首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
This study investigated the tackling ability of high-performance rugby league players and determined the relationship between physiological and anthropometric qualities and tackling ability in these athletes. Twenty professional (National Rugby League) and 17 semiprofessional (Queensland Cup) rugby league players underwent a standardized 1-on-1 tackling drill in a 10-m grid. Video footage was taken from the rear, side, and front of the defending player. Tackling proficiency was assessed using standardized technical criteria. In addition, all players underwent measurements of standard anthropometry (height, body mass, and sum of 7 skinfolds), acceleration (10-m sprint), change of direction speed (505 test), and lower body muscular power (vertical jump). Professional players had significantly greater (p ≤ 0.05) tackling proficiency than semiprofessional players (87.5 ± 2.0 vs. 75.0 ± 2.3%). Professional players were significantly (p ≤ 0.05) older, more experienced, leaner, and had greater acceleration than semiprofessional players. The strongest individual correlates of tackling ability were age (r = 0.41, p ≤ 0.05), playing experience (r = 0.70, p ≤ 0.01), skinfold thickness (r = -0.59, p ≤ 0.01), acceleration (r = 0.41, p ≤ 0.05), and lower body muscular power (r = 0.38, p ≤ 0.05). When hierarchical multiple regression analysis was performed to determine which of the variables predicted tackling ability, playing experience and lower body muscular power were the only variables that contributed significantly (r2 = 0.60, p ≤ 0.01) to the predictive model. From a practical perspective, strength and conditioning coaches should emphasize the development of acceleration, lower body muscular power, and lean muscle mass to improve tackling ability in high-performance rugby league players.  相似文献   

2.
This study investigated the physiological and anthropometric characteristics of elite women rugby league players and developed physical performance standards for these athletes. Thirty-two elite women rugby league players underwent measurements of standard anthropometry (body mass, height, sum of 7 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility (505 test), glycolytic capacity (glycolytic agility test), and estimated maximal aerobic power (multistage fitness test). The skinfold thickness, speed, agility, vertical jump height, glycolytic capacity, and estimated maximal aerobic power results were 6.0-38.1% poorer than previously reported for elite women team sport athletes (e.g., rugby union, soccer, and hockey). Although no significant differences (p > 0.05) were detected between selected and nonselected players for any of the physiological or anthropometric characteristics, significant differences (p < 0.05) were detected between forwards and backs for body mass, skinfold thickness, 10-, 20-, and 40-m speed, and estimated maximal aerobic power. When data were analyzed according to positional similarities, it was found that the hit-up forwards positional group were heavier, had greater skinfold thickness, and had lower 10-, 20-, and 40-m speed, muscular power, glycolytic capacity, and estimated maximal aerobic power than the adjustables and outside backs positional groups. The results of this study show that elite women rugby league players have slower speed and agility, lower muscular power, glycolytic capacity, and estimated maximal aerobic power, and greater body mass and skinfold thickness than previously reported for other elite women team sport athletes. These findings show the need to develop all physiological parameters to allow elite women rugby league players to more effectively tolerate the physiological demands of competition, reduce fatigue-related errors in skill execution, and decrease the risk of injury.  相似文献   

3.
This study investigated the physiological, anthropometric, and skill characteristics of rugby league players and determined the relationship between physical fitness and playing ability in these athletes. Eighty-six rugby league players (mean +/- SD age, 22.5 +/- 4.9 years) underwent measurements of standard anthropometry (height, body mass, and sum of 4 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility (L run), and estimated maximal aerobic power (multistage fitness test). In addition, 2 expert coaches independently assessed the playing ability of players using standardized skill criteria. First-grade players had significantly greater (p < 0.05) basic passing and ball-carrying ability and superior skills under fatigue, tackling and defensive skills, and evasion skills (i.e., ability to beat a player and 2 verse 1 skills) than second-grade and third-grade players. While no significant (p > 0.05) differences were detected among playing levels for body mass; skinfold thickness; height; 10-, 20-, or 40-m speed; agility; vertical jump height; or estimated maximal aerobic power, all the physiological and anthropometric characteristics were significantly (p < 0.05) associated with at least 1 measure of playing ability. The results of this study demonstrate that selected skill characteristics but not physiological or anthropometric characteristics discriminate between successful and less successful rugby league players. However, all physiological and anthropometric characteristics were related to playing ability. These findings suggest that while physiological and anthropometric characteristics do not discriminate between successful and less successful rugby league players, a high level of physical fitness contributes to effective playing ability in these athletes. A game-specific training program that incorporates both physical conditioning and skills training may facilitate a greater transfer of physical fitness to competitive performances in rugby league.  相似文献   

4.
The purpose of this study was to investigate the effect of changes in field size on the physiological and skill demands of small-sided games in elite junior and senior rugby league players. Sixteen elite senior rugby league players ([mean ± SE] age, 23.6 ± 0.5 years) and 16 elite junior rugby league players ([mean ± SE] age, 17.3 ± 0.3 years) participated in this study. On day 1, 2 teams played an 8-minute small-sided game on a small field (10-m width × 40-m length), whereas the remaining 2 teams played the small-sided game on a larger sized field (40-m width × 70-m length). On day 2, the groups were crossed over. Movement was recorded by a global positioning system unit sampling at 5 Hz. Games were filmed to count the number of possessions and the number and quality of disposals. The games played on a larger field resulted in a greater (p < 0.05) total distance covered, and distances covered in moderate, high, and very-high velocity movement intensities. Senior players covered more distance at moderate, high, and very-high intensities, and less distance at low and very-low intensities during small-sided games than junior players. Although increasing field size had no significant influence (p > 0.05) over the duration of recovery periods for junior players, larger field size significantly reduced (p < 0.05) the amount of short-, moderate-, and long-duration recovery periods in senior players. No significant between-group differences (p > 0.05) were detected for games played on a small or large field for the number or quality of skill involvements. These results suggest that increases in field size serve to increase the physiological demands of small-sided games but have minimal influence over the volume or quality of skill executions in elite rugby league players.  相似文献   

5.
Success in rugby league football seems heavily reliant on players possessing an adequate degree of various physical fitness qualities, such as strength, power, speed, agility, and endurance, as well as the individual skills and team tactical abilities. The purpose of this study was to describe and compare the lower body strength, power, acceleration, maximal speed, agility, and sprint momentum of elite first-division national rugby league (NRL) players (n = 20) to second-division state league (SRL) players (n = 20) players from the same club. Strength and maximal power were the best discriminators of which players were in the NRL or SRL squads. None of the sprinting tests, such as acceleration (10-m sprint), maximal speed (40-m sprint), or a unique 40-m agility test, could distinguish between the NRL or SRL squads. However, sprint momentum, which was a product of 10-m velocity and body mass, was better for discriminating between NRL and SRL players as heavier, faster players would possess better drive forward and conversely be better able to repel their opponents' drive forward. Strength and conditioning specialists should therefore pay particular attention to increasing lower body strength and power and total body mass through appropriate resistance training while maintaining or improving 10-m sprint speed to provide their players with the underlying performance characteristics of play at the elite level in rugby leagues.  相似文献   

6.
The purpose of this study was to investigate the time course of adaptations to training in young (i.e., <15 years) and older (i.e., <18 years) junior rugby league players. Fourteen young (14.1 +/- 0.2 years) and 21 older (16.9 +/- 0.3 years) junior rugby league players participated in a 10-week preseason strength, conditioning, and skills program that included 3 sessions each week. Subjects performed measurements of standard anthropometry (i.e., height, body mass, and sum of 7 skinfolds), muscular power (i.e., vertical jump), speed (i.e., 10-m, 20-m, and 40-m sprint), agility (505 test), and estimated maximal aerobic power (i.e., multistage fitness test) before and after training. In addition, players underwent a smaller battery of fitness tests every 3 weeks to assess the time course of adaptation to the prescribed training stimulus. During the triweekly testing sessions, players completed assessments of upper-body (i.e., 60-second push-up, sit-up, and chin-up test) and lower-body (i.e., multiple-effort vertical jump test) muscular endurance. Improvements in maximal aerobic power and muscular endurance were observed in both the young and the older junior players following training. The improvements in speed, muscular power, maximal aerobic power, and upper-body muscular endurance were greatest in the young junior players, while improvements in lower-body muscular endurance were greatest in the older junior players. These findings demonstrate that young (i.e., <15 years) and older (i.e., <18 years) junior rugby league players adapt differently to a given training stimulus and that training programs should be modified to accommodate differences in maturational and training age. In addition, the results of this study provide conditioning coaches with realistic performance improvements following a 10-week preseason strength and conditioning program in junior rugby league players.  相似文献   

7.
This study investigated training loads, injury rates, and physical performance changes associated with a field conditioning program in junior and senior rugby league players. Thirty-six junior (16.9 [95% confidence interval: 16.7-17.1] years) and 41 senior (25.5 [23.6- 27.3] years) rugby league players participated in a 14-week preseason training program that included 2 field training sessions each week. Subjects performed measurements of standard anthropometry (height, body mass, and sum of 7 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility (L run), and maximal aerobic power (multistage fitness test) before and after training. Improvements in agility, muscular power, and maximal aerobic power were observed in both the junior and senior players following training; however, the improvement in maximal aerobic power and muscular power were greatest in the junior players. Training loads and injury rates were higher in the senior players. These findings demonstrate that junior and senior rugby league players adapt differently to a given training stimulus and that training programs should be modified to accommodate differences in training age.  相似文献   

8.
This study investigated the effects of skill-based conditioning games and traditional conditioning for improving speed, agility, muscular power, and maximal aerobic power in rugby league players. Sixty-nine subelite rugby league players performed either a skill-based conditioning games program (N = 32) or a traditional conditioning (i.e., running activities with no skill component) program (N = 37). Each player participated in a 9-week in-season training program, performed over 2 competitive seasons. Players performed 2 organized field-training sessions each week. Players underwent measurements of speed (10-m, 20-m, and 40-m sprint), muscular power (vertical jump), agility (L run), and maximal aerobic power (multi-stage fitness test) before and after the training period. Skill-based conditioning games induced a significant improvement (p < 0.05) in 10-m, 20-m, and 40-m speed, muscular power, and maximal aerobic power, whereas traditional conditioning activities improved 10-m speed and maximal aerobic power only. No significant differences (p > 0.05) were detected between the traditional conditioning and skill-based conditioning games groups for changes in 10-m speed, agility, and maximal aerobic power. Both groups won 6 of 8 matches played within the training period, resulting in a win-loss ratio of 75%. However, on average, the skill-based conditioning games group scored more points in attack (p < 0.05) and had a greater (p < 0.05) points differential than the traditional conditioning group. The results of this study demonstrate that skill-based conditioning games offer an effective method of in-season conditioning for rugby league players. In addition, given that skills learned from skill-based conditioning games are more likely to be applied in the competitive environment, their use may provide a practical alternative to traditional conditioning for improving the physiological capacities and playing performance of rugby league players.  相似文献   

9.
This study investigated the physiological and anthropometric characteristics of junior rugby league players over a competitive season. Forty-five rugby league players were allocated into training (n = 36) and nonexercise control (n = 9) groups. The training group participated in 2 field-training sessions each week with training loads, match loads, and injury rates recorded. Subjects performed measurements of standard anthropometry (height, body mass, and sum of 7 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility ('L run'), and estimated maximal aerobic power (multi-stage fitness test) in December (off-season), March (preseason), May (midseason), and August (end-season). Training loads progressively increased in the general preparatory phase of the season (preseason period), and declined slightly during the competitive phase of the season. Match intensity and match loads decreased throughout the season. Increases in estimated maximal aerobic power and muscular power and reductions in skinfold thickness occurred during the general preparatory phase of the season, and were maintained throughout the competitive phase of the season. These findings suggest that high training loads in the general preparatory phase of the season and low match loads in the competitive phase of the season allow junior rugby league players to maintain a high level of fitness throughout an entire competitive season.  相似文献   

10.
11.
The purpose of this study was to investigate the physiological and anthropometric characteristics of junior volleyball players competing at the elite, semi-elite, and novice levels and to establish performance standards for these athletes. One hundred and fifty-three junior national (N = 14 males; N = 20 females), state (N = 16 males; N = 42 females), and novice (N = 27 males; N = 34 females) volleyball players participated in this study. Subjects underwent measurements of standard anthropometry (body mass, height, standing reach height, and sum of 7 skinfolds), lower-body muscular power (vertical jump and spike jump), upper-body muscular power (overhead medicine ball throw), speed (5-m and 10-m sprint), agility (T-test), and estimated maximal aerobic power (multistage fitness test) during the competitive phase of the season, after obtaining a degree of match fitness. Significant differences (p < 0.05) were detected among junior national, state, and novice volleyball players for height, standing reach height, skinfold thickness, lower-body muscular power, agility, and estimated maximal aerobic power, with the physiological and anthropometric characteristics of players typically improving with increases in playing level. Male players were taller, heavier, leaner, and had greater standing reach height, speed, agility, muscular power, and estimated maximal aerobic power than female players. These findings provide normative data and performance standards for junior volleyball players competing at the elite, semi-elite, and novice levels. Given the improvements in lower-body muscular power, agility, and estimated maximal aerobic power with increased playing level, and given the importance of these qualities to competitive performances, conditioning coaches should train these qualities to improve the playing performances of junior volleyball players.  相似文献   

12.
This study investigated the influence of fatigue on tackling technique in rugby league players and determined the relationship between selected physiological capacities and fatigue-induced decrements in tackling technique. Eight rugby league players underwent a standardized one-on-one tackling drill in a 10-m grid. Players performed the one-on-one tackling drill before strenuous exercise and following game-specific repeated-effort exercise of progressively increasing intensities (corresponding to moderate, heavy, and very heavy intensity) in order to induce fatigue that was representative of match conditions. Video footage was taken from the rear, side, and front of the defending player. Tackling technique was objectively assessed using standardized technical criteria. In addition, all players underwent measurements of standard anthropometry (height, body mass, and sum of 7 skinfold measurements), speed (10-, 20-, and 40-m sprint), muscular power (vertical jump), agility (L run), and estimated maximal aerobic power (VO2max multistage fitness test). A progressive increase in total repeated-effort time, heart rate, blood lactate concentration, and ratings of perceived exertion occurred throughout the repeated-effort protocol, demonstrating a progressive increase in intensity and fatigue. Fatigue resulted in progressive reductions in tackling technique. Players with the best tackling technique in a nonfatigued state demonstrated the greatest decrement in tackling technique under fatigued conditions. In addition, a significant association was observed between estimated VO2max (r = -0.62) and agility (r = 0.68) and fatigue-induced decrements in tackling technique. From a practical perspective, these findings suggest that strength and conditioning programs designed to develop endurance, change of direction speed, and anticipation skills may reduce fatigue-induced decrements in tackling technique. Furthermore, any defensive drills designed to improve tackling technique should be performed before and under fatigue.  相似文献   

13.
This study investigated the physiological and anthropometric characteristics of rugby league players during a competitive season. Sixty-eight rugby league players were allocated into training (n = 52) and nonexercise control (n = 16) groups. The training group participated in 2 field-training sessions per week, with training loads, match loads, and injury rates recorded. Subjects performed measurements of standard anthropometry (height, body mass, and sum of 7 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility (L run), and maximal aerobic power (multistage fitness test) in December (off-season), March (preseason), May (midseason), and August (end season). Increases in maximal aerobic power and muscular power and reductions in skinfold thickness were observed during the early phases of the season when training loads were highest. However, reductions in muscular power and maximal aerobic power and increases in skinfold thickness occurred toward the end of the season, when training loads were lowest and match loads and injury rates were highest. These findings suggest that high overall playing intensity and match loads in end-season matches increase in injury rates in the latter half of the season, and residual fatigue associated with limited recovery between successive matches may compromise the physical development of rugby league players.  相似文献   

14.
The aim of this study was to evaluate the Yo-Yo Intermittent Recovery Test Level 1 (Yo-Yo IR1) ability to discriminate between elite, subelite junior basketball players, and a group of nonathletic healthy male athletes at 3 different age groups (U-14 to U-17). In a cross-sectional design, 119 age-matched participants spread over 3 groups, elite (n = 46), subelite (n = 42) junior basketball players, and nonathletic healthy male athletes (n = 31), were evaluated over a 5-week period. The participants undertook 2 familiarization trials of the Yo-Yo test performance and 3 test sessions on an indoor basketball court. When controlling for the effect of the participants' body mass, the results showed that elite athletes had a significantly higher Yo-Yo performance compared with the subelite athletes (1,271 ± 385 vs. 861 ± 428 m; p < 0.0017; effect size [ES] 1.0 ± 0.35) and the nonathletic group (1,271 ± 385 vs. 738 ± 345 m; p < 0.0017; ES 1.45 ± 0.38). No statistical differences (p > 0.0017; ES from 0.02 to 0.39) were noted between participants' performance levels across age groups. Typical between-performance levels and -age groups differences in the Yo-Yo IR1 were observed. However, when controlling for the effect of the participants' body mass, this study demonstrates that the Yo-Yo test is accurate only to discriminate elite junior basketball players but cannot be used to differentiate the basketball-specific aerobic performance for age.  相似文献   

15.
The purpose of this study was to investigate the discriminative ability of rebound jump squat force-time and power-time measures in differentiating speed performance and competition level in elite and elite junior rugby union players. Forty professional rugby union players performed 3 rebound jump squats with an external load of 40 kg from which a number of force-time and power-time variables were acquired and analyzed. Additionally, players performed 3 sprints over 30 m with timing gates at 5, 10, and 30 m. Significant differences (p < 0.05) between the fastest 20 and slowest 20 athletes, and elite (n = 25) and elite junior (n = 15) players in speed and force-time and power-time variables were determined using independent sample t-tests. The fastest and slowest sprinters over 10 m differed in peak power (PP) expressed relative to body weight. Over 30 m, there were significant differences in peak velocity and relative PP and rate of power development. There was no significant difference in speed over any distance between elite and elite junior rugby union players; however, a number of force and power variables including peak force, PP, force at 100 milliseconds from minimum force, and force and impulse 200 milliseconds from minimum force were significantly (p < 0.05) different between playing levels. Although only power values expressed relative to body weight were able to differentiate speed performance, both absolute and relative force and power values differentiated playing levels in professional rugby union players. For speed development in rugby union players, training strategies should aim to optimize the athlete's power to weight ratio, and lower body resistance training should focus on movement velocity. For player development to transition elite junior players to elite status, adding lean mass is likely to be most beneficial.  相似文献   

16.
The purpose of this investigation was to observe changes in maximal upper-body strength and power and shifts in the load-power curve across a multiyear period in experienced resistance trainers. Twelve professional rugby league players who regularly performed combined maximal strength and power training were observed across a 4-year period with test data reported every 2 years (years 1998, 2000, and 2002). Upper-body strength was assessed by the 1 repetition maximum bench press and maximum power during bench press throws (BT Pmax) with various barbell resistances of 40-80 kg. During the initial testing, players also were identified as elite (n = 6) or subelite (n = 6), depending upon whether they participated in the elite first-division national league or second-division league. This subgrouping allowed for a comparison of the scope of changes dependent upon initial strength and training experience. The subelite group was significantly younger, less strong, and less powerful than the elite group, but no other difference existed in height or body mass in 1998. Across the 4-year period, significant increases in strength occurred for the group as a whole and larger increases were observed for the subelite than the elite group, verifying the limited scope that exists for strength gain in more experienced, elite resistance-trained athletes. A similar trend occurred for changes in BT Pmax. This long-term observation confirms that the rate of progress in strength and power development diminishes with increased strength levels and resistance training experience. Furthermore, it also indicates that strength and power can still be increased despite a high volume of concurrent resistance and endurance training.  相似文献   

17.
There is considerable conflict within the literature regarding the relevance of isometric testing for the assessment of neuromuscular function within dynamic sports. The aim of this study was to determine the relationship between isometric measures of force development and dynamic performance. Thirty-nine professional rugby league players participated in this study. Forty-eight hours after trial familiarization, participants performed a maximal isometric midthigh pull, with ~120-130° bend at the knee, countermovement jump (CMJ), and a 10-m sprint. Force-time data were processed for peak force (PF), force at 100 milliseconds (F100ms), and peak rate of force development (PRFD). Analysis was carried out using Pearson's product moment correlation with significance set at p < 0.05. The PF was not related to dynamic performance; however, when expressed relative to body weight, it was significantly correlated with both 10-m time and CMJ height (r = -0.37 and 0.45, respectively, p < 0.05). The F100ms was inversely related to 10-m time (r = -0.54, p < 0.01); moreover, when expressed relative to body weight, it was significantly related to both 10-m time and CMJ height (r = -0.68 and 0.43, p < 0.01). In addition, significant correlations were found between PRFD and 10-m time (r = -0.66, p < 0.01) and CMJ height (r = 0.387, p < 0.01). In conclusion, this study provides evidence that measures of maximal strength and explosiveness from isometric force-time curves are related to jump and sprint acceleration performance in professional rugby league players.  相似文献   

18.
The aim of this study was to (a) investigate the influence of tackling on repeated-sprint performance; (b) determine whether repeated-sprint ability (RSA) and repeated-effort ability (REA) are 2 distinct qualities; and (c) assess the test-retest reliability of repeated-sprint and repeated-effort tests in rugby league. Twelve rugby league players performed a repeated-sprint (12 × 20-m sprints performed on a 20-second cycle) and a repeated-effort (12 × 20-m sprints with intermittent tackling, performed on a 20-second cycle) test 7 days apart. The test-retest reliability of these tests was also established. Heart rate and rating of perceived exertion were recorded throughout the tests. There was a significantly greater (p ≤ 0.05) and large effect size (ES) differences for total sprint time (ES = 1.19), average heart rate (ES = 1.64), peak heart rate (ES = 1.35), and perceived exertion (ES = 3.39) for the repeated-effort test compared with the repeated-sprint test. A large difference (ES = 1.02, p = 0.06) was detected for percentage decrement between the 2 tests. No significant relationship was found between the repeated-sprint and repeated-effort tests for any of the dependent variables. Both tests proved reliable, with total sprint time being the most reliable method of assessing performance. This study demonstrates that the addition of tackling significantly increases the physiological response to repeated-sprint exercise and reduces repeated-sprint performance in rugby league players. Furthermore, RSA and REA appear to be 2 distinct qualities that can be reliably assessed with total time being the most reliable measure of performance.  相似文献   

19.
For many sporting activities, initial speed rather than maximal speed would be considered of greater importance to successful performance. The purpose of this study was to identify the relationship between strength and power and measures of first-step quickness (5-m time), acceleration (10-m time), and maximal speed (30-m time). The maximal strength (3 repetition maximum [3RM]), power (30-kg jump squat, countermovement, and drop jumps), isokinetic strength measures (hamstring and quadriceps peak torques and ratios at 60 degrees .s(-1) and 300 degrees .s(-1)) and 5-m, 10-m, and 30-m sprint times of 26 part-time and full-time professional rugby league players (age 23.2 +/- 3.3 years) were measured. To examine the importance of the strength and power measures on sprint performance, a correlational approach and a comparison between means of the fastest and slowest players was used. The correlations between the 3RM, drop jump, isokinetic strength measures, and the 3 measures of sport speed were nonsignificant. Correlations between the jump squat (height and relative power output) and countermovement jump height and the 3 speed measures were significant (r = -0.43 to -0.66, p < 0.05). The squat and countermovement jump heights as well as squat jump relative power output were the only variables found to be significantly greater in the fast players. It was suggested that improving the power to weight ratio as well as plyometric training involving countermovement and loaded jump-squat training may be more effective for enhancing sport speed in elite players.  相似文献   

20.
The aim of this article is to present data on the strength and power characteristics of forwards and backs in a squad of elite English rugby league players and compare these findings to previously published literature from Australia. Participants were elite English rugby league players (n = 18; height 184.16 ± 5.76 cm; body mass 96.87 ± 10.92 kg, age 21.67 ± 4.10 years) who were all regular first team players for an English Superleague club. Testing included 5-, 10-, 20-m sprint times, agility, vertical jump, 40-kg squat jump, isometric squat, concentric and eccentric isokinetic knee flexion and extension. Independent t-tests were performed to compare results between forwards and backs, with paired samples t-tests used to compare bilateral differences from isokinetic assessments and agility tests. Forwards demonstrated significantly (p < 0.05) greater body mass (102.15 ± 7.5 kg), height (186.30 ± 5.47 cm), power during the 40-kg jump squat (2,106 ± 421 W), isometric force (3,122 ± 611 N) and peak torque during left concentric isokinetic knee extension (296.1 ± 54.2 N·m) compared to the backs (86.30 ± 8.97 kg; 179.87 ± 3.72 cm; 1,709 ± 286 W; 2,927 ± 607 N; 241.7 ± 35.2 N·m, respectively). However, no significant differences (p > 0.05) were noted between forwards and backs during right concentric isokinetic knee extension (274.8 ± 37.7 and 246.8 ± 25.8 N·m), concentric isokinetic knee flexion for both left (158.8 ± 28.6 and 141.0 ± 22. 7 N·m) and right legs (155.3 ± 22.9 and 128.0 ± 23.9 N·m), eccentric isokinetic knee flexion and extension, hamstring quadriceps ratios, or vertical jump (37.25 ± 4.35 and 40.33 ± 6.38 cm). In comparison, relative measures demonstrated that backs performed significantly better compared to the forwards during the 40-kg jump squat (20.71 ± 5.15 and 19.91 ± 3.91 W·kg?1) and the isometric squat (34.32 ± 7.9 and 30.65 ± 5.34 N·kg?1). Bilateral comparisons revealed no significant differences (p > 0.05) between left and right leg performances in the agility test (3.26 ± 0.18 and 3.24 ± 0.18 seconds), or between left (0.7 ± 0.10) and right (0.71 ± 0.17) leg eccentric hamstring concentric quadriceps ratios. The results demonstrate that absolute strength and power measures are generally higher in forwards compared to in backs; however, when body mass is taken into account and relative measures compared, the backs outperform the forwards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号