首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Fly》2013,7(3):191-199
The relationship between alcohol consumption, sensitivity, and tolerance is an important question that has been addressed in humans and rodent models. Studies have shown that alcohol consumption and risk of abuse may correlate with (1) increased sensitivity to the stimulant effects of alcohol, (2) decreased sensitivity to the depressant effects of alcohol, and (3) increased alcohol tolerance. However, many conflicting results have been observed. To complement these studies, we utilized a different organism and approach to analyze the relationship between ethanol consumption and other ethanol responses. Using a set of 20 Drosophila melanogaster mutants that were isolated for altered ethanol sensitivity, we measured ethanol-induced hyperactivity, ethanol sedation, sedation tolerance, and ethanol consumption preference. Ethanol preference showed a strong positive correlation with ethanol tolerance, consistent with some rodent and human studies, but not with ethanol hyperactivity or sedation. No pairwise correlations were observed between ethanol hyperactivity, sedation, and tolerance. The evolutionary conservation of the relationship between tolerance and ethanol consumption in flies, rodents, and humans indicates that there are fundamental biological mechanisms linking specific ethanol responses.  相似文献   

2.
The heavy consumption of ethanol can lead to alcohol use disorders (AUDs) which impact patients, their families, and societies. Yet the genetic and physiological factors that predispose humans to AUDs remain unclear. One hypothesis is that alterations in mitochondrial function modulate neuronal sensitivity to ethanol exposure. Using Drosophila genetics we report that inactivation of the mitochondrial outer membrane translocator protein 18kDa (TSPO), also known as the peripheral benzodiazepine receptor, affects ethanol sedation and tolerance in male flies. Knockdown of dTSPO in adult male neurons results in increased sensitivity to ethanol sedation, and this effect requires the dTSPO depletion-mediated increase in reactive oxygen species (ROS) production and inhibition of caspase activity in fly heads. Systemic loss of dTSPO in male flies blocks the development of tolerance to repeated ethanol exposures, an effect that is not seen when dTSPO is only inactivated in neurons. Female flies are naturally more sensitive to ethanol than males, and female fly heads have strikingly lower levels of dTSPO mRNA than males. Hence, mitochondrial TSPO function plays an important role in ethanol sensitivity and tolerance. Since a large array of benzodiazepine analogues have been developed that interact with the peripheral benzodiazepine receptor, the mitochondrial TSPO might provide an important new target for treating AUDs.  相似文献   

3.
A reduced sensitivity to the sedating effects of alcohol is a characteristic associated with alcohol use disorders (AUDs). A genetic screen for ethanol sedation mutants in Drosophila identified arouser (aru), which functions in developing neurons to reduce ethanol sensitivity. Genetic evidence suggests that aru regulates ethanol sensitivity through its activation by Egfr/Erk signaling and its inhibition by PI3K/Akt signaling. The aru mutant also has an increased number of synaptic terminals in the larva and adult fly. Both the increased ethanol sensitivity and synapse number of the aru mutant are restored upon adult social isolation, suggesting a causal relationship between synapse number and ethanol sensitivity. We thus show that a developmental abnormality affecting synapse number and ethanol sensitivity is not permanent and can be reversed by manipulating the environment of the adult fly.  相似文献   

4.
We have shown previously that mice lacking the adenosine A2A receptor (A2AR) generated on a CD1 background self‐administer more ethanol and exhibit hyposensitivity to acute ethanol. We aimed to investigate if the increased propensity of A2A?/? mice to consume ethanol is associated with an altered sensitivity in the motivational properties of ethanol in the conditioned place preference (CPP) and conditioned taste aversion (CTA) paradigms and with an altered development of sensitization to the locomotor effects of ethanol. We also tested their sensitivity to the anxiolytic effects of ethanol. Our results show that A2A?/? mice produced on a CD1 background displayed a reduced ethanol‐induced CPP and an increased sensitivity to the anxiolytic and locomotor‐stimulant effects of ethanol, but they did not show alteration in ethanol‐induced CTA and locomotor sensitization. Ethanol‐induced CPP, ethanol consumption and the locomotor effects of ethanol were also tested in A2A?/? mice produced on a C57BL/6J background. Our results emphasized the importance of the genetic background because alteration in ethanol consumption and preference, ethanol‐induced CPP and locomotor‐stimulant effects were not found in knockout mice produced on the alcohol‐preferring C57BL/6J genetic background. Finally, the A2AR agonist, 2‐p‐(2‐carboxyethyl)‐phenylethylamino‐5′‐N‐ethylcarboxamidoadenosine hydrochloride (CGS 21680), reduced ethanol consumption and preference in C57BL/6J mice. In conclusion, A2AR deficiency in mice generated on a CD1 background leads to high ethanol consumption that is associated with an increased sensitivity to the locomotor‐stimulant/anxiolytic effects of ethanol and a decrease in ethanol‐induced CPP.  相似文献   

5.
Scholz H  Ramond J  Singh CM  Heberlein U 《Neuron》2000,28(1):261-271
In humans, repeated alcohol consumption leads to the development of tolerance, manifested as a reduced physiological and behavioral response to a particular dose of alcohol. Here we show that adult Drosophila develop tolerance to the sedating and motor-impairing effects of ethanol with kinetics of acquisition and dissipation that mimic those seen in mammals. Importantly, this tolerance is not caused by changes in ethanol absorption or metabolism. Rather, the development of tolerance requires the functional and structural integrity of specific central brain regions. Mutants unable to synthesize the catecholamine octopamine are also impaired in their ability to develop tolerance. Taken together, these data show that Drosophila is a suitable model system in which to study the molecular and neuroanatomical bases of ethanol tolerance.  相似文献   

6.
7.
Animals exhibit behavioral differences in their sensitivity to ethanol, a trait that is at least in part due to genetic predispositions. This study has implicated a large neuronal protein involving Highwire, a Drosophila E3 ubiquitin ligase (Hiw, a homolog of Pam, a protein associated with Myc found in humans) in acute sensitivity to ethanol sedation. Flies lacking Hiw were hypersensitive to the sedating effect of ethanol whereas those overexpressing Hiw showed decreased sensitivity to ethanol. Furthermore, RNAi functional knockdown of Hiw in adult neurons or ellipsoid body neurons showed increased sensitivity to ethanol sedation. None of these manipulations of the hiw gene caused changes in the rate of ethanol absorption and/or metabolism. These results suggest a previously unknown role for this highly conserved gene in regulating the behavioral responses to an addictive drug.  相似文献   

8.
9.
Abstract

This paper reviews animal studies of genetic differences in the consumption of alcohol. It deals with six areas: (1) field observations in nature; (2) selective breeding; (3) variation among inbred strains; (4) correlates of ethanol preference and avoidance; (5) consumption and sensitivity; and (6) a test of an ethanol intake control system. Because of space constraints it is selective rather than exhaustive. The results of experiments demonstrate that genes have a strong effect on alcohol consumption when animals are given a choice of liquids. Both preabsorptive and postabsorptive factors can modify intake. There are similarities in factors that affect alcohol consumption in animals and those believed to be operative in humans. Evidence for an ethanol intake control system is presented.  相似文献   

10.
11.

Background  

Alcoholism presents widespread social and human health problems. Alcohol sensitivity, the development of tolerance to alcohol and susceptibility to addiction vary in the population. Genetic factors that predispose to alcoholism remain largely unknown due to extensive genetic and environmental variation in human populations. Drosophila, however, allows studies on genetically identical individuals in controlled environments. Although addiction to alcohol has not been demonstrated in Drosophila, flies show responses to alcohol exposure that resemble human intoxication, including hyperactivity, loss of postural control, sedation, and exposure-dependent development of tolerance.  相似文献   

12.
Caenorhabditis elegans senses multiple environmental stimuli through sensory systems and rapidly changes its behaviors for survival. With a simple and well-characterized nervous system, C. elegans is a suitable animal model for studying behavioral plasticity.
Previous studies have shown acute neurodepressive effects of ethanol on multiple behaviors of C. elegans similar to the effect of ethanol on other organisms. Caenorhabditis elegans also develops ethanol tolerance during continuous exposure to ethanol. In mammals, chronic ethanol exposure leads to ethanol tolerance as well as increased ethanol consumption. Ethanol preference is associated with the development of tolerance and may lead to the development of ethanol dependence.
In this study, we show that C. elegans is a useful model organism for studying chronic effects of ethanol, including the development of ethanol preference. We designed a behavioral assay for testing ethanol preference after prolonged ethanol exposure. Despite baseline aversive responses to ethanol, animals show ethanol preference after 4 h of pre-exposure to ethanol and exhibit significantly enhanced preference for ethanol after a lifetime of ethanol exposure. The cat-2 and tph-1 mutant animals have defects in the synthetic enzymes for dopamine and serotonin, respectively. These mutants are deficient in the development of ethanol preference, indicating that dopamine and serotonin are required for this form of behavioral plasticity.  相似文献   

13.
Dopamine (DA) signals are transmitted via specific receptors including the D2 receptors (D2R). Previous studies have shown that D2R upregulation in the nucleus accumbens (NAc) attenuated alcohol consumption. We hypothesized that upregulation of D2R in the NAc would significantly influence alcohol drinking. We tested this hypothesis by determining the effect that D2R upregulation has on alcohol intake in genetically altered mice lacking D2Rs. After a steady baseline of drinking behavior was established for all mice, a null vector or a genetically modified adenoviral vector containing the rat D2R cDNA was infused into the NAc of wild-type (Drd2+/+), heterozygous (Drd2+/-), and receptor-deficient mice (Drd2-/-). Ethanol intake and preference were then determined using the two-bottle choice paradigm. Our results indicated that Drd2+/+ mice treated with the D2R vector significantly attenuated (58 %) their ethanol intake as well as reduced preference. Drd2+/- and mutant mice showed a similar attenuation, although the change was not as marked (12 %) and did not last as long. In contrast, Drd2-/- mice treated with the D2R vector displayed a temporary but significant increase (46 %) in ethanol intake and preference (consumption). These results supported the notion that the D2R plays an important role in alcohol consumption in mice and suggest that a key threshold range of D2R levels is associated with elevated alcohol consumption. Significant deviations in D2R levels from this range could impact alcohol consumption, and could help to explain possible individual variations in alcohol response, metabolism, sensitivity and consumption.  相似文献   

14.
C57BL/6J (B6) inbred mice are well known to drink large amounts of alcohol (ethanol) voluntarily and to have only modest ethanol-induced withdrawal under fixed dose conditions. In contrast, DBA/2J (D2) mice are ``teetotallers' and exhibit severe ethanol withdrawal. Speculation that an inverse genetic relationship existed between these two traits was substantiated by meta-analysis of existing data collected in multiple genetic models, including large panels of standard and recombinant inbred strains, their crosses, and selectively bred mouse lines. Despite methodological differences among laboratories in measurement of both preference drinking and withdrawal, a nearly universal finding was that genotypes consuming large amounts of 10% ethanol (calculated as g/kg/day) during two-bottle choice preference drinking were genetically predisposed to low withdrawal scores in independent studies after either acute or chronic ethanol treatment. Conversely, low-drinking genotypes had higher withdrawal severity scores. The genetic relationship appears to be strongest in populations derived from B6 and D2, where data from more genotypes (BXD RIs, B6D2F2s, BXD RI F1s, and B6D2F2-derived selectively bred lines) were available for analysis. Gene mapping studies in these populations identified four chromosome regions [on Chromosomes (Chrs) 1, 2, 4, and 15] where genes might potentially influence both traits. Among genotypes with greater genetic diversity (for example, a panel of standard inbred strains or selectively bred lines), the relationship was less pronounced. Thus, reduced susceptibility to the development of high alcohol use may be supported by increased genetic susceptibility to ethanol withdrawal symptoms. Received: 15 September 1998 / Accepted: 8 October 1998  相似文献   

15.
The development of tolerance to a drug at the level of the neuron reflects a homeostatic mechanism by which neurons respond to perturbations of their function by external stimuli. Acute functional tolerance (AFT) to ethanol is a fast compensatory response that develops within a single drug session and normalizes neuronal function despite the continued presence of the drug. We performed a genetic screen to identify genes required for the development of acute functional tolerance to ethanol in the nematode C. elegans. We identified mutations affecting multiple genes in a genetic pathway known to regulate levels of triacylglycerols (TAGs) via the lipase LIPS-7, indicating that there is an important role for TAGs in the development of tolerance. Genetic manipulation of lips-7 expression, up or down, produced opposing effects on ethanol sensitivity and on the rate of development of AFT. Further, decreasing cholesterol levels through environmental manipulation mirrored the effects of decreased TAG levels. Finally, we found that genetic alterations in the levels of the TAG lipase LIPS-7 can modify the phenotype of gain-of-function mutations in the ethanol-inducible ion channel SLO-1, the voltage- and calcium-sensitive BK channel. This study demonstrates that the lipid milieu modulates neuronal responses to ethanol that include initial sensitivity and the development of acute tolerance. These results lend new insight into studies of alcohol dependence, and suggest a model in which TAG levels are important for the development of AFT through alterations of the action of ethanol on membrane proteins.  相似文献   

16.
Earlier we showed that direction of changes in the initial anxiety level during compulsory alcoholization was more essential for development of alcohol preference than the initial anxiety level per se. The goal of this work was to study effect of the anxiety level changes on development of ethanol preference in Wistar male rats pharmacologically affected by phenazepam and caffeine. Out of four groups (60 rats) over the period of 4 months, group I had access to 10% ethanol, group II-to 10% ethanol with 0.4 g/l caffeine, group III-to 10% ethanol with 0.5 mg/l phenazepam, and group IV (control)—to water only. The anxiety level and behavioral parameters were evaluated before the onset of the experiment and every 5 weeks thereafter by using the open field test. The ethanol preference was determined by the 2-glass test before the onset of the experiment and every 4 weeks thereafter. In the experimental groups, the long-term consumption of ethanol, ethanol with caffeine, and ethanol with phenazepam led to an increase in alcohol preference as compared with control. A decrease in motor activity under compulsory alcoholization was found to correlate positively with the low level of alcohol preference. Rats that consumed ethanol with caffeine sensitive to this anxiety-enhancing psychostimulant developed ethanol preference faster. The rats insensitive to caffeine developed no alcohol preference. The rats sensitive to the sedative effect of phenazepam were less anxious and did not prefer alcohol subsequently. In rats insensitive to phenazepam, anxiety increased and alcohol preference developed.  相似文献   

17.
Alcohol (ethanol) use during pregnancy can produce a wide spectrum of effects in the developing embryo/fetus that are dependent on the maternal drinking pattern. The effects of chronic ethanol exposure on the developing conceptus are reviewed with primary focus on ethanol teratogenesis, manifesting in the human as the fetal alcohol syndrome or fetal alcohol effects. The effects of acute ethanol exposure on the near-term fetus are described, including suppressed fetal breathing movements, electrocorticographic (ECoG) activity and electrooculographic (EOG) activity. The ethanol-induced suppression of fetal breathing movements is a very sensitive index of acute exposure of the near-term fetus to ethanol, and appears to involve a direct mechanism of action rather than an indirect mechanism involving suppression of electrocortical activity. The disposition of ethanol and its pharmacologically active proximate metabolite, acetaldehyde, and the activity of alcohol dehydrogenase and aldehyde dehydrogenase in the near-term maternal-fetal unit are described, and a pharmacokinetic model is proposed. The effects of short-term ethanol exposure on the near-term fetus include the development of tolerance to the ethanol-induced suppression of fetal breathing movements, low-voltage ECoG activity and EOG activity. The development of tolerance occurs more rapidly to the latter two fetal biophysical activities. The mechanism of tolerance development appears to be pharmacodynamic (functional) in nature, as there is no increase in the rate of ethanol elimination from the maternal-fetal unit. The role of prostaglandins (PGs) in the mechanism of the ethanol-induced suppression of fetal breathing movements is described. In the near-term fetus, there is a direct relationship between fetal blood ethanol concentration and fetal plasma PGE2 concentration, and an inverse relationship between the incidence of fetal breathing movements and each of fetal plasma and fetal cerebrospinal fluid (CSF) PGE2 concentrations. Indomethacin, a PG synthetase inhibitor, selectively blocks and reverses the ethanol-induced suppression of fetal breathing movements. These data support the postulates that the ethanol-induced suppression of fetal breathing movements is mediated by increased PGE2 concentration in the near-term fetus and that the ability of indomethacin to antagonize the ethanol-induced suppression of fetal breathing movements is due to its biochemical action to decrease fetal PGE2 concentration.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Identifying genes that influence behavioral responses to alcohol is critical for understanding the molecular basis of alcoholism and ultimately developing therapeutic interventions for the disease. Using an integrated approach that combined the power of the Drosophila, Caenorhabditis elegans and mouse model systems with bioinformatics analyses, we established a novel, conserved role for chloride intracellular channels (CLICs) in alcohol-related behavior. CLIC proteins might have several biochemical functions including intracellular chloride channel activity, modulation of transforming growth factor (TGF)-β signaling, and regulation of ryanodine receptors and A-kinase anchoring proteins. We initially identified vertebrate Clic4 as a candidate ethanol-responsive gene via bioinformatic analysis of data from published microarray studies of mouse and human ethanol-related genes. We confirmed that Clic4 expression was increased by ethanol treatment in mouse prefrontal cortex and also uncovered a correlation between basal expression of Clic4 in prefrontal cortex and the locomotor activating and sedating properties of ethanol across the BXD mouse genetic reference panel. Furthermore, we found that disruption of the sole Clic Drosophila orthologue significantly blunted sensitivity to alcohol in flies, that mutations in two C. elegans Clic orthologues, exc-4 and exl-1, altered behavioral responses to acute ethanol in worms and that viral-mediated overexpression of Clic4 in mouse brain decreased the sedating properties of ethanol. Together, our studies demonstrate key roles for Clic genes in behavioral responses to acute alcohol in Drosophila, C. elegans and mice.  相似文献   

19.
Involvement of kappa type opioids on ethanol drinking   总被引:2,自引:0,他引:2  
C Sandi  J Borrell  C Guaza 《Life sciences》1988,42(10):1067-1075
The effects of the administration of the kappa agonist dynorphin1-17 and/or the kappa antagonist MR-2266-BS on ethanol preference was investigated using a paradigm by which rats develop alcohol preference. Administration of dynorphin shortly before or after the conditioning session (forced ethanol exposure) failed to affect later ethanol preference. However, dynorphin treatment prior to the first choice session reduced ethanol preference during the three consecutive testing days. This effect was reversed by the simultaneous administration of the kappa antagonist MR-2266-BS. The results of the present study provide further support for evidence of the involvement of dynorphinergic systems on drinking behavior and suggest that kappa-type opioid mechanisms may be involved in the consumption and development of preference to ethanol in rats.  相似文献   

20.
Inhibitory effects of passive ethanol exposure on brain neurogenesis have been extensively documented in animal models. In contrast, a role of brain neurogenesis in ethanol self-administration has not been addressed, as yet. The aim of this study was to assess intake of, and preference for, ethanol solutions [2-16% (v/v)] in a mouse model of adult neurogenesis deficiency based on permanent knockout (KO) of cyclin D2 (Ccnd2). Wild type (WT) and Ccnd2 KO mice did not differ in 2% and 4% ethanol intake. The KO group consumed significantly more ethanol in g/kg when offered with 8% or 16% ethanol as compared with the WT controls. The WT and KO mice did not differ in 2% ethanol preference, but the KO group showed a significantly higher preference for 4-16% ethanol. Animal and human studies have suggested that the low level of response to the sedative/hypnotic effects of alcohol is genetically associated with enhanced alcohol consumption. However, in this study, there were no between-genotype differences in ethanol-induced loss of righting reflex. Previous reports have also suggested that high ethanol intake is genetically associated with the avidity for sweets and better acceptance of bitter solutions. However, the KO and WT mice consumed similar amounts of saccharin solutions and the KOs consumed less quinine (i.e. bitter) solutions as compared with the WTs. In conclusion, these results may indicate that Ccnd2 and, possibly, brain neurogenesis are involved in central regulation of ethanol intake in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号