficients of the passive law to describe the active tissue properties. (3) There are significant stresses developed in the cross-fiber direction (more than 40 percent of those in the fiber direction) that cannot be attributed to either deformation effects or nonparallel muscle fibers. These results provide the foundation for future mechanical analyses of the heart.  相似文献   

11.
The annulus fibrosus (AF) of the intervertebral disk undergoes large and multidirectional stresses and strains. Uniaxial tensile tests are limited for measuring AF material properties, because freely contracting edges can prevent fiber stretch and are not representative of in situ boundary conditions. The objectives of this study were to measure human AF biaxial tensile mechanics and to apply and validate a constitutive model to determine material properties. Biaxial tensile tests were performed on samples oriented along the circumferential–axial and the radial–axial directions. Data were fit to a structurally motivated anisotropic hyperelastic model composed of isotropic extra-fibrillar matrix, nonlinear fibers, and fiber–matrix interactions (FMI) normal to the fibers. The validated model was used to simulate shear and uniaxial tensile behavior, to investigate AF structure–function, and to quantify the effect of degeneration. The biaxial stress–strain response was described well by the model (R 2?>?0.9). The model showed that the parameters for fiber nonlinearity and the normal FMI correlated with degeneration, resulting in an elongated toe-region and lower stiffness with degeneration. The model simulations in shear and uniaxial tension successfully matched previously published circumferential direction Young’s modulus, provided an explanation for the low values in previously published axial direction Young’s modulus, and was able to simulate shear mechanics. The normal FMI were important contributors to stress and changed with degeneration, therefore, their microstructural and compositional source should be investigated. Finally, the biaxial mechanical data and constitutive model can be incorporated into a disk finite element model to provide improved quantification of disk mechanics.  相似文献   

12.
Mathematical human body models (HBMs) are important research tools that are used to study the human response in car crash situations. Development of automotive safety systems requires the implementation of active muscle response in HBM, as novel safety systems also interact with vehicle occupants in the pre-crash phase. In this study, active muscle response was implemented using feedback control of a nonlinear muscle model in the right upper extremity of a finite element (FE) HBM. Hill-type line muscle elements were added, and the active and passive properties were assessed. Volunteer tests with low impact loading resulting in elbow flexion motions were performed. Simulations of posture maintenance in a gravity field and the volunteer tests were successfully conducted. It was concluded that feedback control of a nonlinear musculoskeletal model can be used to obtain posture maintenance and human-like reflexive responses in an FE HBM.  相似文献   

13.
Mathematical human body models (HBMs) are important research tools that are used to study the human response in car crash situations. Development of automotive safety systems requires the implementation of active muscle response in HBM, as novel safety systems also interact with vehicle occupants in the pre-crash phase. In this study, active muscle response was implemented using feedback control of a nonlinear muscle model in the right upper extremity of a finite element (FE) HBM. Hill-type line muscle elements were added, and the active and passive properties were assessed. Volunteer tests with low impact loading resulting in elbow flexion motions were performed. Simulations of posture maintenance in a gravity field and the volunteer tests were successfully conducted. It was concluded that feedback control of a nonlinear musculoskeletal model can be used to obtain posture maintenance and human-like reflexive responses in an FE HBM.  相似文献   

14.
Ventricular mechanics in diastole: material parameter sensitivity   总被引:12,自引:0,他引:12  
Models of ventricular mechanics have been developed over the last 20 years to include finite deformation theory, anisotropic and inhomogeneous material properties and an accurate representation of ventricular geometry. As computer performance and the computational efficiency of the models improve, clinical application of these heart mechanics models is becoming feasible. One such application is to estimate myocardial material properties by adjusting the constitutive parameters to match wall deformation from MRI or ultrasound measurements, together with a measurement (or estimate) of ventricular pressure. Pigs are now the principal large animal model for these studies and in this paper we present the development of a new three-dimensional finite element model of the heart based on measurements of the geometry and the fibre and sheet orientations of pig hearts. The end-diastolic deformation of the model is computed using the "pole-zero" constitutive law which we have previously used to model the mechanics of passive myocardial tissue specimens. The sensitivities of end-diastolic fibre-sheet material strains and heart shape to changes in the material parameters are computed for the parameters of the pole-zero law in order to assess the utility of the models for inverse material property determination.  相似文献   

15.
The present paper describes a geometrically and physically nonlinear continuum model to study the mechanical behaviour of passive and active skeletal muscle. The contraction is described with a Huxley type model. A Distributed Moments approach is used to convert the Huxley partial differential equation in a set of ordinary differential equations. An isoparametric brick element is developed to solve the field equations numerically. Special arrangements are made to deal with the combination of highly nonlinear effects and the nearly incompressible behaviour of the muscle. For this a Natural Penalty Method (NPM) and an Enhanced Stiffness Method (ESM) are tested. Finally an example of an analysis of a contracting tibialis anterior muscle of a rat is given. The DM-method proved to be an efficient tool in the numerical solution process. The ESM showed the best performance in describing the incompressible behaviour.  相似文献   

16.
Abstract

The present paper describes a geometrically and physically nonlinear continuum model to study the mechanical behaviour of passive and active skeletal muscle. The contraction is described with a Huxley type model. A Distributed Moments approach is used to convert the Huxley partial differential equation in a set of ordinary differential equations. An isoparametric brick element is developed to solve the field equations numerically. Special arrangements are made to deal with the combination of highly nonlinear effects and the nearly incompressible behaviour of the muscle. For this a Natural Penalty Method (NPM) and an Enhanced Stiffness Method (ESM) are tested. Finally an example of an analysis of a contracting tibialis anterior muscle of a rat is given. The DM-method proved to be an efficient tool in the numerical solution process. The ESM showed the best performance in describing the incompressible behaviour.  相似文献   

17.
We present a model of esophageal wall muscle mechanics during bolus transport with which the active and "passive" components of circular muscle tension are separately extracted from concurrent manometric and videofluoroscopic data. Local differential equations of motion are integrated across the esophageal wall to yield global equations of equilibrium which relate total tension within the esophageal wall to intraluminal pressure and wall geometry. To quantify the "passive" (i.e. inactive) length-tension relationships, the model equations are applied to a region of the esophagus in which active muscle contraction is physiologically inhibited. Combining the global equations with space-time-resolved intraluminal pressure measured manometrically and videofluoroscopic geometry data, the passive model is used to separate active and "passive" components of esophageal muscle tension during bolus transport. The model is of general applicability to probe basic muscle mechanics including the space-time stimulation of circular muscle, the relationship between longitudinal muscle tension and longitudinal muscle shortening, and the contribution of the collagen matrix surrounding muscle fibers to passive tension during normal human esophageal bolus transport and in pathology. Example calculations of normal esophageal function are given where active tone is found to extend only over a short intrabolus segment near the bolus tail and segmental regions of active muscle squeeze are demonstrated.  相似文献   

18.
This paper presents a three-dimensional finite element model of skeletal muscle which was developed to simulate active and passive non-linear mechanical behaviours of the muscle during lengthening or shortening under either quasi-static or dynamic condition. Constitutive relation of the muscle was determined by using a strain energy approach, while active contraction behaviour of the muscle fibre was simulated by establishing a numerical algorithm based on the concept of the Hill's three-element muscle model. The proposed numerical algorithm could be used to predict concentric, eccentric, isometric and isotonic contraction behaviours of the muscle. The proposed numerical algorithm and constitutive model for the muscle were derived and implemented into a non-linear large deformation finite element programme ABAQUS by using user-defined material subroutines. A number of scenarios have been used to demonstrate capability of the model for simulating both quasi-static and dynamic response of the muscle. Validation of the proposed model has been performed by comparing the simulated results with the experimental ones of frog gastrocenemius muscle deformation. The effects of the fusiform muscle geometry and fibre orientation on the stress and fibre stretch distributions of frog muscle during isotonic contraction have also been investigated by using the proposed model. The predictability of the present model for dynamic response of the muscle has been demonstrated by simulating the extension of a squid tentacle during a strike to catch prey.  相似文献   

19.
Infarcted segments of myocardium demonstrate functional impairment ranging in severity from hypokinesis to dyskinesis. We sought to better define the contributions of passive material properties (stiffness) and active properties (contracting myocytes) to infarct thickening. Using a finite-element (FE) model, we tested the hypothesis that infarcted myocardium must contain contracting myocytes to be akinetic and not dyskinetic. A three-dimensional FE mesh of the left ventricle was developed with echocardiographs from a reperfused ovine anteroapical infarct. The nonlinear stress-strain relationship for the diastolic myocardium was anisotropic with respect to the local muscle fiber direction, and an elastance model for active fiber stress was incorporated. The diastolic stiffness (C) and systolic material property (isometric tension at longest sarcomere length and peak intracellular calcium concentration, T(max)) of the uninfarcted remote myocardium were assumed to be normal (C = 0.876 kPa, T(max) = 135.7 kPa). Diastolic and systolic properties of the infarct necessary to produce akinesis, defined as an average radial strain between -0.01 and 0.01, were determined by assigning a range of diastolic stiffnesses and scaling infarct T(max) to represent the percentage of contracting myocytes between 0% and 100%. As C was increased to 11 times normal (C = 10 kPa) the percentage of T(max) necessary for akinesis increased from 20% to 50%. Without contracting myocytes, C = 250 kPa was necessary to achieve akinesis. If infarct stiffness is <285 times normal, contracting myocytes are required to prevent dyskinetic infarct wall motion.  相似文献   

20.
Biomechanical models generally assume that muscle fascicles shorten uniformly. However, dynamic magnetic resonance (MR) images of the biceps brachii have recently shown nonuniform shortening along some muscle fascicles during low-load elbow flexion (J. Appl. Physiol. 92 (2002) 2381). The purpose of this study was to uncover the features of the biceps brachii architecture and material properties that could lead to nonuniform shortening. We created a three-dimensional finite-element model of the biceps brachii and compared the tissue strains predicted by the model with experimentally measured tissue strains. The finite-element model predicted strains that were within one standard deviation of the experimentally measured strains. Analysis of the model revealed that the variation in fascicle lengths within the muscle and the curvature of the fascicles were the primary factors contributing to nonuniform strains. Continuum representations of muscle, combined with in vivo image data, are needed to deepen our understanding of how complex geometric arrangements of muscle fibers affect muscle contraction mechanics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号